
����������
�������

Citation: Xu, J.; Cao, K.; Liu, X.; Zhao,

L.; Feng, Z.; Liu, J. Punicalagin

Regulates Signaling Pathways in

Inflammation-Associated Chronic

Diseases. Antioxidants 2022, 11, 29.

https://doi.org/10.3390/

antiox11010029

Academic Editor: Stanley Omaye

Received: 26 November 2021

Accepted: 22 December 2021

Published: 24 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

antioxidants

Review

Punicalagin Regulates Signaling Pathways in
Inflammation-Associated Chronic Diseases

Jie Xu 1, Ke Cao 1, Xuyun Liu 1, Lin Zhao 1, Zhihui Feng 2 and Jiankang Liu 1,3,*

1 Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering
of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University,
Xi’an 710049, China; ff.89.03.22@stu.xjtu.edu.cn (J.X.); caoke@stu.xjtu.edu.cn (K.C.);
xuyunliu@mail.xjtu.edu.cn (X.L.); zhaolin2015@mail.xjtu.edu.cn (L.Z.)

2 Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology,
Xi’an Jiaotong University, Xi’an 710049, China; zhfeng@mail.xjtu.edu.cn

3 University of Health and Rehabilitation Sciences, Qingdao 266071, China
* Correspondence: jkliu@uor.edu.cn

Abstract: Inflammation is a complex biological defense system associated with a series of chronic
diseases such as cancer, arthritis, diabetes, cardiovascular and neurodegenerative diseases. The
extracts of pomegranate fruit and peel have been reported to possess health-beneficial properties in
inflammation-associated chronic diseases. Punicalagin is considered to be the major active component
of pomegranate extracts. In this review we have focused on recent studies into the therapeutic effects
of punicalagin on inflammation-associated chronic diseases and the regulatory roles in NF-κB, MAPK,
IL-6/JAK/STAT3 and PI3K/Akt/mTOR signaling pathways. We have concluded that punicalagin
may be a promising therapeutic compound in preventing and treating inflammation-associated
chronic diseases, although further clinical studies are required.

Keywords: pomegranate; polyphenols; punicalagin; inflammation-associated disease; signaling
pathway

1. Introduction

Inflammation is a response to stimuli, either internal or external. The first protective
response of a body’s immune system to inflammation can be divided into the acute phase
and the chronic phase [1]. The acute phase is characterized by increased blood flow and vas-
cular permeability, and accumulation of leukocytes and cytokines, while the chronic phase
is characterized by the development of specific humoral and cellular immune responses [1].
If acute inflammation is failed to regulate, it will lead to chronic inflammation [2]. The
system of inflammation pathway consists of inducers, sensors, mediators and effectors [3].
According to the different stimuli, inflammation can be classified as pathogen-associated
molecular patterns and damage-associated molecular patterns. These inducers can be
recognized by different pattern recognition receptors in macrophages and dendritic cells.
Then, inflammatory cytokines are released and immune cells are recruited. The immune
cells will release enzymes to fight off the infectious objects and clear death cells [4]. Any
imperfection of an inflammatory response may cause disease [2]. Excess inflammation
responses lead to diseases such as osteoarthritis [5], rheumatoid arthritis [6], or gastric ul-
cers [7]. As a consequence of inflammation, reactive oxygen species (ROS) will accumulate
and damage healthy cells [3]. Chronic inflammation is also a feature that is common to
atherosclerosis, Parkinson’s disease [8], Alzheimer’s disease [9] and diabetes [10].

Natural compounds from plants have garnered increasing attention among the sci-
entific community for their lower cost, higher bioavailability, and less toxicity compared
to synthetic pharmaceutical agents [11]. Polyphenols are widely found in vegetables
and fruits in nature [12]. As an important source of anthocyanins and hydrolysable
tannins, pomegranate is consumed as a fruit and is also used for its antioxidant and
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anti-inflammation potential on disease prevention and treatment [13]. Pomegranate
peel extract contains high amounts of bioactive compounds, mainly phenolic acids,
flavonoids and tannins [14]. Among all the polyphenols in pomegranate, punicalagin,
[2,3-(S) hexahydroxydiphenoyl-4,6-(S,S)-gallagyl-d-glucose] (structure shown in Figure 1),
is the richest and most active one. Punicalagin has been reported to have beneficial effects
on both chronic inflammation [15] and acute inflammation [16], and to be involved in
different steps in inflammation, including immune response [17], cells macrophages [18,19]
and fibroblasts [20], and necrosis [17]. For example, punicalagin downregulated the mRNA
and soluble protein expression of IL-2 from anti-CD3/anti-CD28 stimulated murine splenic
CD4+ T cells, and inhibits the activation of the nuclear factor of activated T cells [17].
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urolithin A.

