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ABSTRACT
Human DNA sequencing has revealed numerous single nucleotide variants associated
with complex diseases. Researchers have shown that these variants have potential
effects on protein function, one of which is to disrupt protein phosphorylation. Based
on conventional machine learning algorithms, several computational methods for
predicting phospho-variants have been developed, but their performance still leaves
considerable room for improvement. In recent years, deep learning has been success-
fully applied in biological sequence analysis with its efficient sequence pattern learning
ability, which provides a powerful tool for improving phospho-variant prediction based
on protein sequence information. In the study, we present PhosVarDeep, a novel
unified deep-learning framework for phospho-variant prediction. PhosVarDeep takes
reference and variant sequences as inputs and adopts a Siamese-like CNN architecture
containing two identical subnetworks and a prediction module. In each subnetwork,
general phosphorylation sequence features are extracted by a pre-trained sequence
feature encoding network and then fed into a CNN module for capturing variant-
aware phosphorylation sequence features. After that, a predictionmodule is introduced
to integrate the outputs of the two subnetworks and generate the prediction results
of phospho-variants. Comprehensive experimental results on phospho-variant data
demonstrates that our method significantly improves the prediction performance of
phospho-variants and compares favorably with existing conventional machine learning
methods.

Subjects Bioinformatics, Computational Biology
Keywords Deep learning, Sequential, Prediction

INTRODUCTION
Nowadays, human DNA sequencing studies have revealed millions of single nucleotide
variants, which have been shown to significantly associate with complex diseases such as
cancer and cardiovascular diseases (Gonzalez-Perez et al., 2013; MacArthur et al., 2014).
Although millions of variants have been discovered, their exact effects on resultant
RNA or protein products generally remain unknown (Patrick et al., 2017). One of the
potential effects of these variants on protein function is to disrupt post-translational
modifications especially protein phosphorylation (Kim et al., 2015; Krassowski et al., 2018),
since phosphorylation is the most ubiquitous post-translational modification and plays an
important role in understanding the alteration of signaling pathways caused by variations

How to cite this article Liu X, Wang M, Li A. 2022. PhosVarDeep: deep-learning based prediction of phospho-variants using sequence
information. PeerJ 10:e12847 http://doi.org/10.7717/peerj.12847

https://peerj.com
mailto:mhwang@ustc.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.12847
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.12847


(Reimand & Bader, 2013; Reimand, Wagih & Bader, 2013). Therefore, identifying and
understanding variants that affect phosphorylation status is critical in the study of cell
biology, disease treatment and prevention. Here, we follow the previous studies (Ryu et
al., 2009; Patrick et al., 2017) to use the term ‘phospho-variant’ to refer to a variant that
impacts the phosphorylation status of an amino acid. The examples of phospho-variants
used in this paper include those variants that modify the S/T/Y residue or adjacent residue,
i.e., Type I, Type II and Type III defined in Ryu et al. (2009).

Indeed, it has been reported that there are numerous phospho-variants that are capable
of impacting protein phosphorylation. For example, over 19,000 missense mutations are
included in the PhosphoSitePlus PTMVar dataset (Hornbeck et al., 2015), which fall within
a 15-residue window centered by an experimentally-identified phosphorylation site and
may preeminently disrupt existing phosphorylation sites or introduce new phosphorylation
sites. Meanwhile, several databases have also been developed to catalogue the suspected
effects of variants on potential phosphorylation sites. For example, Ryu et al. (2009)
search for known phospho-variants and predict other possible phospho-variants among
human variations by PredPhospho, which are then incorporated into the Phospho-variant
database. Subsequently, by string matching with 23,978 phosphorylation sites on human,
Ren et al. (2010) detect potential phospho-variants and compile them into the PhosSNP
database.

