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ABSTRACT Viruses that infect the widespread opportunistic pathogen Pseudomonas
aeruginosa have been shown to influence physiology and critical clinical outcomes
in cystic fibrosis (CF) patients. To understand how CRISPR-Cas immune interactions
may contribute to the distribution and coevolution of P. aeruginosa and its viruses,
we reconstructed CRISPR arrays from a highly sampled longitudinal data set from CF
patients attending the Copenhagen Cystic Fibrosis Clinic in Copenhagen, Denmark
(R. L. Marvig, L. M. Sommer, S. Molin, and H. K. Johansen, Nat Genet 47:57– 64, 2015,
https://doi.org/10.1038/ng.3148). We show that new spacers are not added to or
deleted from CRISPR arrays over time within a single patient but do vary among
patients in this data set. We compared assembled CRISPR arrays from this data set to
CRISPR arrays extracted from 726 additional publicly available P. aeruginosa sequences
to show that local diversity in this population encompasses global diversity and that
there is no evidence for population structure associated with location or environment
sampled. We compare over 3,000 spacers from our global data set to 98 lytic and
temperate viruses and proviruses and find a subset of related temperate virus clusters
frequently targeted by CRISPR spacers. Highly targeted viruses are matched by different
spacers in different arrays, resulting in a pattern of distributed immunity within the
global population. Understanding the multiple immune contexts that P. aeruginosa
viruses face can be applied to study of P. aeruginosa gene transfer, the spread of
epidemic strains in cystic fibrosis patients, and viral control of P. aeruginosa infection.

IMPORTANCE Pseudomonas aeruginosa is a widespread opportunistic pathogen and
a major cause of morbidity and mortality in cystic fibrosis patients. Microbe-virus in-
teractions play a critical role in shaping microbial populations, as viral infections can
kill microbial populations or contribute to gene flow among microbes. Investigating
how P. aeruginosa uses its CRISPR immune system to evade viral infection aids our
understanding of how this organism spreads and evolves alongside its viruses in hu-
mans and the environment. Here, we identify patterns of CRISPR targeting and im-
munity that indicate P. aeruginosa and its viruses evolve in both a broad global pop-
ulation and in isolated human “islands.” These data set the stage for exploring
metapopulation dynamics occurring within and between isolated “island” popula-
tions associated with CF patients, an essential step to inform future work predicting
the specificity and efficacy of virus therapy and the spread of invasive viral elements
and pathogenic epidemic bacterial strains.

KEYWORDS CRISPR, Pseudomonas aeruginosa, bacteriophage evolution, cystic
fibrosis, evolution, host-virus interactions, microbiome

Viral infection is known to have considerable impact on the evolution of microbial
communities in all environments, including the human microbiome, where viruses

act both as bacterial antagonists and agents to transfer novel and important bacterial
traits (1–5). Comparisons of even small numbers of Pseudomonas aeruginosa genomes
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have revealed a dynamic variable genome replete with horizontally transferred ele-
ments, many of which are proviruses and virus-like elements (6, 7). These viral elements
contain genes critical for P. aeruginosa infection and pathogenicity; for example, the
temperate cytotoxin-converting virus phiCTX encodes a toxin shown to increase P.
aeruginosa virulence in a mouse model (8). Other proviruses have influenced various
functions important for microbial colonization and persistence, including cell adhesion,
resistance to phagocytosis, and exopolysaccharide digestion for biofilm remodeling (9).
Notably, proviruses likely play an important role in the Liverpool epidemic strains (LES),
which are responsible for 10% of cystic fibrosis (CF)-associated infections in the United
Kingdom (10). These strains are adept at colonizing the lung, display increased antibi-
otic resistance, and are associated with worse clinical outcomes, including greater loss
of lung function and higher rates of lung transplantation and death (11). Some
colonization advantages of these strains have been shown to lie in integrated provi-
ruses in the LES genome. These elements contain genes homologous to known P.
aeruginosa viruses; prophages 2 and 3 are related to F10, prophage 4 to D3112 and
DMS3, prophage 5 to D3, and prophage 6 to Pf1 (12). Disrupting three of these
proviruses (prophages 2, 3, and 5) has been shown to create strains attenuated relative
to the wild-type ancestor in a rat lung chronic infection model (12). Some of these
integrated viruses also retain their lytic activity and may affect P. aeruginosa density in
chronic CF lung infections, where they are induced by stress such as antibiotic treat-
ment (13).

The evolution of P. aeruginosa viruses and their impacts on bacterial dynamics and
fitness are shaped by CRISPR-Cas (clustered regularly interspaced short palindromic
repeats) immunity (14–18). The CRISPR system is composed of two parts: CRISPR arrays
of the eponymous repeats interspersed with short DNA fragments called spacers, and
a set of CRISPR-associated (Cas) genes, which carry out CRISPR system functions. The
sequences of spacers in these arrays come from foreign genetic elements such as
viruses at matching locations in the element genome called the protospacer. New
spacers are acquired and integrated from the protospacer of the virus into one end of
the array, known as the leader providing the adaptive function. Arrays are transcribed
from the leader end, processed into cr-RNAs containing a single spacer, and bound to
the functional CRISPR-Cas complexes. When a complex containing a cr-RNA matches a
protospacer in a targeted element, the element is degraded by Cas proteins, providing
immunity.

