
IJC Heart & Vasculature 48 (2023) 101271

2352-9067/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

How does NFAT3 regulate the occurrence of cardiac hypertrophy? 

Wang Hui a,1, Su Wenhua a,b,1, Zhang Shuojie a, Wang Lulin a, Zhao Panpan a, Zhang Tongtong a, 
Xie Xiaoli a,*, Dan Juhua a,* 

a Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China 
b Department of Cardiology, The First People’s Hospital of Yunnan Province, Kunming, Yunnan, China   

A R T I C L E  I N F O   

Keywords: 
Cardiac hypertrophy 
NFAT3 
Nuclear translocation 

A B S T R A C T   

Cardiac hypertrophy is initially an adaptive response to physiological and pathological stimuli. Although 
pathological myocardial hypertrophy is the main cause of morbidity and mortality, our understanding of its 
mechanism is still weak. NFAT3 (nuclear factor of activated T-cell-3) is a member of the nuclear factor of the 
activated T cells (NFAT) family. NFAT3 plays a critical role in regulating the expression of cardiac hypertrophy 
genes by inducing their transcription. Recently, accumulating evidence has indicated that NFAT3 is a potent 
regulator of the progression of cardiac hypertrophy. This review, for the first time, summarizes the current 
studies on NFAT3 in cardiac hypertrophy, including the pathophysiological processes and the underlying 
pathological mechanism, focusing on the nuclear translocation and transcriptional function of NFAT3. This re
view will provide deep insight into the pathogenesis of cardiac hypertrophy and a theoretical basis for identifying 
new therapeutic targets in the NFAT3 network.   

Introduction 

The NFAT family was first identified as a cluster of transcription 
factors expressed in activated but not static T cells[1]. To date, five 
NFAT family members have been discovered. Four members of the 
family, NFAT1 (NFATc2/NFATp), NFAT2 (NFATc1, NFATc), NFAT3 
(NFATc4), and NFAT4 (NFATc3, NFATx), were all cloned from murine 
Ar-5 and human Jurkat T cells[2]. NFAT5 is a distinct NFAT family 
member that is involved in the cellular response to hypertonic stress[3]. 
NFAT protein is expressed in almost all tissues, but the expression level 
varies greatly. For example, NFAT1 is mainly expressed in the pancreas 
[4], testis, placenta, hypothalamus, hippocampus, cerebellum, olfactory 
bulb and frontal cortex of the brain[5,6], NFAT2 is mainly expressed in 
the cardiovascular system, digestive system and kidney[7], and NFAT3 
is more balanced, mainly expressed in adipose tissue, myocardium, 
ovary, spinal cord, brain and other regions[5,8,9]. NFAT4 is mainly 
expressed in skeletal muscle and smooth muscle[10], as well as in the 
lung, hypothalamus and striatum. There are few studies on the function 
of NFAT1, 2, 4 and 5, but there are several studies on NFAT3 in cardiac 
hypertrophy pathogenesis[11–13]. 

Cardiac hypertrophy includes primary cardiac hypertrophy (hyper
trophic cardiomyocytes) and secondary cardiac hypertrophy. Cardiac 

hypertrophy is a common inherited disease characterized by an increase 
in the thickness of the ventricular wall (≥1.5 cm) in the absence of 
increased afterload, and it is recognized as an important cause of sudden 
cardiac death among young adults and competitive athletes[14]. Sec
ondary cardiac hypertrophy can be divided into two types: physiological 
and pathological. Physiological hypertrophy is usually caused by normal 
growth, pregnancy, or movement of cardiomyocytes. Pathological 
myocardial hypertrophy is the maladaptive response of the heart to 
various adverse pathological stimuli, such as hypertension and 
myocardial infarction[15]. Both physiological and pathological hyper
trophy progression depends on upstream triggers and signalling mech
anisms [16–18]. 