In contrast to the above approaches providing a database, there are several computational
methods based on conventional machine learning algorithms for detecting and analyzing
phospho-variants. For example, Wagih, Reimand & Bader (2015) developed a Bayesian
statistics-based method called mutation impact on phosphorylation (MIMP), which
constructs position weight matrices and trains Gaussian mixture models to predict the
function of variants on phosphorylation sites. Subsequently, established on the previous
Bayesian networkmodel for phosphorylation site prediction, Patrick et al. (2017) presented
an effective method called PhosphoPICK-SNP to quantify the expected impacts of variants
on protein phosphorylation status. The PhosphoPICK-SNP method obtains prediction
scores from a pair of reference and variant protein sequences surrounding a potential
phosphorylation site containing missense mutation, and then combines them to analyze
the impacts of variation onprotein phosphorylation. In thisway,Patrick et al. (2017)predict
the effects of known phospho-variants on phosphorylation and construct a background
distribution of proteome-wide predicted variant effects to detect novel examples of
phospho-variants.

Recently, as a rising and promising machine learning technique, deep learning has made
a remarkable breakthrough inmany areas such as image recognition (Rawat & Wang, 2017)
and natural language understanding (Collobert et al., 2011). Compared with conventional
machine learning techniques, deep learning methods have a distinctive advantage that
allows automatically discovery of the complex representations needed for downstream
task. Among them, convolutional neural network (CNN) (Krizhevsky, Sutskever & Hinton,
2017) has been successfully undertaken in biological sequence analysis for its powerful
capability of learning sequence patterns. For example, Alipanahi et al. (2015) employed
CNN in DeepBind to predict sequence specificities of DNA- and RNA-binding proteins.
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In addition, for phosphorylation site prediction, Wang et al. (2017) proposed Musitedeep
based on a multi-layer CNN architecture with attention mechanism, and lately Luo
et al. (2019) presented DeepPhos using densely connected CNN architectures to learn
multiple representations of protein sequences. These deep learning methods using CNN
architectures have obtained better performance than conventional machine learning
methods. However, so far there is no approach to address the problem of phospho-variant
prediction by deep learning and it is nontrivial to develop such a powerful tool that can
effectively utilize both reference and variant sequence information to predict impacts of
variants on protein phosphorylation status.

In this work, we propose PhosVarDeep, a novel unified deep-learning framework
for phospho-variant prediction by efficiently extracting and combining both reference
and variant protein sequential information. PhosVarDeep employs a Siamese-like CNN
architecture containing two identical subnetworks with shared weights. Each subnetwork
is composed of a sequence feature encoding network (PhosFEN) and a multi-layer CNN
(CNNmodule). To begin, we utilize PhosFEN to capture general phosphorylation sequence
features of the reference and variant sequences, which are fed into the CNN module to
further learn variant-aware phosphorylation sequence features jointly. Then we employ
a prediction module to combine the two obtained features from the subnetworks to
produce a prediction score that best separates the positive and negative examples of
phospho-variants. We conduct comprehensive experiments to study the performance of
PhosVarDeep, and the evaluation results exhibit that our proposed method significantly
improves the predictive performance in identifying phospho-variants and is superior to
existing prediction methods.

MATERIALS & METHODS
Dataset and pre-process
Here, in order to train and evaluate our method, we collect over 2,000 potential phospho-
variants in PhosSNP (Ren et al., 2010) as the positive set and adopt three negative sets
generated by Patrick et al. (2017), which contain information of protein UniProt index,
amino acid variation and phosphorylation sites. The positive dataset in PhosSNP we
adopt is based on exact string matching reference/variant sequence with experimentally
identified human phosphorylation sites. Accordingly, either identical hit in reference or
variant sequence is considered as potential phospho-variants (Ren et al., 2010). As for
negative sets, as described in Ralph et al., the three high confidence negative sets adopted in
this study are generated by different criteria under the fact that phosphorylation sites are less
likely to occur (1) in solvent inaccessible/buried regions of a protein; (2) in transmembrane
domains; (3) in proteins that do not interact either directly or through mediators with
a kinase (Patrick et al., 2017). Next, we map the collected phospho-variant data with
protein sequences by its corresponding UniProt index and amino acid variation so that
each phospho-variant corresponds to a pair of reference and variant protein sequences
(Bateman et al., 2015). Table 1 shows the sizes of the positive set and three negative sets
used for phospho-variant prediction, with respect to different phosphorylation site types,

Liu et al. (2022), PeerJ, DOI 10.7717/peerj.12847 3/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.12847


Table 1 The sizes of positive and negative sets with respect to different phosphorylation site types.