P. aeruginosa is known to harbor two subtypes of the type I CRISPR system in its
genome: I-E and I-F. Type I-F CRISPRs are considerably more common than type I-E,
appearing in 33% of genomes versus 3% for type I-E in a study of 122 clinical isolates
(19). The type I-F system has been shown to be fully functional as an immune system,
conferring immunity to multiple temperate viruses and adding new spacers in response
to challenge with a lytic virus (20). In addition to these genomically encoded CRISPRs,
a type I-C system has been identified on an integrative and conjugative element
present in some P. aeruginosa strains (21). Some common P. aeruginosa laboratory
strains, including PAO1, lack CRISPRs; however, others, such as PA14, contain complete
CRISPR systems. LES and related strains (22) contain a single, well-conserved type I-F
array but lack associated Cas genes, suggesting an ancestral partial loss of the system
rendering it nonfunctional. P. aeruginosa genomes with intact CRISPRs are smaller than
CRISPR-less genomes, consistent with the CRISPR system preventing integration of
viruses and mobile elements (21). Since some CRISPR-targeted elements have been
connected to P. aeruginosa virulence, it has been suggested that absent or nonfunc-
tional CRISPRs may allow strains to acquire and maintain these virulence islands (12,
19, 23).

Up to a quarter of spacers from all CRISPR subtypes have been shown to match
viruses or proviruses (19, 21), indicating that P. aeruginosa has recorded numerous
encounters with viruses in its CRISPR arrays. CRISPR arrays have been used as variable
molecular markers to classify P. aeruginosa strains (21). Here, we compare CRISPR
spacers from a spatially restricted longitudinal data set to those from the global P.
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aeruginosa population to determine if CRISPR diversity and interactions with viruses
vary among these populations. In doing so, we contrast the local and global structure
of immunity and identify highly targeted virus clusters that infect P. aeruginosa.

RESULTS
Within-host and between-patient CRISPR diversity. We assembled CRISPR spac-

ers into arrays from a published sequence read from a longitudinal set of 458 isolates
of P. aeruginosa from 34 patients at the Copenhagen Cystic Fibrosis Clinic (24) (here
referred to as the Copenhagen data set; see Table S1 in the supplemental material).
Isolates were derived from sputum samples from children and young adults with CF
ranging in age from 1.4 to 26.3 years of age, with patients being sampled longitudinally
over a period of one to ten years between 2001 and 2013 (24). For each strain we also
constructed a seven-locus multilocus sequence type (MLST) (25) to represent the core
genome of the strain. To account for identical clones sequenced repeatedly in the
Copenhagen data set, we collapsed all strains with identical MLSTs and CRISPR se-
quences which originated from the same patient to a single representative, resulting in
a clone-corrected data set with 72 isolates. In total we find that 46 of these 72 strains
contain CRISPRs, with 83 unique CRISPR arrays (multiple arrays per strain) (Fig. 1) in the
Copenhagen data set. We constructed a phylogeny based on MLST data of 72 strains
and mapped CRISPR arrays onto this phylogeny (Fig. 1). We observe that CRISPR array

United Kingdom

 RAG # Arrays # Strains 
 1 20 89 
 2 35 118 
 3 26 112 
 4 16 56 
 5 41 90 
 6 58 97 
 7 20 46 
 8 2 15 
 9 2 22 
 10 24 70 
 11 22 42 
 12 38 68 
 13 6 54 
 14 9 26 
 15 2 20 

17 20 71 
18 4 25 
19 30 41 
20 23 89 
21 7 17 
23 8 14 
24 5 13 
25 14 39 
31 28 50 
33 4 5 
34 2 14 
35 3 3 
36 4 4 
38 6 19 