In previous studies, several regulatory mechanisms have been found 
to have positive or negative effects on cardiac hypertrophy, including 
cell metabolism[19], proliferation[15], miRNA[20–22], immune 
response[23,24], translation regulation[25], epigenetic modification 
[26,27] and many more. As an important marker of cardiac hypertro
phy, NFAT3 caught our attention. In this review, we summarize the 
functional network of NFAT3 in cardiac hypertrophy, focusing on its 
nuclear translocation and transcriptional function. 
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1. The structure of NFAT3 

The protein structures of the NFAT family are homologous, including 
two conserved functional regions, namely, the NFAT homologous region 
(NHR) and Rel homologous region (RHR), and a nonconserved C-ter
minal domain[28]. NHR is mainly related to the transcriptional regu
lation of NFAT, and RHD is mainly involved in the combination of NFAT 
and DNA[28]. Phosphorylation/dephosphorylation is the main regula
tory mode of NFAT transcriptional activity. NHR contains many 
conserved structural units, such as serine-rich structures SRR1 and SRR2 
(serine-rich regions, SRRs) and serine-proline-rich structures SP1, SP2 
and SP3 (serine-proline regions, SPs), which can be phosphorylated by 
NFAT kinases, such as casein kinase (CK1), glycogen synthase kinase 3 
(GSK-3) and tyrosine phosphorylation regulatory kinase (DYRK)[28]. 
NHR also contains the binding motifs of calcineurin SPRIEIT, CK1 
binding motif FSILF and a masked nuclear localization sequence (nu
clear localization signal, NLS) (Fig. 1). As a member of the NFAT family, 
NFAT3 also has a similar domain structure. In the inactive state, serine 
residues of NFAT are phosphorylated to form a conformation covering 
the NLS. However, in the activated state, the serine of NFAT in the 
cytoplasm is dephosphorylated, and the NLS is exposed. Then, NFAT3 
enters the nucleus to regulate the expression of target genes by coop
erating with other relevant transcription factors. 

2. Regulation of NFAT3 expression level and function 

The expression of NFATs is specifically regulated in different organs 
and tissues. The involvement of NFATs in the cardiovascular system was 
first shown by the fact that mice lacking the NFAT2 gene have lethal 
defects in cardiac valve formation[29,30] and abnormalities in the 
cardiac septum. As early as 1998, Molkentin et al. discovered that mice 
expressing an activated form of NFAT3 in the heart develop cardiac 
hypertrophy and heart failure[31]. Later, Bushdid et al. explored its role 
in cardiac development; they built a mouse model with disruption of 
both the NFAT3 and NFAT4 genes that demonstrated embryonic 
lethality after embryonic Day 10.5 and thin ventricles, pericardial 
effusion, and a reduction in ventricular myocyte proliferation[32]. 

However, how the expression of NFAT3 in cardiac myocytes is regulated 
is unclear. 

A study revealed that the inhibition of NFAT3 expression in CD4+ T 
cells occurred largely via TBX5 deficiency-mediated downregulation of 
NFAT3 promoter/enhancer activity[33]. TBX5 plays important roles in 
cardiac function, including chamber formation, septation, and car
diomyocyte differentiation[34]. Therefore, NFAT3-mediated regulation 
of cardiac development might be regulated by TBX5. However, the 
regulatory mechanism of TBX5 in cardiomyocytes still needs to be 
further verified. The expression of NFAT3 is affected not only by pro
moter activity but also by chromatin modification of the NFAT3 gene. As 
the epigenetic modification of the gene, including acetylation and/or 
methylation of histones and/or DNA, affects transcriptional activity, 
further investigation is required to elucidate additional details of these 
modifications in the NFAT3 gene. 

As a transcription factor, NFAT3 translocates into the nucleus to 
perform its function, and the process is precisely regulated. Studies have 
shown that Ca2+ promotes the dephosphorylation of the regulatory 
domain of NFAT3 by activating CaN[35]. Then, the obscured NLS 
sequence is released to transport NFAT3 into the nucleus. When Ca2+

increases in the cell, CaM binds with Ca2+, exposing hydrophobic sur
faces that will attach to CaN to promote its binding with Ca2+. The Ca2+- 
CaN complexes link to NFAT3 and dephosphorylate it. Consequently, 
the hidden NLS sequence is exposed and mediates the nuclear trans
location of NFAT3. In the nucleus, NFAT3 combines with its co-factors 
and switches on the transcription of its target genes. 

Next, we will summarize the regulatory program of NFAT3 in the 
pathogenesis of cardiac hypertrophy. 