Considering the effective protective effects of punicalagin on various diseases, we
aim to have a comprehensive review of the regulatory roles of signaling pathways of
punicalagin on inflammation-associated chronic diseases.

2. Punicalagin Metabolism and Epidemiology

Pomegranate (Punica granatum L.) is a plant native to Asia and is now widely dis-
tributed in subtropical and tropical regions around the world [21]. Pomegranate has been
well-known for its medical use for centuries. The history of cultivation and consumption of
pomegranate can be dated back to 3000 BC [22]. It is documented in traditional Chinese
medicine and other traditional medicines, including Indian, Cuban and Greek traditional
medicine [23]. It is consolidated that the oxidative stress is present in all life levels, with
different regulatory mechanisms, from bacteria to human health. Since pomegranate is
rich in antioxidants, pomegranate has been proposed to have potential beneficial effects on
human health [24]. The nutritional and health properties of pomegranate are not limited
to its edible parts, but also include non-edible parts [25]. In fact, pomegranate fruits and
inedible parts of trees (peel, flowers, etc.) contain higher levels of active ingredients [26].
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The health properties of pomegranate has led to the expansion of the pomegranate in-
dustry worldwide. The global total production is nearly 4.5 million tons. The pomegranate
peel accounts for about 40% of the total weight of the pomegranate fruit [27]. As a by-
product of the pomegranate industry, pomegranate peel has been considered an agro-
industry waste for a long time [28], until researchers found that the bioactive compounds
in the peel is higher than in the aril and seeds [29]. Nearly fifty phenolic compounds have
been found in pomegranate peel, including flavonoids such as anthocyanins, catechins, and
hydrolyzable tannins such as punicalagin, gallic acid and ellagic acid (Table 1) [30]. Various
methods have been described for the extraction of polyphenols from pomegranate [31–34].
Different solvents on extraction from pomegranate influence the phenolic content and
antioxidant properties. Compared with non-polar solvents, polar solvents have a stronger
antioxidant extraction ability. Methanolic pomegranate peel extracts have been proven to
be superior over other solvent extracts [29]. However, after consideration of safety concerns,
ethanol was preferred over methanol [35].

Table 1. The major phenolic compounds in pomegranate peel.

Compound Name Molecular Formula Content (mg/g)

Punicalagin C48H28O30 10–50
Ellagic acid C14H6O8 1.2–5.8
Punicalin C34H22O22 2–8
Catechin C15H14O6 0.2–0.9

Chlorogenic acid C16H18O9 0.4–3
Gallic acid C7H6O5 0.2–4
Epicatechin C15H14O6 0.9–2
Caffeic acid C9H8O4 0.3–0.7
Ferulic acid C10H10O4 0.46
Vanillic acid C14H18O9 0.07

Rutin C27H30O16 0.0045

Empirical studies have shown that the hydrolyzed polyphenols in pomegranate peel
possess very important nutritional and medicinal values for its numerous biological ac-
tivities, especially high levels of antioxidant activity [36]. Punicalagin is the most abun-
dant bioactive compound, with a high molecular weight isolated from pomegranate peel
(Table 1). The major antioxidant activity of pomegranate juice is from the polyphenol
ingredients, especially punicalagin [37]. The content of punicalagin in pomegranate peel
is the highest among common fruits. Studies have shown that the content of punicalagin
in pomegranate peels is 10–50 mg/g [29]. Moreover, the concentration processes did not
affect the punicalagin content, which showed that pomegranate juices from concentrate
can also provide health benefits [38].

Punicalagin is soluble in water and is the precursor of ellagitannin, accounting for 85%
of the tannins in pomegranate peel (w/w) [39]. As a hydrolyzable tannin, punicalagin can be
hydrolyzed spontaneously into ellagic acid in vivo. Then, ellagic acid can be transformed
by gut microbiota to urolithins A [40] (Figure 1). Although the promising therapeutic
effects of punicalagin have been shown in lots of in vitro studies, the bioavailability testing
of pomegranate ellagitannins still requires further study [41].