FIG 1 MLST tree of Copenhagen strains. Maximum likelihood tree is built from 7-locus MLST of Copenhagen strains. Strains are labeled by Sequence Read
Archive accession number. Only one representative per MLST�CRISPR-type combination is shown. Bootstrap values �70 are shown as gray circles. Inner ring
of colored bars represents the set of spacers in each strain; matching colors indicate completely shared spacers. Black bars represent spacer sets unique to a
single strain in the entire data set. Stacked colored squares show presence (filled) or absence (open) of 15 core related array groups (RAGs). Gray-shaded table
cells contain global RAGs found when comparing Copenhagen arrays to arrays from other data sets, which are not illustrated in the tree. Pie charts show counts
by country of identical (inner) or related (outer) arrays in strains outside the Copenhagen data set. Related arrays are defined as those sharing two or more
consecutive identical spacers. Two examples of RAG recombination (identical or related arrays in combination with unrelated arrays in different strains) are
highlighted with colored boxes around strain names: RAG 1 (lavender) and RAG 4 (light green).
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sequences map onto the MLST phylogeny, suggesting a linked evolutionary history of
CRISPR with the core genome. New CRISPR variants (marked with black boxes in Fig. 1)
evolve among very closely related strains with identical MLSTs. This is consistent with
previous studies showing that CRISPRs largely evolve with core gene loci but show
more recent variation. Most strains in this data set have multiple CRISPR arrays, with the
majority containing three or fewer arrays (Fig. S1A). Across all arrays, these strains
contain 4 to 65 spacers, with an average of 35.4 spacers per strain (Fig. S1B).

To look for evolution in CRISPR arrays within a patient, we compared assembled
arrays from longitudinal samples. Of the 34 longitudinally sampled patients with any
change in the spacer content in their CRISPR arrays over time, we find this variation
results from spacer deletion in only two patients, with no examples of spacer addition
(Fig. S2). Most strains maintained their CRISPR arrays over time (up to 10 years,
2 months), neither deleting existing arrays nor incorporating new arrays. These data
suggest that CRISPR immunity profiles change minimally within a human host over the
time course of an infection. We note that in ten of these patients, new strains were
identified with unrelated CRISPR spacer profiles in new clonal backgrounds (24). This
data set has very few isolates from each sample (maximum of 9, average 1.6, SD �1.1),
so we cannot distinguish whether patients were already infected by multiple strains or
newly colonized. Although this may change the immune profile of the within-host
population, it is not evidence of active within-host CRISPR evolution.

To identify related CRISPR arrays in the Copenhagen population, arrays from all
Copenhagen patients were grouped into sets of related arrays sharing at least two
sequential spacers (related array groups, or RAGs). In total, we found 15 RAGs in the
Copenhagen population (Fig. 1). Most arrays within RAGs contained deletions (24) at
the trailer end of the array (i.e., L798), four contained insertions (i.e., L804), and three
lacked sufficient examples to determine if the change was an insertion or deletion
relative to its ancestor (Fig. S2). In addition, we observed 15 examples with differences
at the leader end among RAGs from different patients. These additions occur presum-
ably from spacer addition, ranging from one to two spacers (i.e., L356 and L795) to the
majority of the array (up to 24 variant spacers in L707 and L787) (Fig. S2). This greater
among-patient variation suggests that change in CRISPR arrays, including the addition
of new CRISPR spacers, is occurring among but not within patients.

Local CRISPR diversity reflects the global population. We compared the CRISPR
arrays found within the local data set to 726 publicly available P. aeruginosa sequences.
These sequences come from strains isolated over 25 years from 26 countries, originat-
ing from CF, human non-CF, and environmental sources (Fig. S3). Out of a total of
1,184 P. aeruginosa strains, 754 (64%) contain known CRISPR repeats. We identified
3,152 unique spacer sequences in 729 unique arrays that differ by at least one spacer.
A rarefaction curve of spacer sequences reveals that despite a broad sampling of P.
aeruginosa sequence data, it is unlikely that all spacers in the population have been
observed (Fig. S4). Unlike our assembly of CRISPRs from the Copenhagen data set,
strains containing identical CRISPRs are not clone-corrected, as none of these strains are
known to originate from the same sample or individual. However, 97 strains isolated
across four continents (Europe, Asia, and North and South America), over 22 years (1990
to 2012), and in varied environments (CF, non-CF human, and environmental samples)
contained arrays identical to those in the Copenhagen population (Table S1). In
addition to these identical arrays, we identified 29 RAGs containing 437 arrays which
have at least two consecutive spacers in common with a Copenhagen array. Three RAGs
(groups 8, 9, and 15) are not observed outside the Copenhagen data set, and eight of
the RAGs contained array variants unique to an individual within the Copenhagen data
set (Fig. S2). RAGs across the global data set range in size from pairs to groups of over
50 (Fig. 1, RAG table), reflecting long-term CRISPR diversification in the global popu-
lation. Like variation among patients, this variation was seen in deletion and addition
of spacers. In total, 80 out of 87 (92%) unique arrays in the Copenhagen study were
shared exactly with (30, 34.5%) or related to (76, 87.4%) arrays found outside Copen-
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hagen. As many arrays have exact and related versions in the global population, these
percentages do not equal 100. This widespread distribution of related arrays shows that
the Copenhagen CF population reflects the CRISPR diversity of the global population.