3. Regulation of NFAT3 in the cardiac hypertrophy process 

In the past decade, numerous studies have shown that the develop
ment of cardiac hypertrophy involves the activation and regulation of 
many signalling pathways and transcription factors[12,36,37]. Among 
these mechanisms, NFAT3 seems to be a very important core point. The 
RHR region of NFAT3 binds to the promotor region to induce the 
expression of hypertrophy-associated genes when stimulated by cardiac 

Fig. 1. General structure of the NFAT protein. NFAT proteins consist of an NHR, a DNA-binding domain (RHD) and a carboxy-terminal domain. The regulatory 
domain contains an N-terminal transactivation domain (TAD), as well as a docking site for casein kinase 1 (CK1), termed FSILF, and for calcineurin, termed SPRIEIT. 
The regulatory domain also includes multiple serine-rich motifs (SRR1, SP1, SP2, SRR2, SP3 and KTS) and a nuclear localization sequence (NLS)[28]. 
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hypertrophic factors. However, this process is regulated by a series of 
complex mechanisms, including shuttling between the cytoplasm and 
nucleus and transcriptional activity[38]. Here, we will summarize the 
related research on the above regulatory mechanisms (Fig. 2). 

3.1. Regulation of NFAT3 localization 

NFAT3 is a very important transcription factor. Its nuclear import 
requires dephosphorylation by the Ca2+/calmodulin-dependent phos
phatase CaN, whereas its nuclear export requires rephosphorylation, 
which can be mediated by a variety of kinases[39–41]. We will sum
marize the factors and mechanisms that affect the localization of NFAT3 
from its import and export to the nucleus. 

3.1.1. Factors and mechanisms affect NFAT3 transport to the nucleus 
As mentioned above, the nuclear import of NFAT3 is mediated by its 

dephosphorylation. Since many factors have been discovered to affect 
the phosphorylation state of NFAT3, a large number of studies have 
investigated the regulatory mechanisms in the pathogenesis of cardiac 
hypertrophy[36,42,43]. 

Evidence shows that hydrogen peroxide promotes myocardial hy
pertrophy by activating the transcription factor NFAT3[44]. Hydrogen 
peroxide is always stimulated by myocardial hypertrophy inducers, such 
as angiotensin II[44]. Angiotensin II is a polypeptide composed of eight 
amino acids that activates membrane-associated NADPH oxidase by 
binding to the cell surface receptors[45,46]. Simultaneously, oxidation 
products (hydrogen peroxide and ROS) contribute to angiotensin II- 
induced gene expression, such as the activation of a neurotrophic fac
tor in cardiac fibroblasts[47]. Studies have shown that hydrogen 
peroxide can activate the PI3K and MAPK pathways[48,49]. PI3K is a 
kinase that regulates multiple signalling pathways, including inducing 
intracellular calcium release and activating CaN. A study confirmed that 
CaN was transiently activated when cardiomyocytes were incubated 
with hydrogen peroxide[50]. However, CaN is the main factor involved 
in NFAT3 activation. Therefore, it can be speculated that oxidants may 
activate NFAT3 by regulating intracellular Ca2+ levels. 

Studies have shown that recombinant high mobility group Box 1 
(HMGB1) induces cardiac hypertrophy by regulating the 14‑3‑3η/PI3K/ 
Akt/NFAT3 signalling pathway[51]. HMGB1 is an inflammatory 

cytokine that is important in multiple organ pathologies[52]. 14-3-3 
proteins are ubiquitous in all eukaryotes and play a role in the stress 
response of various cells. The 14‑3‑3 protein family includes several 
highly conserved acid proteins, named according to their different iso
forms (β, ε, η, γ, τ, σ and ζ) detected in the cell cytoplasm and nucleus 
[53,54]. Studies have established that several isoforms of 14-3-3 pro
teins are expressed in rat cardiomyocytes, and these isoforms of 14-3-3 
proteins inhibit cardiomyocyte hypertrophic responses such as a1-AR- 
induced hypertrophy, in which the PI3K⁄PKB⁄GSK3b and NFAT path
ways are likely involved[55]. The regulation of GSK3b phosphorylation 
and the compartmentalization of NFAT by 14-3-3 probably contributes 
to this process. The 14-3-3 proteins inhibit cardiomyocyte hypertrophy 
by inhibiting the PI3K signalling pathway and promoting NFAT phos
phorylation[55]. PI3K is activated by growth factors, and activated PI3K 
generates PIP3 through phosphorylation of PIP2, which activates the 
downstream target Akt, resulting in physiological cardiac growth 
[56,57]. Furthermore, a study clarified the regulation of NFAT by 14-3-3 
through NFAT phosphorylation[58]. 