Punicalagin has a variety of biological effects, including antioxidant [42,43], antivi-
ral [44] and antimicrobial [45–47] activities (Table 2). Studies have shown that punicalagin
could also significantly inhibit oxidative DNA damage. Punicalagin has even been reported
to exert a protective effect against high glucose-induced neural tube defects [48]. At the
same time, polyphenols are also important anti-cancer agents because of the ability of anti-
mutation and anti-proliferation. Therefore, several studies have linked punicalagin with
anti-cancer activity [20,49]. In vitro, it has been found that punicalagin could inhibit more
than 90% of the mutagenesis caused by benzo [a] pyrene in female SD rat lung [50]. Other
studies have also found that punicalagin could inhibit the proliferation of prostate cancer
cells by inducing apoptosis and anti-angiogenesis [51]. Our recent study investigated the
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effect of punicalagin on endothelial dysfunction and showed that punicalagin enhanced
FoxO1 nuclear translocation and that silencing FoxO1 remarkably abolished the ability
of punicalagin to augment the mitochondrial biogenesis, eNOS expression and oxidative
stress, leading to amelioration of endothelial dysfunction [52]. We have also reported the
potent protective effects of punicalagin on acute hyperlipidemia-induced hepatic lipid
metabolic disorders [53], and neurotoxicity and AMPK activation in hippocampal neu-
rons [54]. Recently, a study evaluated the ability of pomegranate peel extract polyphenols
as anti-SARS-CoV-2 agents and showed that punicalagin exhibited a higher affinity than
the positive controls umifenovir and lopinavir for the predicted druggable active site on
the SARS-CoV-2 protein target [55].

Table 2. The biologic effect of punicalagin.

Activity of Punicalagin Model Experimental Outcome Ref.

Antioxidant

L-NAME induced hypertension
pregnant rats

Punicalagin supplement decreased the levels of
oxidative stress [42]

CCl4-induced mice liver injury Punicalagin decreased MDA level, increased SOD,
GPX activities and Nrf2 expression [43]

Anti-viral Epithelial Vero host cell Punicalagin reduction the virucidal plaque of HSV-1 [44]

Anti-microbial

Aspergillus flavus CECT2686,
Aspergillus parasiticus CECT 2947, etc.

Pomegranate peel methanolic extracts inhibited the
growth of Aspergillus flavus, Fusarium verticillioides,

Alternaria alternata and Botrytis cinerea.
[45]

Staphylococcus aureus
Punicalagin increased potassium efflux and exerted

inhibitory effect on biofilm formation of
Staphylococcus aureus.

[47]

Anti-cancer Colorectal cancer cell HCT116
Punicalagin exhibits selective cytotoxicity on

HCT116 compared to CCD841, exerts anti-cancer
effect by downregulated Anx-A1 protein.

[49]

L-NAME: NG-nitro-L-arginine methyl ester; CCl-4: Carbon tetrachloride; HSV: Herpes simplex virus.

Punicalagin has been considered the main active component among the polyphenols
in pomegranate peel extract in anti-inflammation [56]. Since inflammation is the cause of
many disease [57–59], the potential anti-inflammatory activity may be important to explain
the health-promoting activity of punicalagin.

3. Role of Punicalagin in Inflammation-Associated Diseases

Inflammation is a complex and necessary component of the defense system of an
organism against biological, chemical, and physical stimuli [60]. In the 19th century, the link
between inflammation and the development of cancer has been found [61,62]. Hereafter,
abundance of evidence emphasizes the importance of inflammation in the development
of chronic disease [63]. It is generally described as consisting of acute and chronic phases.
The acute inflammation is involved in infectious disease [64]. Persistent inflammation can
lead to the chronic phase [65]. Chronic inflammation contributes to immune diseases [66],
arthritis, diabetes, cancer [67], cardiovascular and neurodegenerative diseases [8,68] and
many other chronic diseases [69–71].