We also observe arrays from the same RAG appearing in the same genome as arrays
of other RAGs in various combinations, indicating recombination of entire arrays
between strains. We examined the number of combinations of the 29 RAGs in the
Copenhagen and global data sets. Within the Copenhagen population, there are 186
strains with at least two arrays in RAGs; these include 19 unique combinations of at
least two RAGs, with individual RAGs appearing in almost two different combinations
on average (1.90, SD �1.44). Two examples of this are highlighted in Fig. 1; arrays from
RAGs 1 (lavender) and 4 (light green) each appear in combination with two sets of
unrelated arrays. In the global data set, there are 417 strains with two or more RAGs,
and we find broader variation in RAG combinations, with 68 unique combinations and
RAGs appearing in nearly six combinations on average (5.83, SD �4.68) All 19 RAG
combinations from the Copenhagen population are observed, along with 49 novel
global RAGs.

Identifying virus clusters. To understand CRISPR interactions with different virus
types, we classified known P. aeruginosa viruses into clusters. We gathered 92 se-
quenced viruses along with six characterized proviruses integrated in the genome of
epidemic strain LESB58 (12) (Table S2). We divided our virus library into clusters based
on the fraction of the virus genomes aligned in pairwise BLAST searches, with a
minimum of 20% aligned (see Materials and Methods). This produced 18 virus clusters
with at least two members, as well as 14 singletons which did not fall into clusters
(Fig. 2). These clusters are consistent with and augment previous analyses of virus
families using smaller sets of well-characterized P. aeruginosa viruses (26, 27).

These clusters reflect known features of P. aeruginosa viruses. Some viruses produce
anti-CRISPR proteins which interfere with CRISPR immunity (28–30); all such viruses in
our data set are in cluster 03, which contains largely lysogenic mu-like viruses as well
as LES prophage 4. While many clusters are exclusively lytic or temperate, some, such
as clusters 03, 05, and 11, contain a mixture of viral lifestyles. For example, lytic
PA1/KOR/2010 has high homology to temperate members of cluster 03 but lacks a c
repressor critical for lysogeny (31). A complete list of viruses and their assigned clusters
is in Table S2.

CRISPR matches to P. aeruginosa viruses. We compared all spacers in our library
to the viral data set. In total, 1,172 spacers (37.2%) match these viruses with up to four
mismatches across the length of the spacer, and with an appropriate protospacer-
adjacent motif (PAM). Remarkably, 1,980 spacers (62.8%) match no viruses in this data
set, indicating that CRISPRs are sampling a genome space of viruses and other elements
that are not included in this data set. Of the 98 virus sequences, 46 (46.9%) contained
a protospacer matched by at least one spacer. Unmatched viruses include all members
of clusters 02, 04, 05, 06, 09, 11, 12, 16, and 17, along with singletons 20, 21, 23, 24, 26,
27, 31, and 32 (Fig. 3). With the exception of cluster 11, all these clusters are predom-
inantly lytic (Fig. 2). The total number of protospacer matches per viral genome varied

FIG 2 Virus genome clusters. The color of each node indicates the if the virus is lytic (red), temperate
(blue), nonlytic (orange), or unknown (green). Clusters 1 to 18 contain multiple members and are
connected by edges to other cluster members with which they share at least 0.2 PLA. Unclustered viruses
(singletons) are numbered 19 to 32.
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from 1 to 142 (Fig. S5). The clusters with the most protospacers are predominantly
temperate, including proviruses (Fig. S5 and Table S2). Our data support the finding
that temperate viruses contain more protospacers than viruses characterized as lytic
(19) (Fig. S5, Welch’s t test, P � 6.127e�07).

To see if protospacers were more likely to be shared between closely related strains,
we compared shared protospacers in pairs of viruses to the proportion of their
genomes that align (PLA, see Materials and Methods). We found a positive relationship
between PLA and shared protospacers (Fig. S6C, r � 0.85, P � 2e�16), showing as
expected that viruses with similar genomes share more protospacers.

Spacer matches are typically not unique to one virus; spacers match 1 to 13 viruses
with an average of 2.75 viruses (Fig. S7A). While the number of spacers matching each
cluster varies (Fig. S7B), most matched viruses fall within the same cluster. We note that
these spacers are useful marker sequences for virus identification and may be used for
rapid screening of samples for virus infection. We classify spacers that match more than
one virus cluster as “superspacers” and suggest they provide cross-immunity for a
single host to multiple viruses (Fig. 4; Table S3). These superspacers are a minority
among spacers in our data set; 17% of the spacers matching viruses are considered
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FIG 3 Variable targeting of virus clusters. Box plot of protospacers per base pair of viral sequence for each virus cluster. The center line of the box represents
the median; the upper and lower lines mark the first and third quartiles, respectively. Whiskers extend to 1.5� the interquartile range; outliers are shown as
black dots.