IGF-1 is a stimulator of the PI3K/Akt/mTOR signalling pathway, 
which can activate mTOR, thus promoting the transfer of NFAT3 from 
the nucleus to the cytoplasm. Rapamycin, as an inhibitor of mTOR, can 
eliminate the effect of IGF-1 by increasing the nuclear level of NFAT3 
[59]. Thus, one target of the mTOR signalling pathway is NFAT3. 
However, CaN inhibition did not inhibit NFAT3 activity, suggesting that 
the inhibition of the mTOR signalling pathway in cardiomyocytes may 
be mediated by other phosphatases[59]. 

Myostatin, a member of the TGF-β family, is a well-established 
negative regulator of skeletal muscle mass[60]. Based on this, Law
rence T. Bish’s group has studied the role of myostatin in the cardiac 
growth of neonatal cardiomyocytes. They found that myostatin blocked 
cardiac growth by regulating the Akt/NFAT3 signalling pathway by 
suppressing the dephosphorylation of NFAT3 and phosphorylation of 
Akt[60]. Therefore, the transfer of NFAT3 from the cytoplasm to the 
nucleus is suppressed[61]. This is the first report of cross-talk between 
the myostatin and NFAT3 pathways in cardiomyocytes. This indicates 
that myostatin signalling activates kinases capable of phosphorylating 
NFAT3, thus countering the effects of CaN, or it may be that mediators of 
myostatin signalling, that are further downstream, can suppress calci
neurin at the transcriptional level. Further investigation is needed to 
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identify the link between myostatin and NFAT3. 
As described above, the Ca2+/CaN pathway is the core point of NFAT 

dephosphorylation. Almost all hypertrophy stimulators promote the 
dephosphorylation and nuclear import of NFAT3 by increasing intra
cellular [Ca2+] and activating CaN. 

3.1.2. Factors and mechanisms affect NFAT3 export from the nucleus 
NFAT3 is exported from the nucleus when it is rephosphorylated. For 

example, GSK3β, PKA, p38, 14-3-3 and mTOR, which promote NFAT3 
phosphorylation, may influence this process. 

A study reported that NFATs are targets of JNK and p38 MAP kinase 
phosphorylation. JNK regulates the phosphorylation of Ser172 in 
NFATc1 and Ser163,165 in NFATc3[62,63]. P38 MAP kinase regulates the 
phosphorylation of Ser172 of NFATc1, Ser163,165 of NFATc3 and 
Ser168,170 of NFATc4[64]. Phosphorylation of NFATs by different ki
nases indicates that these kinases are very important for the regulation 
of NFAT. Among the protein kinases identified, Teddy T. C. Yang’s study 
indicated that NFATc4 is a substrate for p38 MAP kinases[64]. Targeted 
disruption of the p38 MAP kinase gene may cause similar increases in 
the nuclear localization of NFAT3. Nuclear NFAT3 may then induce 
NFAT target genes and promote cell growth and differentiation. The C. 
Yang study further demonstrated that phosphorylation at Ser168,170 of 
NFAT3 was the primary target for p38-mediated phosphorylation and 
subsequent activation. To explore more possible kinases that regulate 
the subcellular localization of NFAT3, Teddy et al. researched the role of 
mTOR in this process[65]. They have demonstrated that mTOR mediates 
basal phosphorylation and rephosphorylation of the gate-keeping resi
dues Ser168,170 to regulate the subcellular distribution of endogenous 
NFAT3. Additionally, they found that MEK5/ERK5 signalling mediated 
rephosphorylation at Ser168,170 and, thus, nucleocytoplasmic shuttling 
of NFAT3. The series of studies by Teddy et al. identified that these ki
nases contribute to the phosphorylation of NFAT3 in different states, 
mTOR in the resting state, ERK5 upon rephosphorylation, and p38 
MAPK under stress. However, another study suggested that ERK5 may 
not be fully responsible for the constitutive phosphorylation of NFATc4 
in resting cells, and they demonstrated that IRAK-1 is a maintenance 
kinase responsible for phosphorylating NFATc4 in untreated resting 
cells[66]. They also found that IRAK-1 directly connected with NFATc4 
via the N-terminal NHR region of NFATc4 and the C-terminus of IRAK-1 
in the resting state of cells. 