S/T sites Y sites

Positive set 763 440
Negative set1 5796 2372
Negative set2 2285 715
Negative set3 17204 9901

i.e., serine (S)/threonine (T) or tyrosine (Y). Given a phospho-variant, we intercept the
protein fragments centered at a phosphorylation site on its corresponding pair of reference
and variant sequences. Then each protein fragment is encoded by the one-hot encoding
strategy into a L×N two-dimension matrix, where L represents the window size of the
protein fragment, and N is set to 21 according to the total number of common amino acids
(Min et al., 2017). Besides, we apply CD-HIT with similarity threshold of 40% to all the
collected data to reduce the sequence redundancy by following previous studies (Pan et al.,
2014; Zhao et al., 2012).

After completing the data pre-processing, the positive set is combined with each negative
set to form three phospho-variant datasets, and for each phospho-variant dataset, we train
two deep learning models using phospho-variant data on S/T and Y sites respectively.
Meanwhile, we use a performance evaluation strategy commonly adopted in deep learning
methods for sequential analysis (Zhou & Troyanskaya, 2015; Khurana et al., 2018), that is,
each dataset is randomly divided into strictly non-overlapping training, validation and
test sets and the ratio is set to 6:2:2 in our study. In this way, we adopt the training data
to tune the model weights and utilize the validation data to prevent overfitting (Zhou &
Troyanskaya, 2015). The test set is adopted to evaluate the performance of PhosVarDeep
and to implement the comparison of PhosVarDeep and other phospho-variant prediction
approaches.

Siamese-like architecture of PhosVarDeep
In this study, we design a Siamese-like deep-learning framework for phospho-variant
prediction. As a classic metric learning method, Siamese neural network is first introduced
in Bromley et al. (1993) and has been successfully adopted in tasks such as signature
verification (Chopra, Hadsell & LeCun, 2005), face verification (Cao, Ying & Li, 2013) and
object tracking (Bertinetto et al., 2016). To measure similarity between pairs of inputs,
Siamese neural network learns a function mapping input patterns to the representation
or target space where similar pairs will get close and non-similar pairs will get away from
each other (Zagoruyko & Komodakis, 2015). Generally, Siamese neural network contains
two subnetworks sharing same configuration, weights, and parameters, which ensures
that two similar inputs are transformed into similar feature representations. Here, we
adopt a deep-learning framework in Siamese style to learn a complex non-liner mapping
for separating the positive and negative samples of the phospho-variants. Figure 1 shows
the proposed architecture of PhosVarDeep, which consists of two identical subnetworks
with shared weights and a prediction module. Specifically, within each subnetwork, the
PhosFEN and the CNN module extract a high dimensional feature representation of an
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Figure 1 Illustration of the proposed PhosVarDeep framework.
Full-size DOI: 10.7717/peerj.12847/fig-1

input sequence. Next, the prediction module is introduced to integrate the outputs of the
two subnetworks as combined features to generate prediction results of phospho-variants.
The details of those networks are described as follows.

PhosFEN
In each subnetwork, PhosFEN presents a sequence feature encoding network to extract
the respective features from the reference and variant local sequences of a given phospho-
variant. Specifically, the input of PhosFEN is one-hot local sequence es ∈RL×21 (s= s1,s2),
with s1 and s2being the reference and variant sequences, respectively. Then the sequence
features related to phosphorylation are extracted by PhosFEN as follows:

fs=PhosFEN
(
es;W F) (1)

where W F represents all the parameter matrices and bias items in PhosFEN. In this way,
the feature map fs is exported from PhosFEN as general phosphorylation-related local
features, and the pair of fs1 and fs2 is used as input to the following CNN module.

In this work, since the amount of training data of phospho-variants is much smaller than
the size of parameters in deep learning models, overfitting is likely to occur in the training
process. In order to solve the problem of insufficient training data, we have studied the
feature learning capabilities of the existing deep-learning models for phosphorylation site
prediction and adopt DeepPhos (Luo et al., 2019) in our study through transfer learning
(Yosinski et al., 2014). DeepPhos is a pre-trained deep learning model consisting of densely
connected CNN blocks, which can capture the complex deep sequence representations
relevant to phosphorylation better than other deep-learning models. We transfer the whole
layers of the model to PhosFEN except its final three layers including the flatten layer, the
fully connected layer, and the output layer in our study.

