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ABSTRACT

Recent studies have suggested that long non-
coding RNAs (lncRNAs) can interact with microR-
NAs (miRNAs) and indirectly regulate miRNA targets
though competing interactions. However, the molec-
ular mechanisms underlying these interactions are
still largely unknown. In this study, these lncRNA–
miRNA–gene interactions were defined as lncRNA-
associated competing triplets (LncACTs), and an in-
tegrated pipeline was developed to identify lncACTs
that are active in cancer. Competing lncRNAs had
sponge features distinct from non-competing lncR-
NAs. In the lncACT cross-talk network, disease-
associated lncRNAs, miRNAs and coding-genes
showed specific topological patterns indicative of
their competence and control of communication
within the network. The construction of global com-
peting activity profiles revealed that lncACTs had
high activity specific to cancers. Analyses of clus-
tered lncACTs revealed that they were enriched in
various cancer-related biological processes. Based
on the global cross-talk network and cluster anal-
yses, nine cancer-specific sub-networks were con-
structed. H19- and BRCA1/2-associated lncACTs
were able to discriminate between two groups of
patients with different clinical outcomes. Disease-
associated lncACTs also showed variable competing
patterns across normal and cancer patient samples.
In summary, this study uncovered and systematically
characterized global properties of human lncACTs
that may have prognostic value for predicting clini-
cal outcome in cancer patients.

INTRODUCTION

In recent years, transcripts that do not code for proteins
have been identified by large-scale genomic studies (1–
4). These non-coding RNAs (ncRNAs) can be broadly
classified as small ncRNAs (< 200 nucleotides, including
microRNAs, siRNAs and piRNAs) and long non-coding
(lncRNAs) (> 200 nucleotides). MicroRNAs (miRNAs),
the most widely studied subclass of small ncRNAs, act at
the post-transcriptional level by destabilizing and repress-
ing target mRNAs via the miRNA-induced silencing com-
plex (5). MiRNAs have been implicated in various human
diseases, including cancer (6). In contrast, only a small num-
ber of human lncRNAs have been functionally character-
ized; these are known to be involved in a wide range of
biological functions (7–9), such as chromatin modification
(10), the regulation of cell apoptosis and invasion (11), re-
programming of induced pluripotent stem cells (12) and ge-
nomic imprinting (13). In addition, lncRNAs can function
as oncogenes (14) or tumor suppressors (15) in the develop-
ment of human cancers.

Recent studies have reported that lncRNAs can partic-
ipate in competing endogenous RNAs (ceRNAs) regula-
tions in order to communicate with other RNA transcripts
(16–18). By sharing common miRNA-binding sites with
mRNAs, lncRNAs compete with miRNA target genes for
miRNA molecules, thereby relieving miRNA-mediated tar-
get repression. This type of lncRNA-associated competing
triplets (lncACTs), which is a subclass of ceRNAs, has been
widely observed in human and several other species (19).
For example, the lncRNA HULC has been shown to play an
important role in tumorigenesis (20) by acting as an endoge-
nous sponge to inhibit miR-372 in liver cancer and reducing
miR-372-mediated translational repression of PRKACB
(21). Additionally, the pseudogene PTENP1 competes with
its coding counterpart, the tumor-suppressor PTEN, for a
set of miRNAs (22). The muscle-specific lncRNA linc-MD1
regulates the timing of muscle differentiation by sequester-
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ing miR-133 and modulating the expression of MAML1
and MEF2C (23). In Arabidopsis, the overexpression of the
lncRNA IPS1 increases PHO2 expression by competing for
miR-399 binding (24).

Recently, a ceRDB resource listing potential MRE-
containing genes that act as miRNA sponges has been de-
veloped (25), although ceRNAs in this database are lim-
ited to mRNAs. Other investigators generated a lncRNA-
associated ceRNA network based on microarray data from
gastric cancer, which was validated for six additional types
of cancer (26). Another study proposed that a compet-
itive interaction network of RNAs in glioblastoma me-
diates cross-talk between canonical oncogenic pathways
(27). Data sets obtained from high-throughput bioinfor-
matics analyses have been integrated to predict miRNA–
lncRNA interactions; for instance, miRcode predicts hu-
man miRNA targets based on lncRNAs in the GENCODE
project (28) using the targetscan prediction algorithm, while
Linc2GO identified miRNA–lncRNA interactions using
miRanda and predicted lncRNA function based on the
ceRNA hypothesis (29). However, traditional prediction
methods often have a high false positive rate. This was cir-
cumvented in DIANA-LncBase by integrating AGO CLIP-
Seq data into the miRNA–lncRNA identification pipeline
(30). This database provides experimentally verified and
computationally predicted miRNA targets on lncRNAs.
By integrating Ago CLIP-supported miRNA targets and
the hypergeometric test method, starBase v.2.0 applies ceR-
NAFunction web tools to predict the function of ncR-
NAs and provides Pan-Cancer ceRNA networks (31). An-
other lncRNA-associated ceRNA database, lnCeDB, pro-
vides tissue-specific information on ceRNAs but contains
only a small number of AGO CLIP-supported interactions
(32). The cross-species ceRNA database HumanViCe has
been established to investigate the cross-talk between host
and viral miRNAs involved in viral pathogenesis (33). This
framework identified not only ceRNA-related lncRNAs but
also circular RNAs. Studies on lncRNA-associated ceR-
NAs can allow the function of lncRNAs involved in differ-
ent biological processes to be investigated (29,31). However,
these resources have thus far provided only a limited under-
standing, and the ceRNA hypothesis remains controversial
(34,35). Additional resources and research are needed to ad-
dress the conflicting theories on the mechanisms of ncRNA
regulation.