GSK3β is a downstream target of Akt, which promotes inhibitory 
phosphorylation of GSK3 on a serine residue near the amino terminus 
[67]. Thus, conditions that activate Akt concurrently inhibit GSK3, 
prolonging the nuclear residence of NFAT[68]. In neurons, GSK3 has 
been demonstrated to inhibit the transcriptional activity of the NFAT 
family member NFAT3[69]. Studies have shown that overexpression can 
promote NFAT nuclear export [69,70]. Conversely, LiCl, an inhibitor of 
GSK3, can slow the rate of NFAT nuclear output, thus prolonging the 
nuclear retention time of NFAT[71]. GSK3 is the downstream target of 
Akt, which inhibits the nuclear translocation of NFAT3 by phosphory
lating NFAT3. Phosphorylation of serine residues near the amino ter
minus of GSK3 inhibits the activation of Akt[67]. 

The above studies have reported several kinases that are involved in 
regulating the nuclear concentration of NFAT3 by rephosphorylating 
NFAT3 at specific serine sites. Some of these processes were not 
confirmed to participate in the regulation of cardiac hypertrophy, and 
more evidence needs to be discovered. 

3.2. Regulation of NFAT3 transcriptional activity 

In addition to posttranslational modification, NFATc4 transcrip
tional activity is also modulated by interaction proteins, including 
coactivators and corepressors. To date, AP-1, CBP, and GATA4 have 
been found to activate the transcriptional activity of NFAT3. In contrast, 
NULP1, Lipin-1, PARP-1, PGC-1α, and 14-3-3 have been found to repress 
the transcriptional activity of NFAT3. 

3.2.1. Coactivators of NFAT3 
AP-1 
In addition, hydrogen peroxide has been shown to activate ERK, and 

ERK appears to regulate the activation of the transcription factor AP-1 
[49]. The NFAT3 binding site in the promoters of most genes contains 
the AP-1 binding site adjacent to the core consensus NFAT binding 
sequence. Thus, the hypertrophy inducers ANG II and hydrogen 
peroxide may activate NFAT3 in cardiomyocytes through an AP-1 
transcription factor-dependent mechanism[44]. 

GATA4 
GATA4 has been ascribed to a number of critical functions in the 

heart, spanning from the specification and differentiation of cardiac 
myocytes early in development to the regulation of the cardiac hyper
trophic response in the adult. In 1998, Eric et al. found an interaction 
between GATA4 and NFAT3 using the yeast two-hybrid system and 
determined their synergistic activation in the heart to develop cardiac 
hypertrophy and heart failure[43]. Subsequently, a series of studies 
[72,73] further confirmed the synergy between these two transcription 
factors. In the nucleus, NFAT3 forms complexes with GATA4, leading to 
the activation of the transcription of genes (ANF, a-actin, b-myosin, 
TNFa, ET-1, Adss1, etc.) essential for cardiac development. In addition, 
Heineke et al. found that GATA4 and GATA6 can promote myocardial 
adaptation to pressure overload by enhancing cardiac angiogenesis[74]. 

CREB-binding protein (CBP) 
Recruitment of the coactivator CREB-binding protein (CBP) to 

transcription factors is important for gene expression. Various regions of 
CBP, such as the KIX and CH3 domains, have been shown to interact 
with numerous transcription factors. Yang et al. demonstrated that two 
transactivation domains, located at the NH2 and COOH termini of 
NFATc4, are critical for interacting with CBP[75]. The presence of two 
interacting sites may allow efficient recruitment of CBP to the NFAT 
transcription complex. Binding of CBP potentiates NFATc4-mediated 
transcription activity. Removal of either NFATc4 transactivation 
domain abolishes CBP potentiation. Conversely, mutation of the KIX or 
CH3 domain prevents CBP-mediated potentiation of NFATc4 transcrip
tion activation. Furthermore, the presence of two interacting sites may 
allow a longer duration for transcription mediated by the NFATc4⋅CBP 
complex by retaining CBP in the vicinity of NFAT downstream target 
promoters. These data demonstrate that the presence of two CBP- 
interacting sites may promote immediate prompt downstream actions, 
in response to extracellular stimuli, to recruit CBP and to increase the 
expression of NFAT-mediated genes. 