FIG 4 Superspacers shared between viral strains. Each box represents a pair of viruses; the color
indicates the proportion of superspacers in the viral strain on the x axis which are shared with the virus
on the y axis. A superspacer is defined as any spacer matching viruses from more than one cluster. Viruses
are grouped by cluster (colored boxes to the left and bottom); singletons are grouped together as
unclustered (gray box).
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superspacers. We found only one spacer that matched four nonsingleton virus clusters
(clusters 07, 18, 22, and 30), which contain a mix of temperate and lytic viruses. This
indicates that some spacers confer immunity to a broad range of viruses. These spacers
are not more commonly found in our unique arrays than expected by chance, as would
be expected from their broad selective benefit against virus infection (Student’s t test,
P � 0.83 between superspacers and normal spacers found in arrays).

To determine the frequency of targeting of virus clusters, we quantified the mean
number of protospacers per virus, normalized by viral genome size, across all viruses in
each cluster (Fig. 3). While most clusters have few protospacers per base pair, five
clusters (clusters 3, 8, 10, 14, and 18) and two singletons (22 and 29) exhibited higher
targeting (median, �0.001 protospacers per base pair; Fig. 3). Using protospacers per
base pair as a measure of targeting, we found two clusters were significantly more
frequently targeted than others. Clusters 03 and 08 were targeted significantly more
often than 14 and 12 of 18 clusters with at least 3 members, respectively (one-way
ANOVAs with Games-Howell test, P � 0.05). This breadth of targeting is not primarily
due to individual spacers targeting multiple clusters, as evidenced by the small number
of superspacers observed (Fig. 4; Table S3).

Distributed immunity. We previously observed that distributed immunity, or
CRISPR immunity to the same virus via different spacers, has a marked effect on the
evolutionary dynamics of host and virus (32). Highly distributed immunity is correlated
with increased host population size and composition stability, as well as decreased viral
population size and increased viral extinction (32). We quantify distributed immunity
within a host, or individual distributed immunity (IDI), as the number of spacer-
protospacer matches between a host and a virus, and distributed immunity among
hosts, or population distributed immunity (PDI), as incidences of nonshared spacers in
two hosts providing immunity to the same virus (see Materials and Methods).

We observe variation in distributed immunity that correlates with the number of
spacers matching each virus. This is consistent with a highly nonoverlapping spacer set
from a diversity of CRISPR arrays. We observe higher levels of PDI where both hosts are
from the Copenhagen data set than when one or both hosts are outside the local set
(Fig. 5a). Similarly, IDI is higher for local strains than for strains from the global
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population (Fig. 5c). This may reflect repeated sampling of viruses by these CF strains,
perhaps due to long-term coexistence in lung environments. Levels of PDI and IDI vary
among viral clusters, with clusters 03, 08, 10, 13, 15, and 18 and singletons 22 and 29
in particular exhibiting higher levels of both, whereas other clusters show little evi-
dence of distributed targeting (Fig. 5b and d). The most highly targeted clusters
(clusters 03, 08, and 18) are among those with high PDI and IDI, further indicating that
these virus types are broadly targeted by P. aeruginosa CRISPRs on a global scale.

Viruses that face high distributed immunity have few susceptible hosts and may
evolve differently than those that face lower distributed immunity. This indicates that
each virus will have limited susceptible hosts within our global population. To quantify
this, we calculated the susceptibility index (SI), or proportion of hosts that lack CRISPR
immunity, for each virus (Fig. 5e and f). This metric is consistent with our previous
metric for calculating susceptible hosts (HVI) (32); however, HVI requires host and viral
relative abundances and is therefore not appropriate for this data set. We find that
clusters with high PDI and IDI have correspondingly low SI values, with 37% to 70% of
host strains susceptible to these clusters, while clusters with limited distributed immu-
nity retain the ability to infect the vast majority of hosts (Fig. 5f).

DISCUSSION

Here, we have identified a large, diverse pool of P. aeruginosa CRISPR spacer
sequences in both a small, highly sampled CF patient population and a broad sampling
of the global P. aeruginosa population. Diversity in the Copenhagen samples reflects
that of the global population. Change of CRISPR arrays within a patient over time is
limited; however, we observe divergence and recombination of CRISPRs in global data.
Comparing these spacers to known P. aeruginosa viruses reveals differential targeting
of related viral groups by CRISPRs, with distributed immunity to highly targeted viruses
emerging in the global population.

The data sets we incorporated also impose limitations on this study. The Copenha-
gen data set, while extensive in number of participants and time span, uses genomes
from isolates from clinical samples. The number of isolates per sample is small, with
fewer than two strains isolated per sample on average. These limited isolations are
unlikely to capture the true diversity of P. aeruginosa in these patients and may have
limited our ability to capture within-patient CRISPR evolution; however, we were still
able to identify numerous strains with related CRISPRs across patients. Publicly available
P. aeruginosa genomes present the issue of misassemblies. As these genomes were
largely assembled without specific focus on CRISPR regions, missing or misordered
spacers are possible due to the repetitive nature of CRISPR arrays, and in most cases
sequence reads are not available to facilitate the careful assembly of CRISPR regions
used on the Copenhagen data. Despite these possibilities, we still find numerous
CRISPR arrays identical to Copenhagen arrays in non-Copenhagen strains (see Table S1
and Fig. S2 in the supplemental material), indicating that there are accurate CRISPR
assemblies in this data set. Even if potentially imperfect, these genomes still serve as a
valuable source of CRISPR spacers for comparison with Copenhagen and virus data.