This study systematically identified 5119 functional
lncRNA-associated lncACTs through an integrated
pipeline with which a comprehensive lncACT cross-talk
network was constructed. Specific topological patterns
were observed within the disease-associate nodes of the
network. LncRNAs from the network were found to
have intrinsic miRNA sponge properties as evidenced by
transcript size, exon number, expression level and density
of miRNA target sites than other lncRNAs. The global
competing activity profile enabled an examination of the
competitive function of lncACTs and their variability in
different cancer types. The majority of lncACTs exhibited
competitive activity that was highly specific to a cancer.
So-called guilt-by-association functional analyses iden-
tified lncACT clusters enriched in cancer-related Gene
Ontology (GO) terms and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathways. An evaluation of the
expression and competing activities of candidate lncACTs
showed that those related to cancer had variable patterns in
samples from cancer and matched normal patients. An on-
line database to store and retrieve all lncACTs data, which
is available at http://www.bio-bigdata.net/LncACTdb/,
provides additional information that can facilitate the
study of lncACTs and lncRNA function.

MATERIALS AND METHODS

Data

LncRNA and miRNA annotation and sequence data sets.
To construct a comprehensive lncRNA data set for further
study, we relied on the non-coding classification of GEN-
CODE, which combines the HAVANA manual annotation
and Ensembl automatic annotation pipelines, to achieve an
accurate and completely annotated human genome (36).
We considered transcript lengths of longer than 200 nt and
types of ‘antisense’, ‘non-coding’, ‘processed transcript’
and ‘lincRNA’ as lncRNAs. This strategy has been used in
starBaseV2.0, to define lncRNA transcripts (31), and in a
previous study to identify lncRNA genes from The Can-
cer Genome Atlas (TCGA) sequencing data (37). Cancer
name abbreviations of TCGA were listed in Supplemen-
tary Table S1. The GENCODE (Aug, 2014) annotation file,
in GTF format, was used in this step. Original Ensembl
transcript names were used as identifiers for different lncR-
NAs. LncRNA sequences were obtained from the Ensembl
database (GRCH37) (38). The data set contained a total
of 9532 lncRNA genes. Human mature miRNA sequences
were downloaded from miRBase (release 21) (39); this data
set consisted of 2588 mature miRNA sequences.

Experimentally validated miRNA targets and disease-
associated genes. Human miRNAs and their targets were
downloaded from TarBase (v6.0) (40) and mirTarBase
(release 4.5) (41), two reliable online miRNA reference
databases that store manually curated collections of ex-
perimentally supported miRNA targets. After combining
data sets, 43 497 validated non-redundant human miRNA-
target pairs were assembled for this study. Experimental
interactions between miRNAs and lncRNAs were iden-
tified in starBase v2.0 (31) and DIANA-LncBase (30),
which provided high-throughput HITS- and PAR-CLIP
experimental data as well as the most current in silico
target predictions. Disease-associated lncRNAs, miRNAs
and coding genes mapping to the global lncACT network
were derived from LncRNADisease (42), National Cancer
Institute and HMDD (43) databases.

Normal and cancer expression data. We recalculated reads
per kilobases per million reads (RPKM) values for the
coding/lncRNA genes considered in the study: RPKM
= (raw read counts × 10∧9)/(total reads × length of
lncRNA/coding genes); with raw read counts = sum of
raw read counts in all exons mapped entirely within the
lncRNA/coding gene loci; total reads = sum of raw read
counts calculated for all exons of a single sample. To avoid
ambiguous exon mapping for clusters of overlapping tran-
scripts, we merged overlapping transcripts into a single
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candidate transcript. Taking into account the TCGA pub-
lication embargo, we took only the RNA-seq V2 data
for the cancers without publication restrictions. Raw read
counts for each exon were derived from exon quantification
files provided by the TCGA level 3 data set. Annota-
tion of exons mapping to coding/lncRNA genes was de-
rived from GENCODE. To evaluate the accuracy of our
recalculated RPKM values, we compared our data with
Akrami et al.’s study (37), which identified 19 999/10
419 coding/lncRNA genes in TCGA OV and UCEC can-
cers (available at http://www.larssonlab.org/tcga-lncrnas/).
Their RPKM values were calculated using TCGA raw
RNA-seq sequence libraries in BAM format. Our recalcu-
lated RPKM values were plotted against the true RPKM
values, calculated by Akrami et al. (Supplementary Figure
S1). High linear correlation was observed between recalcu-
lated RPKM and true RPKM values for both OV (R2 >
0.92) and UCEC (R2 > 0.95) data sets. These studies pro-
vide compelling evidence for the excellent accuracy of our
pipeline in the quantification of gene expression. Illumina
RNA (IlluminaHiSeq RNASeqV2) and miRNA (Illumi-
naHiSeq miRNASeq) sequencing data for 12 types of hu-
man cancer (Supplementary Table S1) were obtained from
TCGA (level 3, version Dec, 2012) through Data Portal
(44). Samples with clinical follow-up information were re-
tained for further analysis. LncRNAs identified and used in
this work was listed in Supplementary Table S2.

Methods

Integrative approach for identifying miRNA–lncRNA–gene
interactions. MiRNA target prediction methods and re-
strictive criteria (26,30–32) were applied to filter func-
tional miRNA–lncRNA interactions for constructing the
competing network. Functional lncACTs were identified
through an integrated pipeline by incorporating seed se-
quence matching (27), CLIP-Seq data filtering (30), the
stringent expression correlation model (27) and experimen-
tal evidence. Previous studies have shown that lncRNAs
can act as miRNA sponges by competing with endoge-
nous mRNAs for miRNA binding (19,21,22), an interac-
tion that can be identified using traditional miRNA tar-
get prediction methods (28,29,45). Other studies have inte-
grated different prediction methods to identify functional
miRNA–lncRNA pairs (21,46). As a first step, candidate
miRNA–lncRNA interactions were predicted using Tar-
getScan (v.6.0) (47), PITA (March 2007 version) (48), mi-
Randa (Nov. 2010 version) (49) and RNAhybrid (v.2.1.1)
(50) with default parameters. To maintain accuracy and
consistency, the different methods were applied to the same
miRNA and lncRNA data set. The number of miRNA–
lncRNA interactions resulting from the four prediction
methods differed significantly (Figure 1 and Supplementary
Figure S2). To select bona fide targets, 4 625 625 miRNA–
lncRNA interactions identified using the four methods were
integrated into a comprehensive data set. This strategy has
been used by previous studies to enlarge the pool of func-
tional miRNA–target interactions (51,52). A comparative
analysis (Supplementary Methods) indicated that integrat-
ing different algorithms is superior to using any single algo-
rithm alone (Supplementary Figure S3). As a component of