CNN module
After the general phosphorylation sequence features are extracted from PhosFEN, they are
fed into the CNN module to generate variant-aware phosphorylation sequence features.
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Table 2 Details of CNNmodule and prediction module.

Layers Details

Multi-layer CNN Conventional layer(+ReLU) 32 filters
Conventional layer(+ReLU) 64 filters
Conventional layer(+ReLU) 128 filters
Dropout P= 0.3
MaxPooling pool_size = 2

Multi-layer DNN Fully connected layer(+ReLU) 128 neurons
Fully connected layer(+ReLU) 64 neurons
Fully connected layer(+ReLU) 32 neurons
Dropout P= 0.3

Output layer Fully connected layer (+softmax) 2 neurons

As shown in Fig. 1, each CNN module is comprised of multiple convolutional layers and
max pooling layers, and a flatten layer. The convolutional layer generates a feature map
by convoluting the input with a set of convolution kernels. Mathematically, for input
phosphorylation-related features fs (s= s1,s2), let hi,s be the ith feature map in output, and
the convolutional layers can be described as follows:

h1,s=α
(
W k

1 fs+b
k
1
)

(2)

hi,s=α
(
W k

i hi−1,s+b
k
i
)
2≤ i≤M (3)

where W k
i and bki refer to the parameter matrices and bias items in the ith convolutional

layer, with k being the number of convolutional kernels. α represents ReLU activation
function that can realize the nonlinear transformation, M refers to the number of
convolutional layers and here is set to 3. In this way, the variant-aware phosphorylation
sequence features can be generated, and then by the flatten layer, they are transformed
into a pair of one-dimensional tensors (hs1,hs2) ∈ R

d . In addition, to relieve the risk of
overfitting during the training process, a dropout layer is added after each convolutional
layer to discard some neurons randomly (Srivastava et al., 2014). The details of the CNN
Module are listed in Table 2.

Prediction module
Taking a pair of sequence features hs1 and hs2 as inputs, the prediction module utilizes a
multi-layer DNN consisting of three fully connected layers to integrate the feature pair
and compute a prediction score for phospho-variant. In detail, the two input features are
concatenated and then fed into the multi-layer DNN to capture the abstract combined
features cv ∈Ru, here u refers to the number of neurons in the final fully connected layer.
Next, the output layer with softmax as the activation function is used to generate prediction
scores of the positive and negative phospho-variant, which can be calculated as follows:

P
(
y = 1|(s1,s2)

)
=

1
1+exp(−cvWv)

(4)
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P
(
y = 0|(s1,s2)

)
= 1−P

(
y = 1|(s1,s2)

)
(5)

where Wv ∈ Ru×2 represents the weight matrix of softmax function. The details of the
multi-layer DNN and output layer are listed in Table 2.

Training
PhosVarDeep is a unified deep learning framework for phospho-variant prediction and
is trained to classify the phospho-variants into two classes: positive phospho-variants and
negative phospho-variants. Accordingly, for the aim of minimizing training error, here we
adopt a binary cross-entropy as loss function:

Lc =−
1
N

n∑
j=1

y j lnP
(
y j = 1|(s1,s2)j

)
+
(
1−y j

)
lnP

(
y j = 0|(s1,s2)j

)
(6)

where N refers to the size of training data, (s1,s2)j represents the pair of reference and
variant sequences for the j th input phospho-variant and y j refers to the corresponding
class label. We freeze all the layers of PhosFEN and train the CNN module and prediction
module jointly on phospho-variant training data, in which the weights and biases of
conventional layers and fully connected layers are the parameters to be estimated. Besides,
as a widely used stochastic gradient descent algorithm, Adam optimizer (Kingma & Ba,
2015). is adopted in the training process. At the same time, we use mini-batch training
strategy in this study to randomly divide small proportions of the training samples in each
iteration into optimizer loops. In addition, to deal with the problem of data imbalance, we
follow the previous study (Wang et al., 2017) to apply a bootstrapping strategy in our deep
learning method.