Our data clearly show that differential targeting of viruses is divided along the lines
of viral lifestyle, with temperate viruses targeted more frequently than lytic viruses. This
skewed targeting could indicate that CRISPR immunity is used less frequently for
defense against lytic viruses, with other methods being preferred. The most highly
targeted cluster was cluster 03; its individual viruses have approximately five proto-
spacers per kb of genome. This cluster contains D3112 and related temperate trans-
posable viruses, whose mosaic genomes have been heavily shaped by horizontal gene
transfer among Mu-like and lambda-like viruses (26). These viruses use type IV pili as
their receptors (33, 34); these pili are important for motility on solid surfaces and in
viscous environments, and for biofilm structure (35). In culture, virus-resistant P. aerugi-
nosa mutants delete the pilus to prevent viral attachment; however, in resistant strains
which retain the pilus, CRISPR spacers are added to confer immunity (20). We hypoth-
esize that selective pressure to maintain biofilm structure in environments such as the
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CF lung prevents strains from gaining resistance via pilus deletion, leading to heavy
CRISPR targeting of these viruses. Consistent with this hypothesis, viruses in highly
targeted cluster 08 also use pili, including type IV, for entry, as do clusters 14 and 15,
which have high to moderate numbers of protospacers (Fig. 3). Some members of
highly targeted cluster 03 also possess anti-CRISPRs; though these spacers would be
ineffective with an anti-CRISPR system, higher targeting of these strains may result from
repeated encounters with these viruses. With no selection against spacers matching
viruses integrated into host genomes, matching spacers can remain in host repeat-
spacer arrays even if these largely temperate viruses integrate.

There are multiple ecoevolutionary and molecular mechanisms that could result in
differences in virus targeting: for example, variable virus abundance, differential selec-
tion that results in spacers matching highly targeted viruses being selected for and/or
spacers matching infrequently targeted viruses being lost, or differences in virus-host
interaction mechanisms that lead to variation in spacer acquisition. With the current
data, it is difficult to distinguish among these hypotheses, without abundance of viral
clusters in the environments from which these host strains originate. We also lack
knowledge of the R0 of these viruses, making it difficult to predict the dynamics of their
invasion and persistence in microbial populations.

Theory predicts that in environments with few susceptible hosts, viruses will tilt their
symbiosis toward mutualistic or prudent use of host resources (36–38); this may alter
the evolution of interaction traits in these viruses and their impact on host strains. In
contrast to the highly diversified global population, Pseudomonas viruses within an
isolated “island” (39, 40) lung environment face monoclonality of CRISPRs, allowing
single-mutation evasion mutants successful access to local hosts. This is similar to the
arms race dynamics (41) of selective sweeps associated with surface mutations. In
contrast, outside the lung, viruses face distributed immunity and limited host suscep-
tibility. Under these conditions, virus lifestyles may shift toward “rapacious” lifestyles
where rapid production of infectious particles is advantageous (36, 42).

In the metapopulation we have described, viruses infecting P. aeruginosa face both
immune structures, so the proportion of replication and evolution occurring in each
environment will ultimately influence viral phenotypes. It is possible that the diversity
we see represents diversity enriched from local source environments; however, the
limited change in CRISPR immunity within a patient suggests this is not the case.
Instead, we suggest that P. aeruginosa and its viruses migrate, interact, and evolve
between environments. Further characterization of viral diversity is needed to fully
elucidate the structure of diversity reflected in CRISPRs.

Distributed immunity would be expected to limit the spread of proviruses, as CRISPR
targeting of an integrated provirus would result in degradation of the host genome.
While distributed immunity can depress the spread of previously encountered viruses,
it also creates an opportunity for phages with dissimilar genomes to invade a popu-
lation, as they would be subject to less CRISPR targeting and have less competition for
hosts. Such gaps in antiviral defense could be exploited for virus therapy; by carefully
selecting lytic viruses with minimal similarity to common viral genomes, one could limit
the ability of CRISPRs to interfere with the therapeutic phage. An example from this
study is cluster 06; these phages are mostly lytic and have low similarity and few shared
protospacers with other clusters (Fig. 2 and Fig. S6A and B). In addition, it may be
possible to immunize Pseudomonas strains against viruses that increase virulence and
pathogenicity to limit the spread of these phenotypes.