Figure 1. An integrative pipeline for transcriptome-wide identification of
lncACTs. Interactions between miRNAs and lncRNAs were predicted
using four computational approaches (TargetScan, miRanda, PITA and
RNAhybrid) and combined with CLIP data to extract biologically rel-
evant interactions. Experimental evidence for miRNA–lncRNA interac-
tions was integrated into the pipeline. Human miRNAs and target coding
gene pairs were obtained from TarBase and mirTarBase, which were com-
bined and integrated into the pipeline as miRNA–mRNA interactions.
MiRNA–lncRNA and miRNA–mRNA pairs sharing the same miRNA
were merged into an lncRNA–miRNA–mRNA interaction as a candidate
lncACT. Functional lncACTs were identified by evaluating correlations
with expression in 12 types of cancer data sets and was defined as func-
tional if the expression of the constituents met specific correlation criteria.

lncACTs, miRNA–mRNA interactions were also obtained
from reliable reference databases. A total of 43 497 non-
redundant miRNA–target pairs were collected (Figure 1).

Identification of Argonaute (AGO)-CLIP data-supported
lncRNAs. The AGO-CLIP-seq data set was integrated
into the pipeline to identify experimentally supported
miRNA-binding sites on lncRNA sequences. Data were
generated using an improved, transcriptome-wide cross-
linking approach that directly identified mRNA-binding
sites for regulatory miRNA-AGO-containing ribonucleo-
protein complexes (53). These data sets were compiled with
starBase v2.0, from which 2 059 733 human CLIP-seq peaks
were obtained for the present analysis (31). By integrat-
ing genome coordinates of CLIP-seq peaks and predicted
miRNA-binding sites, 314 729 miRNA–lncRNA interac-
tions were retained for further analysis.

Identification of functional lncACTs based on expression.
LncRNA–mRNA pairs found to interact with the same
miRNA were defined as candidate lncACTs; 1 430 673
potential lncACTs were identified from 314 729 miRNA–
lncRNA and 43 497 miRNA–gene interactions (Figure 1).
In a lncACT, the lncRNA competes with mRNA of a
coding gene for miRNA binding, which is reflected at the
mRNA expression level (19,21,23). Previous studies have in-
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dicated that increased lncRNA expression can enhance cor-
responding coding gene expression (45). In addition, miR-
NAs are expressed in a tissue-restricted manner (54) and are
linked to specific biological processes and diseases. LncR-
NAs are likewise expressed in certain tissues (55,56) and
are associated with a variety of cancers (57). Accordingly,
it was hypothesized that specific lncACT interactions oc-
cur in cancer. To identify functional lncACTs and test this
hypothesis, miRNA, lncRNA and mRNA expression pat-
terns from 12 types of cancer were compared. A functional
lncACT was defined for a cancer if it met all of the follow-
ing criteria: corr (lncRNA, miRNA) < −0.5, P < 0.05; corr
(gene, miRNA) < −0.5, P < 0.05; and corr (lncRNA, gene)
> 0.5, P < 0.05, where corr (lncRNA, miRNA), corr (gene,
miRNA) and corr (lncRNA, gene) represent the Pearson
correlation coefficient of miRNA–lncRNA, miRNA–gene
and lncRNA–gene interactions, respectively, based on ex-
pression values. Ultimately, 5,119 functional lncACTs com-
prising 335 lncRNAs, 212 miRNAs and 1,312 coding genes
were retained for further analysis.

LncACT competing activity score. Expression correla-
tion is a statistically useful method for discerning the as-
sociation between direct and indirect interacting RNAs
and is robust to different normalization methods between
mRNA-seq and miRNA-seq data (58). To characterize the
strength of competition in lncACTs, the competing activ-
ity score was defined as

(|corrml| + ∣∣corrmg
∣∣ + ∣∣corrlg

∣∣) /3,
where corrml, corrmg and corrlg indicates Pearson correla-
tions for miRNA–lncRNA, miRNA–gene and lncRNA–
gene interactions based on expression, with a higher com-
peting activity score indicating greater competition between
the lncRNA and miRNA for miRNA binding. For each
score, the maximum Pearson correlation P-value was con-
sidered as the overall P value. Benchmark analysis has
indicated that the competing activity score is a valuable
measurement to evaluate the association of competition in
lncACTs (Supplementary Figures S4 and S5 and Supple-
mentary Methods).

Tissue specificity score. The specificity of each lncACT
was determined by the specificity score, which was calcu-
lated based on a previously described method (59) and was
defined as:

Specifity score =
∑N

i=1 (1 − xi )
N − 1

where N is the number of cancer tissue samples and xi is a
component normalized to the maximum value of that com-
ponent. For example, the activity profile ‘0 0 2 0 0 0 0 2 0 0 8
0’ is defined as having score of 0.95. The range of specificity
scores is between 0 and 1, while a perfect specific pattern
would be scored as 1.

Betweenness centrality. Betweenness centrality is a mea-
sure of a node’s centrality in a network and is equal to the
number of shortest paths from each node to all others that
pass through this node; as such, it reflects the amount of
control that a node exerts over the interactions of other
nodes in the network. The betweenness centrality of a node

n is given by the expression

Betweenness centrality =
∑

s �=n �=t

pst(n)
pst

where pst is the total number of shortest paths from node s
to node t and pst(n) is the number of these paths that passes
through n.

Identification of competing modules in the network. A bi-
clique module is a complete bipartite graph in which an
edge is realized from every vertex of a miRNA set to ev-
ery vertex of a target gene set. Competing biclique mod-
ules consisting of miRNAs and their targets (including
mRNAs and lncRNAs) were identified using an algorithm
downloaded from the website of the Computational Bi-
ology Laboratory in the Department of Computer Sci-
ence, Iowa State University (http://genome.cs.iastate.edu/
supertree/download/biclique/).