Performance assessment
In this study, several widely used measurements are leveraged to assess the performance
of our proposed PhosVarDeep, which include specificity (Sp), sensitivity (Sn), precision
(Pre), overall accuracy (Acc), F1 scores and Matthew’s correlation coefficient (MCC).
Their detailed definitions are as below:

Sp=
TN

TN +FP
(7)

Sn=
TP

TP+FN
(8)

Pre=
TP

TP+FP
(9)

Acc =
TP+TN

TP+TN +FP+FN
(10)
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F1=
2×Pre×Sn
Pre+Sn

(11)

MCC =
TP×TN −FP×FN

√
((TP+FN )×(TP+FP)×(TN +FN )×(TN +FP))

(12)

where TP, FP, TN, and FN denote true positives, false positives, true negatives, and false
negatives, respectively. The other measurements are calculated based on TP, FP, TN, and
FN. Moreover, we plot the receiver operating characteristic curve (ROC) and calculate the
area under ROC curve (AUC) to evaluate the overall performance.

EXPERIMENTS & RESULTS
Determining the PhosFEN model
To begin, in order to extract general phosphorylation sequence features, we transfer
phosphorylation prediction models to PhosFEN in our method. There are several
pre-trained models with good phosphorylation-related sequence feature learning
capabilities. Among them, Musitedeep (Wang et al., 2017) and DeepPhos (Luo et al.,
2019) are both CNN models achieving significantly better performance than previous
methods. To determine which model provides more useful information for phospho-
variant prediction, we compare the two phosphorylation site predictors using an
existing comprehensive phosphorylation site dataset (Luo et al., 2019) collected from
Phospho.ELM, PhosphositePlus, HPRD, dbPTM and SysPTM. The Roc curves and AUC
values of the two models are shown in Fig. 2. It is obvious that DeepPhos consistently
achieved higher performance on both S/T sites and Y sites than Musitedeep. For S/T sites,
the AUC value of DeepPhos is 3.0% higher than that of Musitedeep. For Y sites, compared
with Musitedeep, the AUC value obtained by DeepPhos is increased by 5.7%. The above
results suggest that DeepPhos has better phosphorylation-related feature learning capability
on phospho-variant data. Accordingly, for accurate phospho-variant prediction, we employ
pre-trained DeepPhos in PhosFEN to capture general phosphorylation sequence features
in phospho-variant data.

Performance evaluation of PhosVarDeep
In this part, to evaluate the performance of PhosVarDeep in extracting and integrating
reference and variant sequence information for phospho-variant prediction, we conduct an
ablation study by comparing three different model configurations: (1) PhosFEN*: in this
case, the paired outputs of PhosFEN are directly combined and fed into a fully connected
layer to get the prediction results; (2) PM*: in this case, we employ the prediction module
to integrate the outputs of PhosFEN to predict phospho-variant; (3) PhosVarDeep.: in
this case, for the paired outputs of PhosFEN, we utilize the CNN module to further learn
variant-aware phosphorylation sequence features and employ the prediction module to
generate combined features for final prediction.

We apply all above methods on three phospho-variant test sets and Table 3 lists their
AUC values on S/T and Y sites. It is obvious that PM* produces higher performance
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Figure 2 ROC curves and AUC values of DeepPhos andMusitedeep for general phosphorylation site
prediction on S/T and Y sites.

Full-size DOI: 10.7717/peerj.12847/fig-2

Table 3 AUC values of PhosVarDeep for phospho-variant prediction.

Method Test set1 Test set2 Test set3

S/T sites Y sites S/T sites Y sites S/T sites Y sites

PhosFEN* 0.845 0.827 0.915 0.898 0.719 0.661
PM* 0.909 0.878 0.930 0.917 0.848 0.812
PhosVarDeep 0.946 0.919 0.957 0.923 0.906 0.874

Notes.
Best performance values are highlighted in bold.

than PhosFEN*, which indicates the prediction module effectively contributes to the
performance of phospho-variant prediction. For example, on test set2 the AUC values
of PM* are 0.930 and 0.917 on S/T and Y sites respectively, which yield 1.5% and 1.9%
improvement over PhosFEN*. More importantly, it can also be clearly observed that
PhosVarDeep achieves better performance than PM* on all the test sets. For example, on
test set3 the AUC values obtained by PhosVarDeep on S/T and Y sites reach 0.906 and
0.874 respectively, which are 5.8% and 6.2% higher than the corresponding AUC values of
PM*. These results demonstrate that the CNN module can effectively learn variant-aware
phosphorylation sequence features that are useful for predicting phospho-variant. At
the same time, by integrating the CNN module and prediction module, PhosVarDeep
consistently outperforms PhosFEN* with remarkable improvements on AUC value.
For example, on test set1, the AUC value is enhanced from 0.845 (PhosFEN*) to 0.946
(PhosVarDeep) on S/T sites, and similarly, on Y sites the AUC value is increased from
0.827 to 0.919.