The inflammatory process involves lots of signaling pathways and cytokines. The first
step of inflammation is to specifically recognize the pathogens which are mediated by the
pathogen-associated molecular patterns and damage-associated molecular patterns [72]; the
second step is to activate specific immune signaling pathways to promote the secretion of
pro-inflammatory cytokines, such as interleukin-1-beta (IL-1β), IL-6, tumor necrosis factor-
alpha (TNF-α) [60]. These events recruit immune cells resulting in the generation of reactive
oxygen species (ROS) to activate a series of signaling pathways. In this review, we will
focus on the following classical inflammatory pathways: NF-κB, mitogen-activated protein
kinase (MAPK), IL-6/JAK/STAT3 and phosphatidylinositol-3kinases/Akt/mammalian
target of the rapamycin (PI3K/Akt/mTOR) signaling pathways.
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3.1. Effect on IL-6/JAK/STAT3

Cytokines participate in many fundamental processes of life, including immune
response, inflammation, metabolism, etc. IL-6, a pleiotropic cytokine, plays an important
role in inflammation [73]. Levels of IL-6 are increased in chronic inflammatory conditions.
Janus kinases and tyrosine kinase 2, along with activators of transcription (STAT) signaling,
are major factors in pro- and anti-inflammatory cytokine signaling [74]. The high level of
IL-6 stimulates the activation of the JAK/STAT3 pathway [75,76].

In a recent study, Cao, et al. [77] used LPS exposure to activate RAW264.7 cell inflam-
mation reflection. After 24 h LPS stimulation, IL-6 and TNF-α secretion in the supernatants
was significantly enhanced. Pre-treatment with punicalagin (50 µM) and then treatment
with LPS, significantly inhibited the secretion of IL-6 and TNF-α, indicating that puni-
calagin exerted anti-inflammatory activity via the suppression of NO production and
pro-inflammatory cytokines IL-6 and TNF-α in LPS-induced RAW264.7 cells. It is worth
noting that treatment with punicalagin only, without LPS treatment, had no effect on the
basal level of IL-6, and TNF-α secretion in RAW 264.7 cells.

Ankylosing spondylitis is a chronic, progressive inflammatory disease. The exact
mechanism of the ankylosing spondylitis pathogenesis is still under investigation, but
lots of studies have reported that ankylosing spondylitis seemed to involve a variety of
factors. The activated JAK/STAT3 signaling pathway and increased levels of ROS both
were found to be involved in pathological formation of ankylosing spondylitis [78,79]. In
ankylosing the spondylitis mouse model, ROS and malonaldehyde levels were increased,
and punicalagin treatment significantly reduced ROS and malonaldehyde levels, and
effectively improved antioxidant status in ankylosing spondylitis BALB/c mice [80]. This
effect may be conducted by regulating the major pathway of inflammatory response
JAK/STAT3 signaling [80]. In other research, punicalagin (250 mg/kg) pretreated with
concanavalin A-induced autoimmune hepatitis mice down-regulated the levels of IL-6,
TNF-α and IFN-γ, and reduced the infiltration of activated CD4+ and CD8+ T cells in
liver [81]. Punicalagin (2.5 µg/mL) supplement down-regulated levels of IL-6, TNF-α and
IL-1, suggesting that punicalagin could attenuate the inflammation caused by influenza A
virus in Madin-Darby Canine Kidney cells [82].

3.2. Effect on NF-κB Pathway

NF-κB has been considered a typical pro-inflammatory pathway for a long time. It
has been defined in response to TNF-α and IL-1 signaling [83]. In the absence of an
activating stimulus, IκBs binds and sequesters NF-κB dimers in the cytoplasm, masking
their nuclear localization signal. Once the activating signal is received, the IκB proteins
have rapid polyubiquitylation and degradation, liberating NF-κB dimers to translocate into
the nucleus and regulate gene expression [84].