Development of the risk score model. A univariate Cox
regression analysis was carried out to evaluate the as-
sociation between survival and expression level of each
lncRNA/miRNA/mRNA node in network modules. A
risk score formula was developed to evaluate the associ-
ation between survival and combinations of nodes in the
module, which takes into account both the strength and
positive/negative association between each node and prob-
ability of survival. The integrated risk score for each patient
was calculated based on the linear combination of expres-
sion values weighted by the regression coefficient from the
univariate Cox regression analysis, as follows.

Integrated risk socre =
n∑

i=1

ri Exp(i )

where ri is the Cox regression coefficient of node i from the
network, n is the number of nodes in the network and Exp(i)
is the expression value of node i in corresponding patient.
The median integrated risk score was used as cut-off to clas-
sify patients into high and low-risk groups.

Survival analysis. Hierarchical clustering was used to clas-
sify cancer patients by their lncACT expression profiles. A
Kaplan-Meier survival analysis was performed for the clus-
tered two groups, and statistical significance was assessed
using the log-rank test. All analyses were performed on the
R 2.13.2 framework.

RESULTS

Global properties of the lncACT cross-talk network

It was assumed that lncRNAs and mRNAs in one lncACT
could compete for binding to miRNAs within other
lncACTs. This type of cross-talk between lncACTs repre-
sents an intricate transcriptional regulatory network that
provides insight into how intermolecular relationships dic-
tate cellular behavior. A comprehensive lncACT cross-talk
network (CLCN) of miRNA-mediated interactions was re-
constituted by combining miRNA–lncRNA–mRNA inter-
actions from different lncACTs (Figure 2A). Detail illustra-
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Figure 2. Cross-talk between different functional lncACTs and their net-
work properties. (A) A global lncACT cross-talk network consisting of 335
lncRNAs, 212 miRNAs and 1312 mRNAs was constructed and are ar-
ranged as inner, intermediate and outer layers, respectively. Layers were
connected through interactions, as seen from the high density of elements
at layer interfaces. (B) Disease-associated genes mapped to the global net-
work constituted nodes that exhibited specific topological characteristics
compared to other nodes. In A and B, lncRNAs, miRNAs and coding-
genes were blue, red and yellow colored. The node degree was indicated by
the node size. Disease associated nodes were marked by black circles. (C)
The network revealed a power law distribution with slope −1.32 and R2

= 0.87. X axis indicating nodes degree distribution. Y axis indicating fre-
quency of nodes according to X axis. (D and E) Disease-associated nodes
had a higher degree and betweenness centrality than other nodes. Data are
shown as mean ± SEM. Disease-associated and other nodes were indicated
in red and blue along X axis. Average degrees of these two groups of nodes
were indicated by Y axis.

tion of how to construct this network is shown in Meth-
ods and Supplementary Figure S6. The CLCN had 212
miRNAs interacting with 335 lncRNAs and 1312 mRNAs
with a scale-free structure typical of transcriptional regu-
latory networks (Figure 2C) (27). The CLCN was graph-
ically modeled and separated into three major competing
layers: from inside out, the nodes of these layers were lncR-
NAs, miRNA and mRNAs. The inner lncRNAs indirectly
regulated the outer mRNAs through interactions with the
intermediate miRNA layer. Based on the specific cellular
roles of RNAs, it was concluded that lncRNAs and miR-
NAs constituted the regulatory layers, while mRNAs were
the functional layer of the CLCN. The interfaces between
layers were tightly connected and contained a greater num-
ber of hub nodes. These high-density areas were indicative
of the competition status of the network. Known disease-
associated lncRNAs, miRNAs and mRNAs selected from
reliable databases (Materials and Methods) were mapped to
the network, and 17 lncRNAs, 142 miRNAs and 619 mR-
NAs were found to be involved in the CLCN (Figure 2B).
When topological characteristics of the CLCN were ex-
amined, disease-associated nodes were found to have sig-
nificantly higher degrees and betweenness centrality than
other nodes (Figure 2D, E and Supplementary Figure S7).
Specific topological patterns reflected the functional impor-
tance of disease-associated nodes in the CLCN. A higher

degree indicated that the nodes were likely to be hubs, and
therefore involved in more competing interactions, while
a higher betweenness centrality implied that they acted as
bridges connecting different network components and con-
trolling communication. Previous studies have shown that
lncRNAs can function by means of cis and trans regulatory
mechanisms (60). To determine which of these was used by
lncRNAs in the CLCN, the genomic association between
lncRNAs and their interacting miRNAs and genes was in-
vestigated. Of all CLCN interactions, > 99% had a genomic
distance > 1 kb, with an average distance of 5.6 ×103 kb
(Supplementary Figure S8), supporting the observations of
previous studies that lncRNAs regulates gene expression in
trans by acting as molecular decoys for endogenous miR-
NAs (19,61). Together, these results demonstrate that the
CLCN can provide insight into cancer-associated transcrip-
tional regulatory networks.