3.2.2. Corepressors of NFAT3 
NULP1 
NULP1, transcription factor 25, also known as nuclear localization 

protein 1, is a member of the helix-loop-helix transcription factor family, 
playing an important role in embryonic development[76]. NULP1 has 
been shown to modulate the activity of serum response factors. Serum 
reactive factor[77] is a transcription factor involved in heart develop
ment and heart disease. NULP1 also inhibits the transcriptional activity 
of NFAT3 by directly interacting with the topological domain of NFAT3 
through its C-terminus[12]. Therefore, NULP1 can inhibit the tran
scriptional activity of NFAT3, further inhibiting the occurrence of car
diac hypertrophy[12]. 

Lipin-1 
Lipin-1 is a bifunctional protein that regulates gene transcription 

and, as a Mg2+-dependent phosphatidic acid phosphatase (PAP), is a key 
enzyme in the biosynthesis of phospholipids and triacylglycerol[78]. 
Hyun et al. have shown that Lipin-1 represses the activity of NFATc4 
bound to DNA, thus expanding the role of Lipin-1 in regulating tran
scription factor activity[79]. In vivo, Lipin-1 represses NFATc4 tran
scriptional activity through protein-protein interactions, and Lipin-1 is 
present at the promoters of NFATc4 transcriptional targets. Catalytically 
active and inactive Lipin-1 can suppress NFATc4 transcriptional activity. 
Blocking the loss of Lipin-1-mediated repression of NFAT may lead to 
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treatments for inflammation. 
Poly-ADP-ribose polymerase-1 (PARP-1) 
Poly-ADP-ribose polymerase-1 (PARP-1) is a nuclear enzyme that 

accounts for the bulk of ADP ribosylation in vivo[80]. Olabisi et al. 
demonstrated that PARP-1 binds to and ADP-ribosylates NFAT in an 
activation-dependent manner[81]. Furthermore, ADP-ribosylation reg
ulates NFAT DNA binding and IL-2 gene expression. Hence, in addition 
to phosphorylation, ADP-ribosylation provides another layer of regula
tion of NFAT-dependent gene transcription. 

PGC-1α 
Peroxisome proliferator–activated receptor gamma coactivator 1 

alpha (PGC-1α), a coregulator that interacts with multiple cardiac 
transcription factors, plays a crucial role in the regulation of cardiac 
hypertrophy[82]. PGC-1α regulates the expression of metabolic genes 
associated with mitochondrial and metabolic adaptations and maintains 
energy balance during the transition from compensated hypertrophy to 
heart failure[83]. The present study revealed that PGC-1α protected 
cardiomyocytes from hypertrophy by suppressing the calcineurin/ 
NFATc4 signalling pathway[37]. PGC-1α limited the expression of 
NFATc4, prevented its dephosphorylation and nuclear translocation by 
suppressing calcineurin, and repressed its binding activity and tran
scription activity to the BNP promoter. 

14-3-3 
14-3-3 proteins were first discovered in 1967 as acidic proteins found 

abundantly in the brain. 14-3-3 proteins have been shown to interact 
with an array of partners, ranging from enzymes to structural proteins. 
Through their interaction, 14-3-3 proteins regulate the catalytic activity 
of their bound enzymes, determine the subcellular localization of target 
proteins, or both[84]. Decreased NFAT phosphorylation caused by the 
calcium-stimulated phosphatase calcineurin or mutation of the PKA 
phosphorylation sites disrupts 14-3-3 binding and increases NFAT 
transcription activity[85]. In contrast, NFAT phosphorylation caused by 
cAMP increased 14-3-3 binding and reduced NFAT transcription activ
ity. The regulated interaction between NFAT and 14-3-3 provides a 
mechanism for the integration of calcium and cAMP signalling path
ways. Liao et al. evaluated the role of 14-3-3 in cardiomyocyte hyper
trophy by using an adenovirus vector expressing the YFP-R18 fusion 
peptide (AdR18) to inhibit 14-3-3 interactions[55]. Liao et al. suggested 
that 14-3-3s inhibits cardiomyocyte hypertrophy through regulation of 
the PI3K/PKB/GSK3β and NFAT pathways[55]. 