The adverse effect of chemotherapeutic drugs limits their clinical applications. Cis-
platin is an agent that is used for the treatment of lung cancer, ovarian cancer and many
other cancers [85]. It could induce acute kidney injury by elevating ROS [86] and activating
different signaling pathways, such as NF-κB or IL-6 [87]. Punicalagin attenuated tissue
injury by downregulating pro-inflammatory mediators NF-κB, TNF-α, IL-6 and enhancing
antioxidant defenses via up-regulating Nrf2 [88]. Meanwhile, in the human osteoblast cell
line (hFOB1.19) and three human osteosarcoma cell lines (U2OS, MG63 and SaOS2), puni-
calagin degraded IκBα and the nuclear translocation of p65, suggesting an attenuation of
the NF-κB signaling pathway [89]. In other research, Zhang et al. [90] found that punicala-
gin suppressed NF-κB activity in the cervical cancer cell ME-180. Punicalagin has also been
reported to possess an anti-cancer activity of papillary thyroid carcinoma, the most com-
mon endocrine carcinoma [91]. In other research concerning papillary thyroid carcinoma,
punicalagin exposure caused the phosphorylation and subsequent degradation of IκBα and
the nuclear translocation of p65, indicating the regulating role of punicalagin in the NF-κB
signaling pathway [92]. Mukherjee et al. [93] reported that pomegranate polyphenols
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including punicalagin and ellagic acid supplementation in bearing mice modulated Nrf2
and NF-κB and decreased tumor-induced hepatic damage and cell death.

3.3. Effect on MAPK Pathway

The MAPK signaling pathway consists of a series of cross-talking and compensatory
pathways in cellular metabolism [94]. There are three main classical MAPKs: ERKs,
JNKs, and p38 MAPKs [95]. In a study dedicated to exploring the anti-inflammatory
mechanism of polyphenols in pomegranate peel, researchers found that in RAW264.7
marcrophages, punicalagin significantly decreased the production and gene expression of
pro-inflammatory cytokines triggered by LPS. The inhibitory effects were attributable to
suppression of p38, ERK and JNK phosphorylation levels in MAPK signaling pathway [56].

Systemic lupus erythematosus is a common autoimmune disease. Lupus nephritis is
the most serious complication of systemic lupus erythematosus. The pathogenic of lupus
nephritis is closely related to protease-activated receptor-2 (PAR2) [96]. PAR2 could en-
hance the production of inflammatory cytokines by activating ERK/MAPK pathways [97].
Recently published research reported that punicalagin had beneficial effects on lupus
nephritis and this effect may be through the potent inhibition of PAR2-mediated activation
of the ERK1/2 signaling pathway [98]. The receptor activator of NF-κB ligand (RANKL) is
the key molecule required for osteoclast differentiation [99]. In a project, the researchers
investigated the effect of punicalagin on osteoporosis and found that punicalagin treatment
inhibited RANKL-induced osteoclast formation in vitro and attenuated ovariectomized-
induced bone destruction in vivo [100]. Punicalagin treatment decreased the levels of
p-JNK, indicating that punicalagin interfered with the MAPK pathway activation [100].
The anti-inflammation potential of punicalagin was also exhibited on cattle. Research into
bovine endometritis using lipopolysaccharide (LPS) induced bovine endometrial epithelial
cells to investigate the effect of punicalagin. The result showed that punicalagin pretreat-
ment significantly decreased the productions of IL-1β, IL-6 and IL-8. Molecular mechanistic
studies showed that punicalagin suppressed the phosphorylations of p38, c-JNK and ERK,
suggesting that punicalagin could inhibit LPS-induced MAPK activation [101].

3.4. Effect on PI3K/AKT/mTOR Pathway

The mTOR pathway is indispensable for many cellular biological processes. In recent
years, the PI3K/Akt/mTOR signaling pathway has emerged as a critical pathway in regu-
lating the inflammatory response [102]. In research whose purpose was to investigate the
role of mTOR in pomegranate-mediated anti-inflammation, Sprague-Dawley rats received
57 mL/day pomegranate juice rich in punicalagin. The results showed that pomegranate
juice significantly downregulated pro-inflammatory enzymes nitric oxide synthase and
cyclooxygenase-2 mRNA and protein expression. In addition, it inhibited phosphorylation
of PI3K/AKT and mTOR expression, suggesting that punicalagin may affect the mTOR
pathway [103]. This pathway is often dysregulated in cancer patients. It is one of the most
important signaling pathways in cancer progression including proliferation, apoptosis,
angiogenesis, and drug resistance [104,105]. Several studies have identified the beneficial
effect of punicalagin on different cancers. Cheng et al. [91] reported that punicalagin
treatment decreased the viability of thyroid cancer cell line BCPAP by activating the MAPK
and inhibiting the mTOR signaling pathways to promote the process of autophagy. Recent
research [106] reported a comparison between the effect of pomegranate peel extracts and
pomegranate juice in prostate cancer DU-145 and PC-3 lines. The main phenolic com-
pounds identified in the pomegranate peel extract of this project is α, β-punicalagin and
ellagic acid. The results showed that the extracts of pomegranate peel had an important
anti-cancer effect against prostate cancer cells by modulating the mTOR/S6K signaling
pathway. As a metabolite of punicalagin [107], ellagic acid has been reported to inhibit
tumor proliferation. In research concerning cervical cancer, 2.5 µM ellagic acid treatment
inhibited the AKT/mTOR signaling pathway by enhancing the expression level of IGFBP7,
which could inhibit the invasion of HeLa cells [108]. As shown in Figure 1, punicalagin can
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be hydrolysis into ellagic acid, then ellagic acid is metabolized to urolithin A and B by the
intestinal microbiota in vivo [109]. Totiger et al. [110] found that treatment of pancreatic
ductal adenocarcinoma cells with urolithin A blocked the phosphorylation of AKT and
p70S6K in vitro, and successfully inhibited the growth of tumor xenografts, and increased
the overall survival of Ptf1aCre/+; LSL-KrasG12D/+; Tgfbr2flox/flox (PKT) mice.