Sponge characteristics of lncRNAs in the CLCN

Previous reports have indicated that lncRNAs are gener-
ally shorter in length, less conserved, and are expressed at
lower levels than coding genes (56). To determine whether
lncRNAs involved in the CLCN (lncRNAsin) have intrin-
sic properties of miRNA sponges, their sponge and re-
lated characteristics, including transcript length, exon struc-
ture, expression levels, number of miRNA binding sites,
and evolutionary conservation were compared to those
of lncRNAs not involved in the CLCN (lncRNAsout).
Transcripts for lncRNAsin were 1.77-fold longer than for
lncRNAsout (average lengths: 1692 nt for lncRNAsin ver-
sus 952 nt for lncRNAsout; P = 9.8E-107; Figure 3A).
Moreover, lncRNAsin had more exons per transcript than
lncRNAsout (4 versus 3; P = 7.6E-47; Figure 3B). The prop-
erties of lncRNAsout were consistent with estimates of hu-
man lncRNA transcript length and exon number (∼1 kb
and 2.9 exons per transcript, respectively) (56). LncRNAsin
with longer transcripts and a greater number of exons would
be expected to have a higher probability of forming se-
quence structures that harbor miRNA binding sites. The
average expression level of lncRNAsin was ∼2.5-fold higher
than lncRNAsout (Figure 3C), and this was positively cor-
related with the number of lncACTs (Pearson correlation,
r = 0.46; P = 1.3E-10) (Figure 3F). These observations in-
dicated that lncRNAsin maintained their competitive capa-
bilities in lncACTs through higher levels of transcript ex-
pression. In addition, the density of miRNA binding sites
on lncRNAsin calculated using four prediction methods was
found to be greater than in lncRNAsout (164.42 sites/kb ver-
sus 131.56 sites/kb; P = 3.9E-5; Figure 3D). The UCSC
phyloP score, which provides a measure of evolutionary
conservation based on multiple alignments of 46 vertebrate
species, was used to assess the conservation of lncRNAs. In
this step, 33 and 532 antisense lncRNAs were excluded from
lncRNAsin and lncRNAsout data sets, respectively, because
the conservation status belonged to the corresponding cod-
ing gene rather than the lncRNA. LncRNAsin were more
highly conserved than lncRNAsout with a 2-fold higher phy-
loP score (P = 4.3E-4; Figure 3E), indicating a lower selec-
tive pressure on these lncRNAs and highlighting the impor-
tance of their regulatory function. Thus, lncRNAsin were
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Figure 3. LncRNAsin have more extreme properties than lncRNAsout. In
lncRNAsin, (A) transcript length and (B) number of exons was greater; and
(C) expression levels (RPKM), (D) miRNA target site density (sites/KB)
and (E) conservation scores were higher than in lncRNAsout. (F) Expres-
sion levels of lncRNAs in lncACTs were positively correlated with the num-
ber of associated lncACTs. Boxplots depict different groups of properties.
From bottom to top in each boxplot, the five vertical lines represent the
minimum observed value (Min), the first quartile (Q1), the second quartile
(Q2) or median, the third quartile (Q3) and the maximum observed value
(Max). P values were determined by the Mann-Whitney U test.

greater to lncRNAsout in terms of transcript length, exon
number, expression level and density of miRNA binding
sites, suggesting that they are more suited to functioning as
miRNA sponges in biological processes.

Variable competing activity profiles of lncACTs among can-
cers

To characterize the compactness of each lncACT, compet-
ing activity score and corresponding P value were calcu-
lated. Cancer-associated lncACTs were identified as those
for which the activity difference of the lncACT was observed
in cancerous but not in normal samples (P < 0.05). Fur-
ther, based on cancer-associated lncACTs, cancer-specific
lncACTs were those for which the activity difference was ob-
served in one or two cancers. In total, 4265 lncACTs were
identified as cancer-specific. Based on the competing activ-
ity score of these lncACTs, a global competing activity pro-
file was constructed and clustered by the k-means method.
The analysis revealed 12 independent lncACT clusters of
which clusters 1–10 were restricted to a specific cancer type
(Figure 4A). The profile provided information on the effect
of competing lncACT functions on the expression of differ-
ent types of cancer. Of the 12 cancers, all but LIHC, KIRC

Figure 4. (A) Dynamic changes in activity profiles of lncACTs (rows) in
12 types of cancer (columns). Rows were ordered by a k-means clustering
of lncACTs; 10 lncACT clusters had high activity levels in one or two can-
cers. These clusters comprised of approximately 83% of the 5119 functional
lncACTs that were analyzed. Competing activity is indicated by a red col-
ored bar, ranging from 0 to 1. (B) Cumulative distribution of lncACT speci-
ficity score. The majority (>70%) of lncACTs had scores of >0.5. The X
axis represents the specificity score for each lncACT. The Y axis represents
the cumulative frequency of specificity score. (C and D) KEGG pathways
and GO terms enriched for lncACT cluster 3, ranked by −log10(P).

and KICH had clearly restricted lncACT clusters. Though
associated with the same organ, the activity profile of KIRP
differed from those of KIRC and KICH. Similar discrep-
ancies were found between LUAD and LUSC. These re-
sults are in agreement with a previous study showing that
lncRNAs have unique expression profiles across a broad
range of tumors (57). Further, the specificity of the lncACTs
was characterized quantitatively by calculating the speci-
ficity score for each lncACT using a previously described
method (59). The minimum specificity score was ∼0.2, and
for the majority of lncACTs (> 70%) the specificity score
was > 0.5 (Figure 4B). According to an earlier study, an
specificity score < 0.15 indicates a housekeeping gene (59).
These results reveal a high degree of specificity for lncACT
competing activities in different cancers.

Cancer-specific lncACTs associated with critical biological
functions

A functional annotation of the 10 lncACT clusters was car-
ried out. Due to the shortage of annotated information, so-
called guilt by association analyses are frequently used to
predict mammalian lncRNA functions (56,62,63). LncACT
functions were presumed based on known functions of com-
peting coding genes in the lncACTs. GOSim (64) and Sub-
pathwayMiner (65) were employed for enrichment analy-
ses of coding genes from each specific clusters based on
GO terms and KEGG pathways, and each cluster was an-
notated with the enriched functions of the corresponding
gene set. Processes for the maintenance of cell homeosta-
sis (such as cell cycle regulation and apoptosis) and can-
cer development-related pathways (such as the focal ad-
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hesion and p53 signaling pathways and pathways in can-
cer) were highly represented. Cluster 3 (a prostate cancer-
specific cluster in the activity profile) was enriched in cancer
development-related pathways (Figure 4C) and cell cycle-
related processes (Figure 4D). In addition, the prostate can-
cer pathway was significantly associated with this lncACT
cluster. We used starBaseV2.0 (31) and Linc2GO (29),
which identify lncRNA functions based on ceRNA hypoth-
esis, to predict functions of this cluster. Prostate cancer-
related GO terms and pathways were also identified by the
two methods (Supplementary Figure S9). A list of enriched
GO terms and KEGG pathways for each lncACT cluster is
provided in Supplementary Tables S3 and S4.