Conclusions 

NFATs have been well studied in immune cells and are key regulators 
of T-cell activation[86]. Activated NFAT interacts with other tran
scription factors to regulate the expression of specific genes according to 
different cell types and regulatory signals, including the immune 
response, cell cycle, and angiogenesis[87]. NFAT3 is known to be 
expressed in the heart and has been associated with cardiac hypertrophy 
[12]. NFAT3 is activated in response to various hypertrophic stimuli, 
such as mechanical stress[88] and neurohormonal signals[89]. NFAT3 
has been implicated in regulating genes that control cell growth[90], 
apoptosis[59], and fibrosis in the heart[91], all of which are important 
components of hypertrophic remodelling. NFAT1 and NFAT4 are also 
expressed in the heart and are involved in the regulation of cardiac 
hypertrophy[31,92]. NFAT2 has been studied extensively in immune 
cells, but it was also reported to play a role in cardiac hypertrophy[93]. 
The functions of NFAT2, NFAT4 and NFAT1 can overlap with NFAT3, 
but they might have distinct roles as well. NFAT1 and NFAT4 have been 
shown to regulate genes related to hypertrophic growth and fibrosis 
[94,95]. NFAT4, in particular, has been associated with the foetal gene 
program in the heart, which is reactivated during hypertrophy[32]. In 
addition, crosstalk and interaction between different NFAT subtypes and 
other signalling pathways may regulate cardiac hypertrophy in a 
complicated way. 

NFAT3 not only plays a role in cardiac hypertrophy but also plays 

roles in other heart diseases. It has been reported that the plasma level of 
NFAT3 is increased in patients with chronic atrial fibrillation [95], 
suggesting that NFAT3 may affect the occurrence and development of 
atrial fibrillation. However, the exact function and regulatory mecha
nism remain to be further studied. Regarding the role of NFAT3 in other 
heart diseases, we have not found any research reports. 

Here, we summarized the regulatory role of NFAT3 in the patho
genesis of cardiac hypertrophy from three aspects: i, the regulation of 
NFAT3 expression; ii, the regulation of NFAT3 localization; and iii, the 
regulation of NFAT3 transcript activity. Some factors affect more than 
one aspect; for example, the oxide induced by hypertrophic stimulators 
regulates NFAT3 not only by regulating its localization by upregulating 
the level of intracellular Ca2+ but also by affecting the activity of 
coactivator AP-1. 

There is evidence that cell-specific expression of NFAT3 is mediated 
not only by promoter activity but also by modification of chromatin 
structure in the NFAT3 gene. Since epigenetic modifications of genes 
(histone acetylation, methylation, and DNA acetylation and methyl
ation) affect transcriptional activity, further study of the genetic modi
fication mechanisms in NFAT3 genes is required[33]. When stimulated, 
the intracellular Ca2+ concentration increases and binds with CaM to 
form an active binary complex that regulates CaN activity. Activated 
CaN promotes the dephosphorylation of NFAT3, which is transported to 
the nucleus. NFAT3 binds to other transcription factors in the nucleus to 
promote the expression of hypertrophy-related genes. Studies have 
shown that NFAT3 plays a role in a variety of cells and tissues, such as 
hippocampal cells[96,97], tumour cells[98–103], and lungs[104,105]. 
Several molecules have been shown to modulate NFAT3 in noncardiac 
cells; for example, cAMP inhibits Ca2+-induced nuclear export of the 
MEF2 corepressor HDAC5 and prevents Ca2+-stimulated nuclear import 
of the MEF2 coactivator NFAT3/c4[106]. ORP4L activated NFAT ac
tivity and thus promoted the expression of a gene cluster that supported 
cell proliferation. Notably, ORP4L sustained inositol-1,4,5- 
trisphosphate receptor 1 (IP3R1) expression at both the mRNA and 
protein levels via Ca2+-dependent NFAT3 activation, which offered a 
mechanistic explanation for the role of ORP4L in intracellular Ca2+

homeostasis[107]. Lead induces COX-2 expression in glial cells by 
activating NFAT3, regulating lead-associated inflammatory neurotox
icity[108]. COX-2 induction by arsenate occurs through NFAT3- 
dependent and AP-1 or NF-kB-independent pathways and plays a 
crucial role in antagonizing arsenite-induced cell apoptosis in human 
bronchial epithelial Beas-2B cells[109]. However, whether or not these 
molecules play a role in the heart and how they do so is unclear. 
Therefore, the in-depth study of NFAT3 and its related targets will 
provide a new method for the future treatment of heart-related diseases 
by targeting NFAT3. 
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