The mTOR signaling pathway has also been the focus of aging research [111]. Accumu-
lated evidence has indicated that mTOR signaling pathways play an important role in cellu-
lar aging [112]. Although there is no direct report on punicalagin, the ability of pomegranate
extract to improve aging-related diseases by regulating the mTOR pathway has been exten-
sively studied. Alzheimer’s disease is the primary cause. In 2016, Bradidy et al. [113] fed
mice with a 4% pomegranate diet for 15 months and found that the treatment reduced the
expression of inflammatory genes and increased the phosphorylation levels of Akt and p70
S6 kinase in the APPsw/Tg mouse brain, suggesting that a pomegranate supplement could
reduce neuroinflammation by activating the PI3K/Akt/mTOR signaling pathway.

4. Conclusions and Prospects

Inflammation is the development of chronic pathologies such as cancer, arthritis, di-
abetes, canrdiovascular and neurodegenerative diseases. Therefore, a drug or a therapy
which has the ability to regulate inflammation means it has the possibility to improve
chronic diseases. However, most of the current therapies cannot solve the problem funda-
mentally; therefore, there is an urgent need for searching better therapies. Preventive effects
of punicalagin and its metabolites are mediated by several signaling pathways against
inflammation including IL-6/JAK/STAT3 PI3K/Akt/mTOR, NF-κB, MAPK, and many
other pathways (Figure 2).
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These mechanisms provide strong evidence to support the fact that punicalagin may be
able to comprehensively improve the inflammation-associated chronic diseases; however,
the following issues should be considered seriously in future studies: (1) The information on
the gastrointestinal fate of punicalagin and the cellular uptake of the bioactive compounds
are still unclear and need to be explored; (2) Researchers mainly measure the effects and
propose the pathway, but studies on the real molecular interactions are urgently required;
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and (3) Although a lot of basic studies have been carried out in laboratories, more clinical
studies are needed to develop therapeutic strategies of punicalagin.

Author Contributions: Conceptualization, J.L.; writing—original draft preparation, J.X.; writing—
review and editing, K.C., X.L., L.Z., Z.F. and J.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (32071154,
32171102, 31770917, and 31701025), the General Financial Grant from the China Postdoctoral Science
Foundation (2018M633492 and 2021M692580).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Feghali, C.A.; Wright, T.M. Cytokines in acute and chronic inflammation. Front. Biosci. Landmark 1997, 2, 12–26. [CrossRef]
2. Tasneem, S.; Liu, B.; Li, B.; Choudhary, M.I.; Wang, W. Molecular pharmacology of inflammation: Medicinal plants as anti-

inflammatory agents. Pharmacol. Res. 2019, 139, 126–140. [CrossRef] [PubMed]
3. Varela, M.L.; Mogildea, M.; Moreno, I.; Lopes, A. Acute Inflammation and Metabolism. Inflammation 2018, 41, 1115–1127.