lncACTs are potential prognostic biomarkers for cancers

Cancer-specific clusters can be used to evaluate the regula-
tory role of each lncACT at the level of expression. On the
other hand, lncACTs can interact and act as co-regulators
within a cancer-specific cluster by forming network mod-
ules. Such regulatory cross-talk cannot be represented by
clusters at the level of expression. Analyzing a disease based
on a network can provide a global view of regulatory re-
lationships and all possible competing interactions occur-
ring under given conditions, while partial sub-networks
can provide more detailed information on cross-talk be-
tween lncACTs. Each of the 10 cancer-specific lncACT clus-
ters (Figure 4A) were converted into an lncRNA–miRNA–
mRNA interaction sub-network, with BRCA-specific clus-
ters 4 and 6 merged into the same sub-network. Nine sub-
networks were ultimately defined based on cancer-specific
clusters of lncACT competing activity profiles (Supple-
mentary Figure S10). Similar to the global network, sub-
networks presented a scale-free structure and layered or-
ganization (Supplementary Figures S11 and S12). Func-
tional competing modules exhibiting extensive regulatory
interactions across sub-network layers were identified us-
ing an algorithm (Materials and Methods). In total, 1621
lncACT modules were detected, containing between four
and 61 nodes, with an average of 6.4 nodes per module.

To exemplify how these competing modules can provide
insight into the pathogenesis of cancer, the BRCA sub-
network comprising 95 lncRNAs, 68 miRNAs and 197 mR-
NAs within 132 functional modules was examined (Fig-
ure 5A). A module was identified consisting of five nodes
that have all been shown experimentally to play key roles
in the development of BRCA (Figure 5B). The downreg-
ulation of the lncRNA H19 significantly decreased breast
cancer cell growth (14), while its overexpression enhanced
the tumorigenic properties (66). The miRNAs miR-17 and
miR-20 have been found to inhibit BRCA cell migration
and invasion via a heterotypic secreted signal (67,68). The
downstream gene thrombospondin-1, an angiogenesis in-
hibitor regulated by p53 and retinoblastoma was previ-
ously shown to be a serological biomarker for BRCA (69).
Mitogen-activated protein (MAP)3K12, an activator of
MAP kinase pathway, had distinctive patterns of somatic
mutations in BRCA (70), as reported in Genes-to-Systems
Breast Cancer (71). A strong inverse correlation was ob-
served between the intermediate miRNA layer and lncRNA
and mRNA layers, indicating extensive competing interac-

Figure 5. Sub-network analysis of competing lncACTs. (A) A BRCA-
specific sub-network was derived from the global crosstalk network, which
consisted of 95 lncRNAs, 68 miRNAs, 197 mRNAs and contained 132
functional modules. Two example modules are demarcated by circles. The
lncRNAs, miRNAs and coding-genes are colored blue, red and yellow, re-
spectively. The node degree is indicated by the node size. (B) One module
had five nodes, all of which have been experimentally demonstrated to have
key roles in the development of breast cancer. The expression heat map is
shown on the right. In the heat map, highly expressed genes are shown in
red, low expression genes are shown in green. (C) The lncRNA H19 was
identified as a hub that connects five competing modules. (D) The lncRNA
MIR22HG is functionally complementary to H19 and interacts with the
same miRNAs. A genomic representation of miR-22 is shown in the red
bar and MIR22HG is shown on the bottom. Predicted miR-22 target sites
on MIR22HG are shown in the black bar, with detailed miRNA binding
information of the site nearest to the miR-22 locus illustrated on the right.
(E) Hierarchical clustering of 248 patients based on H19 and BRCA1/2
lncACT expression. (F) Kaplan-Meier survival analysis of two groups of
patients with different clinical outcomes. Those that showed no progres-
sion or who were still alive at the time of the last follow-up were censored
(+). Survival days are shown along the X axis. Overall survival rates are
shown along the Y axis.

tions within this module (Figure 5B). LncRNA H19 was
also a hub related to five competing modules, indicating
that H19 could control communication between different
functional sub-networks in BRCA (Figure 5C). In another
example, the lncRNA MIR22HG, which shared miRNAs
with H19, was also the host gene of the miRNA hsa-miR-
22 (Figure 5D). These results indicate a functional com-
plementation between MIR22HG and H19 and a poten-
tial feedback regulation of MIR22HG by miR-22. Based
on these analyses, H19-associated lncACTs likely play im-
portant regulatory roles in BRCA progression. To assess the
clinical relevance of these findings, a survival analysis (Ma-
terials and Methods) was performed on an H19-associated
lncACT module (Figure 5B), in which all components have
been experimentally confirmed as being involved in BRCA
pathogenesis. There were no differences between expres-
sion clustered two groups of patients (Supplementary Fig-
ure S13). lncACTs of two breast cancer risk genes, BRCA1
and BRCA2 which formed nine lncACTs with two miR-
NAs and nine lncRNAs were also found no significant re-
sults (Supplementary Figure S13). However, when expres-
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sion profiles in the H19 and BRCA1/2 lncACT module
(HB module) were integrated (Figure 5E) and patients were
reclassified into two groups, survival analyses indicated that
these lncACTs could distinguish the two groups of pa-
tients with different clinical outcomes (Figure 5F). A uni-
variate Cox regression analysis was carried out to evaluate
association between survival and expression level of each
lncRNA/miRNA/mRNA node in HB module. BRCA2 (P
= 4.43E−02) and miR-20b (P = 8.00E−03) were signifi-
cantly associated with BRCA survival (Supplementary Ta-
ble S5). By testing all nodes of HB module with the risk
score model (Materials and Methods), HB module was
found to be the most significant factor associated with sur-
vival (P = 3.73E−5 in Supplementary Table S5). To test
whether the whole HB module could better distinguish pa-
tients than lncRNAs/miRNAs/mRNAs and combinations
thereof, Kaplan-Meier survival curves were generated of
the classification based on each node of the module, in-
tegration of BRCA2 and miR-20b, H19- and BRCA1/2-
associated lncACTs, and all lncRNAs, miRNAs, and cod-
ing genes (Supplementary Figure S13). HB module distin-
guished BRCA patients better than the others with the most
significant P value (P = 3.8E−3), suggesting that it can be
used as a potential prognostic biomarker for BRCA.