In addition to AUC values, we also utilize Sp, Sn, Acc, Pre, F1 and MCC to verify the
effectiveness of the proposed method. Similar to previous studies (Luo et al., 2019; Wang
et al., 2021), we calculate the values of other measurements when Sp is equal to high
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Table 4 The values (%) of Sn, Acc, MCC, Pre and F1 of PhosVarDeep on S/T sites.

Method Sp= 90% Sp= 95%

Sn Acc Mcc Pre F1 Sn Acc Mcc Pre F1

PhosFEN* 78.3 84.2 68.9 88.8 83.2 58.6 76.6 57.2 91.8 71.5
PM* 83.6 86.8 73.8 89.4 86.4 70.4 82.6 67.2 93.0 80.1

Test
set1

PhosVarDeep 92.1 91.1 82.3 90.3 91.2 80.9 87.8 76.4 93.9 86.9
PhosFEN* 81.6 85.9 72.0 89.2 85.2 78.3 86.5 74.0 93.7 85.3
PM* 88.8 89.5 79.0 90.0 89.4 84.2 89.5 79.4 94.1 88.9

Test
set2

PhosVarDeep 94.7 92.4 85.0 90.6 92.6 88.8 91.8 83.7 94.4 91.5
PhosFEN* 54.6 72.4 47.9 84.7 66.4 42.1 68.4 43.3 88.9 57.1
PM* 65.1 77.6 57.1 86.8 74.4 47.4 71.1 47.8 90.0 62.1

Test
set3

PhosVarDeep 71.1 80.6 62.3 87.8 78.5 61.2 78.0 59.4 92.1 73.5

Table 5 The values (%) of Sn, Acc, MCC, Pre and F1 of PhosVarDeep on Y sites.

Method Sp= 90% Sp= 95%

Sn Acc Mcc Pre F1 Sn Acc Mcc Pre F1

PhosFEN* 60.2 75.0 52.3 85.5 70.7 56.8 76.1 56.7 92.6 70.4
PM* 70.5 80.1 61.4 87.3 78.0 67.0 81.3 65.2 93.7 78.1

Test
set1

PhosVarDeep 88.6 89.2 78.4 89.7 89.1 79.5 87.5 76.0 94.6 86.4
PhosFEN* 71.6 80.7 62.4 87.5 78.8 64.8 80.1 63.3 93.4 76.5
PM* 81.8 86.4 73.0 90.0 85.7 71.6 83.5 69.0 94.0 81.3

Test
set2

PhosVarDeep 90.9 90.3 80.7 89.9 90.4 87.5 91.5 83.2 95.1 91.1
PhosFEN* 52.3 71.0 45.4 83.6 64.3 15.9 55.7 18.8 77.8 26.4
PM* 58.0 73.9 50.3 85.0 68.9 27.3 61.4 31.1 85.7 41.4

Test
set3

PhosVarDeep 61.4 75.6 53.3 85.7 71.5 42.0 68.8 44.4 90.2 57.4

stringency level (95.0%) or medium stringency level (90.0%), respectively. The detailed
measurement values on S/T and Y sites are separately displayed in Tables 4 and 5. From
these results, we can see that the performance of PM* is better than PhosFEN* across all
the test sets. Take test set2 on S/T sites as an example, when Sp is set at 90.0%, the Sn,
Acc, MCC, Pre and F1 values of PM* are 7.2%, 3.6%, 7.0%, 0.8% and 4.2% higher than
PhosFEN*, respectively. Also, Tables 4 and 5 clearly show the superior performance of
PhosVarDeep. For example, on test set1 PhosVarDeepmanages to obtain F1 scores of 0.912
at middle stringency level on S/T sites, with an improvement of 8.0% and 4.8% compared
with PhosFEN* and PM*, respectively. On test set3 the Acc values of PhosVarDeep at high
stringency level are increased by 13.1% and 7.4% on Y sites, respectively. The above results
further verify that our proposed PhosVarDeep can effectively extract and combine the
information of reference and variant sequences, which leads to a significant improvement
in the performance of phospho-variant prediction.