These results depict a global population of P. aeruginosa and viruses where many
virus types are circulating across a broad geographic area in multiple environments.
Host CRISPRs bear evidence of encounters with many types of viruses without an
environmental pattern. The increased targeting of certain largely temperate virus
groups suggests that hosts have various immune responses to different virus types.
Using a large library of spacers extracted from an extensive data set spread across time,
space, and sample type allowed us to see how these viruses were differentially targeted
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on a global scale. Applying this type of surveillance to other host-virus systems could
similarly reveal novel patterns in CRISPR targeting and viral population structure.

MATERIALS AND METHODS
Host data set selection. The set of P. aeruginosa strains analyzed in this paper includes data from

several sources. Reads associated with 458 P. aeruginosa strains cultured from patient samples collected
from the Copenhagen Cystic Fibrosis Center at the University Hospital, Rigshospitalet, Denmark (24),
were retrieved from the NCBI Sequence Read Archive (accession no. ERP004853). Assembled genomes of
24 P. aeruginosa strains described in reference 43 were kindly provided by the authors (GenBank
accession no. AWYJ00000000 to AWZG00000000). Assembled genomes of 388 strains described in
reference 44 were obtained from GenBank (BioProject accession no. PRJNA264310). All other complete
and draft-stage P. aeruginosa genomes were retrieved from the NCBI Nucleotide database in September
2014 (310 genomes; accession numbers in Table S1). CRISPR arrays from reference 19 were downloaded
from NCBI (45 sequences). Three additional sets of CRISPR arrays were obtained from metagenomic
sequence of three CF sputum samples kindly provided by Katrine Whiteson and Yan Wei Lim. Metadata
including isolation location, sampling date, environment, and epidemic strain status were collected
where possible (Table S1).

Quality filtering and genome assembly. For all samples with sequencing reads available, reads
were trimmed and quality filtered using Prinseq 0.20.4 (45). Reads were trimmed from both ends using
a 5-nt sliding window with a minimum quality score of 30. Reads were retained if they had a mean quality
score of 30 and �1% ambiguous bases. The minimum read length was set to two-thirds the anticipated
read length, or 66 nt. Draft assemblies were generated with MIRA 4.0 (46) using genome, de novo, and
accurate parameters.

CRISPR identification and spacer extraction. CRISPR arrays were identified via BLASTn of known P.
aeruginosa CRISPR repeats (19). Parameters were adjusted for short search sequence and to maximize
hits covering the entire repeat length as follows: “-word _size 7 -gapopen 3 -gapextend 2 -reward 1
-penalty -1.” The minimum percent identity was set to 80 to allow for degenerate repeat sequences. Hits
�24 bp were filtered from the results. Sequences with a repeat of the same type both up- and
downstream in the same orientation and �40 bp away from other hits were considered spacers and
extracted. A spacer rarefaction curve was computed in QIIME (47).

CRISPR array ranges were declared as all consecutive repeats and spacers in the same orientation
�500 bp away from one another. Groups of repeats and spacers on different contigs, on the same
contig/genome in different orientations, or on the same contig/genome but separated by �500 bp were
considered separate arrays.

For samples with reads available, CRISPR arrays were further verified for accuracy and complete-
ness using a technique called nonassembled repeat boundary linkage, or NARBL (http://github.com/
englandwe/NARBL). To establish spacer order, repeats were identified on sequence reads, and 12-
nucleotide “chunks” of DNA flanking each repeat were identified using fuzznuc (48); up to 8 mismatches
to the repeat sequence were permitted. When the repeat was matched in both orientations due to
palindromic repeats, the match with fewer mismatches was kept. Chunks that were a perfect match to
the repeat sequence (i.e., from adjacent or partial repeats) were also discarded. Finally, singleton chunks
that perfectly overlap nonsingleton chunks by at least 8 bp were removed, to account for rare chunks
generated by sequencing error.

Occurrences of two or more chunks on the same read were recorded as links, which represent either
two ends of the same spacer or opposite ends of two spacers linked across a repeat. The first type was
used to identify spacer sequences; the second, to order spacers. Linkage networks were analyzed using
Cytoscape (49). Based on average repeat and spacer lengths of species with previously sequenced CRISPR
arrays, links spanning a single repeat-spacer unit were considered short links, spanning only a single
spacer or pair of adjacent spacers; longer links were considered to span multiple spacers and were not
counted when determining coverage of links. All spacer sequences used in this study can be found in
Table S1.

Multilocus sequence typing. An established panel of seven markers (25) was used for MLST analysis.
MLST loci were identified by BLASTn (50) of a representative known allele obtained from the Pseudomo-
nas aeruginosa PubMLST website (http://pubmlst.org/paeruginosa/) (51) against genomes or contigs. The
best BLAST hit for each MLST locus was then BLASTed against a database of all known alleles for that
locus, also from the PubMLST website. Exact matches to a known allele were assigned that allele’s ID
number; hits with lower identity or incomplete coverage of the locus were investigated manually, and
any identified as novel alleles were assigned new ID numbers of �10,000. Strains with inconclusive MLST
alleles were removed from further MLST analysis. A maximum-likelihood tree of concatenated MLST
markers was constructed with RAxML (52) using the rapid bootstrapping algorithm plus maximum
likelihood and GTRgamma nucleotide substitution model with 100 bootstrap replicates.