Further exhaustive survival analysis was also performed
on each of the 1621 lncACT modules to test whether their
expression profiles were associated with cancer prognosis.
Two subgroups were identified based on expression, and
several lncACT modules could differentiate between pa-
tients with good and poor prognosis in various cancers
(Supplementary Figure S14A–F). Another lncACT module
was identified that could distinguish between two groups of
patients with different survival times in BRCA (Supplemen-
tary Figure S14A), in which two lncRNAs (LINC00968 and
FLG-AS1) competed for miR-335. A Cox regression analy-
sis indicated that none of the individual nodes but rather the
whole module was associated with patient survival (Supple-
mentary Table S6). This module could distinguish BRCA
patients better than any single node, with the most signif-
icant P value (P = 1.4E−6) (Supplementary Figure S15).
Most of the miR-335 target genes were associated with hu-
man cancers, such as components of the MAPK signaling
pathway, pathways in cancer, cell-matrix adhesion, migra-
tion and proliferation (Supplementary Tables S7 and S8).
Under the competitive regulation of upstream lncRNAs,
these processes likely govern the clinical features and out-
come of BRCA patients. The miR-335 target gene MERTK
in this module is associated with BRCA metastasis and mi-
gration (72). The expression profiles and survival curves in-
dicated that patients with poor survival had a higher miR-
335 expression level than patients in the other group (t test;
P = 1.44E−7) (Supplementary Figure S14A). This was con-
sistent with the results of a study in which gastric cancer
cases with a high level of hsa-miR-335 expression had high
frequency of recurrence and poor survival (73). The Cox re-
gression analysis for other risk network modules are shown
in Supplementary Table S9. The regression coefficients and
P values indicated that these modules were the most signif-
icant factors associated with patient survival in the corre-
sponding cancer. Thus, functional lncACT modules in the

competitive network can provide clinically useful informa-
tion.

LncACT online database

A free access, online database was developed (http://
www.bio-bigdata.net/LncACTdb, or http://bioinfo.hrbmu.
edu.cn/LncACTdb) containing 878 cancer-associated, 5119
functionally activated, and > 530 000 computationally pre-
dicted lncACTs that were identified by integrating several
in silico target prediction methods, AGO-CLIP experimen-
tal data, and stringent expression profiles from transcrip-
tome sequencing. LncACTdb can support rapid and ad-
vanced searches as well as data downloads (Supplementary
Figure S16). Additional features of the LncACTdb include:
(1) support of customizable expression profiles to gener-
ate user-relevant functional lncACTs; (2) the LncACTFun
tool that allows the user to open a lncACT functional loca-
tion map in the context of a GO-directed acyclic graph and
KEGG pathways; and (3) the LncACTView built-in multi-
track visualization platform that allows users to browse
genome-wide LncACTs. To provide more reliable data set,
we kept continuous updating on our data set as soon as
GENCODE update the human genome annotation. The
LncACTdb can serve as a tool for dissecting the communi-
cation network of different classes of RNA and identifying
novel cancer biomarkers.

DISCUSSION

Recently, human lncRNAs have been identified in RNA–
RNA cross-talk networks as competitors of mRNAs for
miRNA binding, thereby regulating mRNA expression lev-
els through an indirect post-transcriptional mechanism
(19). A competing RNA interaction network in glioblas-
toma was proposed to mediate cross-talk between canon-
ical oncogenic pathways (27). However, functional triplets
consisting of lncRNAs, mRNAs and miRNAs have not
been systematically identified and analyzed. In this study,
a transcriptome-wide identification and characterization of
these lncACTs was performed, providing a comprehensive
resource for studying the regulation of human disease by
non-coding molecules.

To the best of our knowledge, there are currently no
methods specifically designed to predict miRNA–lncRNA
interactions; as such, traditional miRNA target prediction
methods have been used to identify target sites on coding
transcripts and miRNA–lncRNA interactions (28,29,45),
in conjunction with experimental approaches based on im-
munoprecipitation. AGO-CLIP studies have provided re-
liable data sets for identifying miRNA-binding sites and
predicting miRNA targets (74). Additional criteria such as
expression correlation filtering have also been integrated
into miRNA–lncRNA identification pipelines. As knowl-
edge of lncRNAs expands, more reliable methods for pre-
dicting miRNA–lncRNA interaction are likely to be de-
veloped. There was considerable discrepancy in predictions
of miRNA–lncRNA interactions using these four methods;
therefore, to obtain an accurate assessment of these interac-
tions, an integrative strategy was adopted (51,52). A com-
parative analysis indicated that this method hosts the high-
est number of validated miRNA–lncRNA interactions and

http://www.bio-bigdata.net/LncACTdb
http://bioinfo.hrbmu.edu.cn/LncACTdb
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yields the most significant hypergeometric test P value rel-
ative to other methods. In addition, lncRNAs have been
shown to act as miRNA sponges for endogenous RNAs
(16–19), although the characterization of this function has
been limited; it has been suggested that this depends on the
lncRNA expression level and total number of functional
miRNA binding sites that are shared with a target (27). A
systematic characterization of lncACTs showed that their
lncRNAs were greater in terms of transcript length, exon
number, expression level and density of miRNA binding
sites compared to other lncRNAs. These features pointed
to a sponge function for lncRNAs in lncACTs. The evo-
lutionary conservation of lncRNAs, indicating a lower se-
lective pressure, also highlighted the importance of their
regulatory function. Based on reviewing previous reports,
we found a number of known lncACT relationships were
present in the lncRNAout (Supplementary Table S10). For
example, ceRNA interactions between lncRNA PVT1 and
other protein coding genes such as PVT1-CDH1, PVT1-
TP53 and PVT1-RUNX1, which were important regulators
of breast tissue morphogenesis and development (75); Ex-
perimentally verified ceRNAs of H19-Let7family-HMGA2
have been found to promote pancreatic ductal adenocarci-
noma invasion (76) and regulate muscle differentiation (77);
HOTAIR-miR331-HER2 ceRNA has been identified in gas-
tric cancers (78). The increased rate of HOTAIR and HER2
overexpression were strongly linked to poor outcomes for
patients with metastatic and high-grade localized gastric
cancers. Indeed, these specific features could potentially be
used to classify lncRNAs and identify those that participate
in competitive networks.