Comparison with existing methods
To further assess the performance of PhosVarDeep for phospho-variant prediction, we
compare it against MIMP (Wagih, Reimand & Bader, 2015), a sequence-based method
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Table 6 AUC values of different methods for phospho-variant prediction.

Method Test set1 Test set2 Test set3

S/T sites Y sites S/T sites Y sites S/T sites Y sites

MIMP 0.797 0.725 0.830 0.737 0.739 0.611
PhosphoPICK-SNP 0.852 0.794 0.850 0.827 0.823 0.784
PhosVarDeep 0.945 0.914 0.956 0.922 0.902 0.871

and PhosphoPICK-SNP (Patrick et al., 2017), a motif analysis and context-based method.
It is of note that we follow (Patrick et al., 2017) to perform the comparison using those
phospho-variants for which we can obtain prediction results from MIMP.

As shown in Table 6, PhosVarDeep obtains the best performance on AUC values in
comparison with other methods. Take test set2 as an example, compared with MIMP and
PhosphoPICK-SNP, on S/T sites PhosVarDeep obtains 12.6% and 10.6% improvement
for AUC values, respectively. Also, on Y sites, the AUC value achieved by PhosVarDeep
is 0.922, which has an improvement of 9.5% over the next-best method. Furthermore,
we compute the values of Sn, Acc, Pre, MCC and F1 for all the methods on the test sets
on S/T sites, and the results are shown in Fig. 3. It can be observed that PhosVarDeep
consistently performs better on all the metrics than MIMP and PhosphoPICK-SNP. For
example, on test set3 at high stringency level, PhosVarDeep obtains Sn of 0.627, Acc of
0.790, MCC of 0.612, Pre of 0.927 and F1 of 0.748 on S/T sites, while the corresponding
values of the next-best method are 0.310, 0.633, 0.341, 0.863 and 0.456, respectively. In
addition to performing comparison on the three phospho-variant test sets, we adopt a
list of experimentally confirmed phospho-variants compiled by Patrick et al. (2017) and
there are 20 examples after deleting the overlapping data in the training set. The scores
predicted by PhosVarDeep andMIMP are shown in Table 7. The closer the prediction score
is to 1.0, the more likely it is to change the phosphorylation state. From Table 7, we can
see that PhosVarDeep remarkably outperforms MIMP for predicting the experimentally
confirmed positive examples of phospho-variants. To sum up, these results indicate that
PhosVarDeep is a highly competitive and efficient method in predicting phospho-variant
based on sequence information.

Visualization of learned features
The combined features extracted by PhosVarDeep and the original combined one-hot
encoding features of reference and variant sequences are visualized in this section to
intuitively shows the ability of our proposed deep learning method in phospho-variant
prediction. Here, we use a popular visualization algorithm t-SNE (Van Der Maaten &
Hinton, 2008) and observe the difference between positive and negative examples of
phospho-variants. Take test set3 as an example, the original combined sequence features
and the abstract combined features extracted by our model are shown in Fig. 4. It suggests
that we can hardly separate the positive examples of phospho-variant from negatives
by original combined features, while as the extracted combined features show separate
trends, we can distinguish these two classes more clearly by the deep representations of

Liu et al. (2022), PeerJ, DOI 10.7717/peerj.12847 11/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.12847


Figure 3 The values of Sn, Acc, Pre and F1 of different methods at Sp= 90.0% and Sp= 95.0% on S/T
sites.

Full-size DOI: 10.7717/peerj.12847/fig-3

PhosVarDeep. These results demonstrate that original reference and variant sequences can
be combined and transformed into meaningful representations with stronger discriminant
power by PhosVarDeep, which can be helpful for further analysis of phospho-variant
prediction.