Virus data set selection and protospacer identification. Genomes of all viruses identified as
infecting P. aeruginosa were downloaded from the NCBI Nucleotide database on June 23, 2015, totaling
92 unique viruses. Six previously identified proviruses from P. aeruginosa LESB58 were added using
genomic coordinates from reference 12. All viruses were classified according to lifestyle (lytic, temperate,
nonlytic, or unknown) based on literature descriptions. These 98 viruses and proviruses were used for all
virus-related analyses.

Protospacers in virus genomes were identified via BLASTn of spacer sequences. The parameter “-task
blastn-short” was used due to short query length. A minimum E value of 0.01 was used to capture
incomplete and imperfect matches, allowing up to four mismatches over a full-length match. PAMs were
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identified and partial-length matches were extended to cover the full spacer length using clDB (53), and
the Hamming distance between protospacer and spacer was calculated. Protospacer matches were kept
if a correct PAM sequence was present. Acceptable PAM sequences were GG or TTC, indicative of type
1-F and type 1-E PAMs, respectively. Any matches with a Hamming distance of �3 were filtered out of
analysis. Spacers matching protospacers on more than one distinct cluster were designated “super-
spacers.”

Assignment of viruses to genome clusters. To assign viruses to clusters, all virus genomes were
compared using BLASTn (E � 0.001). For each pair of genomes, the proportional length alignment (PLA),
or total length aligned by BLAST over the length of the query, was calculated and used as our measure
of viral similarity. MCL (54) was used to cluster viruses into networks with edges weighted by PLA with
a minimum PLA cutoff of 0.2.

Distributed immunity and susceptibility index. Population distributed immunity (PDI) was calcu-
lated on a per-virus basis using all possible pairs of hosts. For each host-host pair, if each host has a
spacer matching the virus which is not present in the other host, PDI is 1; else, PDI is 0. At the population
level, PDI is then averaged across all host-host pairs. Criteria for matching spacers and protospacers are
as described above. Individual distributed immunity (IDI) is measured as a count of spacers in a host
matching a virus. At the population level, IDI is averaged across all hosts. The susceptibility index (SI) is
the number of host-virus pairs where the host is not immune to the virus divided by the total number
of host-virus pairs. Immunity is defined as a spacer-protospacer match as described above.

Statistics. All statistical tests were performed in R versions 3.2.2 to 3.2.4 (55). Games-Howell tests
were performed using the userfriendlyscience package (56). Plots were generated in R using the ggplot2
package (57).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00075-18.
FIG S1, EPS file, 0.4 MB.
FIG S2, EPS file, 1 MB.
FIG S3, TIF file, 0.4 MB.
FIG S4, EPS file, 0.6 MB.
FIG S5, EPS file, 0.4 MB.
FIG S6, EPS file, 2.9 MB.
FIG S7, EPS file, 0.4 MB.
TABLE S1, XLSX file, 0.3 MB.
TABLE S2, XLSX file, 0.02 MB.
TABLE S3, XLSX file, 0.02 MB.

ACKNOWLEDGMENTS
We thank Katrine Whiteson, Yan Wei Lim, and Jeremy Dettman for generously

sharing access to unpublished data and Rasmus Lykke Marvig, Søren Molin, and Helle
Krogh Johansen for discussion, insight, and use of their data. We thank George O’Toole,
Matthew Pauly, Sergei Maslov, and Mercedes Pascual for insightful discussions.

This work was supported by the Carl R. Woese Institute for Genomic Biology, the
Cystic Fibrosis Foundation, and an Allen Distinguished Investigator Award to R.J.W. W.E.E.
was supported by a James R. Beck Graduate Research Fellowship and NIH training grant
AI078876.

REFERENCES
1. Andersson AF, Banfield JF. 2008. Virus population dynamics and ac-

quired virus resistance in natural microbial communities. Science 320:
1047–1050. https://doi.org/10.1126/science.1157358.

2. Modi SR, Lee HH, Spina CS, Collins JJ. 2013. Antibiotic treatment expands
the resistance reservoir and ecological network of the phage meta-
genome. Nature 499:219 –222. https://doi.org/10.1038/nature12212.

3. Reyes A, Wu M, McNulty NP, Rohwer FL, Gordon JI. 2013. Gnotobiotic
mouse model of phage– bacterial host dynamics in the human gut. Proc
Natl Acad Sci U S A 110:20236 –20241. https://doi.org/10.1073/pnas
.1319470110.

4. Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, Breitbart M, Bu-
chanan J, Desnues C, Dinsdale E, Edwards R, Felts B, Haynes M, Liu H,
Lipson D, Mahaffy J, Martin-Cuadrado AB, Mira A, Nulton J, Pašić L,
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