[CrossRef] [PubMed]
4. Landén, N.X.; Li, D.; Ståhle, M. Transition from inflammation to proliferation: A critical step during wound healing. Experientia

2016, 73, 3861–3885. [CrossRef]
5. Xu, Z.; He, Z.; Shu, L.; Li, X.; Ma, M.; Ye, C. Intra-Articular Platelet-Rich Plasma Combined with Hyaluronic Acid Injection for

Knee Osteoarthritis Is Superior to Platelet-Rich Plasma or Hyaluronic Acid Alone in Inhibiting Inflammation and Improving Pain
and Function. Arthrosc. J. Arthrosc. Relat. Surg. 2020, 37, 903–915. [CrossRef]

6. Weyand, C.M.; Goronzy, J.J. The immunology of rheumatoid arthritis. Nat. Immunol. 2021, 22, 10–18. [CrossRef] [PubMed]
7. Mahmoud, Y.I.; El-Ghffar, E.A.A. Spirulina ameliorates aspirin-induced gastric ulcer in albino mice by alleviating oxidative stress

and inflammation. Biomed. Pharmacother. 2018, 109, 314–321. [CrossRef]
8. Pajares, M.; Rojo, A.I.; Manda, G.; Boscá, L.; Cuadrado, A. Inflammation in Parkinson’s Disease: Mechanisms and Therapeutic

Implications. Cells 2020, 9, 1687. [CrossRef]
9. Irwin, M.R.; Vitiello, M.V. Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol.

2019, 18, 296–306. [CrossRef]
10. Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V.; Orekhov, A.N. The Diabetes Mellitus-Atherosclerosis

Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. Int. J. Mol. Sci. 2020, 21, 1835. [CrossRef]
11. Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.;

Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv.
2015, 33, 1582–1614. [CrossRef]

12. Sajadimajd, S.; Bahramsoltani, R.; Iranpanah, A.; Patra, J.K.; Das, G.; Gouda, S.; Rahimi, R.; Rezaeiamiri, E.; Cao, H.; Giampieri,
F.; et al. Advances on Natural Polyphenols as Anticancer Agents for Skin Cancer. Pharmacol. Res. 2019, 151, 104584. [CrossRef]
[PubMed]

13. Pirzadeh, M.; Caporaso, N.; Rauf, A.; Shariati, M.A.; Yessimbekov, Z.; Khan, M.U.; Imran, M.; Mubarak, M.S. Pomegranate as a
source of bioactive constituents: A review on their characterization, properties and applications. Crit. Rev. Food Sci. Nutr. 2021, 61,
982–999. [CrossRef]

14. Kaderides, K.; Kyriakoudi, A.; Mourtzinos, I.; Goula, A.M. Potential of pomegranate peel extract as a natural additive in foods.
Trends Food Sci. Technol. 2021, 115, 380–390. [CrossRef]

15. Huang, M.; Wu, K.; Zeng, S.; Liu, W.; Cui, T.; Chen, Z.; Lin, L.; Chen, D.; Ouyang, H. Punicalagin Inhibited Inflammation
and Migration of Fibroblast-Like Synoviocytes Through NF-κB Pathway in the Experimental Study of Rheumatoid Arthritis. J.
Inflamm. Res. 2021, 14, 1901–1913. [CrossRef]

16. Fouad, A.A.; Qutub, H.O.; Al-Melhim, W.N. Nephroprotection of punicalagin in rat model of endotoxemic acute kidney injury.
Toxicol. Mech. Methods 2016, 26, 538–543. [CrossRef] [PubMed]

17. Lee, S.-I.; Kim, B.-S.; Kim, K.-S.; Lee, S.; Shin, K.-S.; Lim, J.-S. Immune-suppressive activity of punicalagin via inhibition of NFAT
activation. Biochem. Biophys. Res. Commun. 2008, 371, 799–803. [CrossRef]

18. Wang, Y.; Smith, W.; Hao, D.; He, B.; Kong, L. M1 and M2 macrophage polarization and potentially therapeutic naturally
occurring compounds. Int. Immunopharmacol. 2019, 70, 459–466. [CrossRef] [PubMed]

19. Du, L.; Li, J.; Zhang, X.; Wang, L.; Zhang, W.; Yang, M.; Hou, C. Pomegranate peel polyphenols inhibits inflammation in
LPS-induced RAW264.7 macrophages via the suppression of TLR4/NF-κB pathway activation. Food Nutr. Res. 2019, 63, 3392.
[CrossRef] [PubMed]
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