TCGA data have provided a catalog of genomic alter-
ations identified in tumor and matched normal samples
(44), enabling the identification of lncACTs associated with
cancers. LncRNAs, miRNAs and genes as well as lncACTs
differentially expressed in cancer and matched normal
RNA sequence data were identified using the DEGseq R
package (79). At the expression level, genes in each cancer-
specific cluster were significantly associated with corre-
sponding cancers (fold-change > 1.5; P < 0.01 by DEGseq).
878 lncACTs were associated with at least one differently ex-
pressed lncRNA or gene and of these, 371 (42.3%) showed
differences in competing activity score of at least 1.5-fold
between the two sets of samples. Two patterns emerged from
the analysis of lncRNA, miRNA and gene expression and
variations in competitive activity in these lncACTs: (1) 252
lncACTs showed competing activities in normal but not
cancer samples (Figure 6A); and (2) 119 lncACTs had no
competitive interactions in normal samples but did in can-
cer samples (Figure 6B). In these lncACTs, the difference
in competing activity score implied that lncRNA–miRNA-
gene interactions were impaired by pathological changes in
the cellular environment, resulting in the dysregulation of
gene expression possibly through the loss of competitive
ability in lncRNAs. For example, the lncRNA DLEU2 in-
directly regulated the downstream gene C1QBP in normal
samples by binding miR-375. However, the DLEU2/miR-
375 interaction was lost in KICH samples, leading to the
downregulation of C1QBP expression (Figure 6A). In con-
trast, 507 (57.7%) of lncACTs showed competing activities
in both cancer and normal samples, but with opposite ex-

Figure 6. Disease-associated lncACTs exhibit specific expression patterns
in cancer and matched normal samples. Illustrations of lncACT expres-
sion in cancer and normal states are shown in the left panel. The lncR-
NAs, miRNAs and coding-genes are colored blue, red and yellow, respec-
tively. Corresponding expression profiles in KICH are shown in the right
panel. Highly expressed genes are shown in red, low expression genes are
shown in green. (A) The lncACT competing activities were observed in nor-
mal but not cancer samples. (B) The lncACT competing activities were not
observed in normal samples but were present in cancer samples. (C) The
lncACT competing activities were observed in normal and cancer samples,
but some constituents showed expression levels that changed in opposite
directions.

pression patterns (Figure 6C). In these lncACTs, lncRNAs
played prominent roles in the competitive interactions, re-
sulting in corresponding changes in miRNA and gene ex-
pression. For example, the lncRNA DANCR binds miR-
222 and regulates the downstream gene TCEAL1. As pro-
posed by the ceRNA hypothesis (19), in normal samples,
DANCR transcripts are highly expressed to maintain its ca-
pacity for acting as a sponge for miR-222 molecules. This
can indirectly result in the derepression of TCEAL1. Con-
versely, in cancer samples, the downregulation of DANCR
reduces its competitive activity for miR-222, leading to the
inhibition of TCEAL1 by miR-222. The suggested regula-
tory mechanism is illustrated in Supplementary Figure S17.
In fact, the TCEAL1 gene is significantly downregulated in
esophageal cancer tissue (80). Our findings suggest poten-
tial tumor suppressor pathways that are regulated by com-
peting lncRNAs.

The secondary structure of a human lncRNA has been
experimentally determined and the evolutionary stabiliza-
tion of RNA structural elements has been studied (81).
The functional domains and elements were the fundamen-
tal modules responsible for RNA-associated molecular in-
teractions. In future work, taking into account the sec-
ondary structure would provide a better understanding of
the mechanisms of RNA–RNA crosstalk. Other regulatory
mechanisms involving transcription factors, DNA methy-
lation, and copy number variations can also induce the
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co-expression of lncRNAs and protein-coding genes and
can underlie cancer pathology. The ceRNA hypothesis re-
mains controversial (34,35); it has been suggested that the
release of target genes from repression occurs at a certain
threshold of target abundance irrespective of effective lev-
els of miR-122 in primary hepatocytes and the liver (34).
The present study provides insight into potential mecha-
nisms of ncRNA regulation in tumorigenesis. Studies based
on the ceRNA hypothesis have provided hints for inves-
tigating lncRNA functions. The Linc2GO database is the
first to predict lncRNA functions based on this hypothe-
sis (29). By analyzing a large set of Ago-binding sites de-
termined from CLIP-Seq experiments, the ceRNAFunction
webtool in starBase v.2.0 can be used to predict the func-
tion of ncRNAs (miRNAs, lncRNAs and pseudogenes)
and protein-coding genes from ceRNA regulatory net-
works (31). DIANA-LncBase integrates AGO CLIP-Seq
data into the miRNA–lncRNA identification pipeline (30).
This database provides experimentally verified and compu-
tationally predicted miRNA targets in lncRNAs. Our com-
prehensive analysis of lncACTs across 12 types of cancer has
resulted in an online database for exploring lncRNA func-
tion and regulatory interactions. Collectively, these valuable
methods can significantly improve our understanding of
RNA communication, at the transcriptome level, and pro-
vide a timely and valuable resource for non-coding RNA
studies.

In summary, the lncACTs activity profiles offered a
means of examining the competitive interactions of RNAs
that are potentially dysregulated in different types of cancer.
These findings expand the existing knowledge of lncRNA
characteristics and provide new tools for the dissection of
lncACT activity, which can help to elucidate disease pro-
cesses and offer new targets for therapy.
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