DISCUSSION
In this study, we present PhosVarDeep, a unified deep-learning framework based on
sequence information for accurate phospho-variant prediction. The experimental results
demonstrate that PhosVarDeep obtains better performance than existing phospho-variant
prediction methods evaluated by three test sets. In addition to performance metrics, we
also generate the visualization results by t-SNE, which show PhosVarDeep can transform
protein sequences to meaningful representations with strong discriminant power for
phospho-variant prediction. The key contributions of our work are summarized as
follows: (1) we exploit a Siamese-like deep neural network architecture with two identical
subnetworks and a prediction module for phospho-variant prediction, which allows us to
learn deep features on a pair of reference and variant protein sequences of each phospho-
variant jointly, (2) we employ a deep neural feature encoding network PhosFEN in each
subnetwork to capture sequence features related to phosphorylation by transfer learning,
(3) we design the CNN module with two parallel multi-layer CNNs to learn variant-
aware phosphorylation sequence features that are useful for phospho-variant prediction,
(4) by effectively integrating the outputs of the above architecture with the prediction
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Table 7 Prediction scores of confirmed phospho-variants.

Gene Protein Variant Phos.site PhosVarDeep MIMP

TP53 P04637 P47S S46 0.943 0.743
TP53 P04637 R213Q S215 0.983 0.867
TP53 P04637 R282W T284 0.987 0.879
BDNF P23560 V66M T62 0.911 0.839
PER2 O15055 S662G S662 0.982 <0.5
MeCP2 P51608 R306C T308 0.983 0.884
NKX3-1 Q99801 R52C S48 0.988 <0.5
ABCB4 P21439 T34M T34 0.787 <0.5
GLUT1 P11166 R223W S226 0.976 0.979
CLIP1 P30622 E1012K S1009 0.977 0.952
CTNNB1 P35222 S37C S33 0.824 0.756
CTNNB1 P35222 G34R S47 0.996 <0.5
Cyclin D1 P24385 T286R T286 0.947 <0.5
hOG1 Q16539 S326C S326 0.991 <0.5
UBE3A Q05086-3 T485A T485 0.038 <0.5
PLN P26678 R14C S16 0.993 0.925
MAF O75444 P59H T58 0.988 0.986
Gab1 Q13480 T387N T387 0.977 <0.5
hERG1 Q12809 K897T T897 0.985 <0.5
STAT1 P42224 L706S Y701 0.972 <0.5

module, our method achieves remarkable performance for classifying phospho-variants
on comprehensive experiments.

Although PhosVarDeep has shown promising performance in predicting phospho-
variants, there is still considerable room for further improvement. Firstly, some cellular
context information (e.g., protein-protein interactions) is also useful for predicting
phospho-variants (Patrick et al., 2017), which can be further integrated with sequence
information in our future work. Secondly, as the deep learning method is still a black-box
lacking interpretability (Ma et al., 2018), our method faces great challenges in explaining
meaningful biological processes. In the future work, we will modify the framework to
make our model more interpretable and realizable by combing some other modules,
such as attention mechanisms (Mnih et al., 2014). Thirdly, the unsupervised approach to
distinguishing potential phospho-variants is a promising alternative to solve the problem
about the absence of a suitably large positive training set, which can be further used in our
future study. Finally, as an effective computational approach for exacting and combining
reference and variant sequence information, PhosVarDeep can be further advanced and
extended to other types of variant prediction tasks.
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Figure 4 Visualization of original combined one-hot encoding features and combined features ex-
tracted by PhosVarDeep. Red dots represent positive examples of phosphor-variants on (A) S/T sites or
(B) Y sites of test set3, blue dots represent negative examples of phosphor-variants.

Full-size DOI: 10.7717/peerj.12847/fig-4

CONCLUSIONS
In this paper, we propose a novel unified deep-learning framework named PhosVarDeep
for accurate phospho-variant prediction. In order to efficiently extract and combine
reference and variant sequence information, PhosVarDeep exploits a Siamese-like deep
neural network architecture with two identical subnetworks for feature extraction and
a prediction module for integrating the outputs of subnetworks. In each subnetwork,
PhosFEN is employed to capture general phosphorylation sequence features by transfer
learning, and a CNN module is designed to learn variant-aware phosphorylation sequence
features, which helps to improve the performance of phospho-variant prediction. The
experimental analysis on three phospho-variant test sets confirms the effectiveness of our
proposed method, suggesting PhosVarDeep is a competitive and promising method in
predicting phospho-variant and can provide clues for further biological research.
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