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In recent years, a growing appreciation has developed for the importance

of protein-protein interactions to modulate the function of drug metabolizing

enzymes. Accompanied with this appreciation, new methods and technologies

have been designed for analyzing protein-protein interactions both in vitro and

in vivo. These technologies have been applied to several classes of drug

metabolizing enzymes, including: cytochrome P450’s (CYPs), monoamine oxidases

(MAOs), UDP-glucuronosyltransferases (UGTs), glutathione S-transferases (GSTs), and

sulfotransferases (SULTs). In this review, we offer a brief description and assessment of

the impact of many of these technologies to the study of protein-protein interactions in

drug disposition. The still expanding list of these techniques and assays has the potential

to revolutionize our understanding of how these enzymes carry out their important

functions in vivo.

Keywords: cytochrome P450, protein-protein interaction, cytochrome P450 reductase, cytochrome b5,

homodimer, heterodimer, allosterism, PGRMC

INTRODUCTION

Drug metabolism and disposition continues to be an important part of the drug discovery and
development process in the pharmaceutical industry (Wienkers andHeath, 2005; Evers et al., 2013).
While our knowledge of the structure-function relationships of the various drug metabolizing
enzymes involved with metabolism and disposition has improved dramatically in the past 50 years
(Ortiz de Montellano, 2005; Guengerich, 2006), there is still much that is unknown regarding
their functioning in vivo. One particular aspect of this is how their structure and function may
be modulated by protein-protein interactions.

Abbreviations: CYP, cytochrome P450; CPR, cytochrome P450 reductase; b5, cytochrome b5; SULT, sulfotransferase;
GST, glutathione-S-transferase; HLM, human liver microsomes; HO, heme oxygenase; UGT, uridine 5′-diphospho-
glucuronosyltransferase; UDPGA, uridine 5′-diphospho-glucuronic acid; MAO, monoamine oxidase; sEH, soluble epoxide
hydrolase; 2D NMR, two dimensional nuclear magnetic resonance; Pdx, putidaredoxin; SLF, separated local field; 2D
PELF, two dimensional proton evolved local field; INEPT, insensitive nuclei enhanced by polarization transfer; DREPT,
dipolar enhanced polarization transfer; FRET, fluorescence resonance energy transfer; NHS, N-Hydroxysuccinimide; ER,
endoplasmic reticulum; SER, smooth endoplasmic reticulum; PGRMC1, progesterone receptor membrane component 1;
PAPS, 3′-phosphoadenosine-5′-phosphosulfate.
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Lampe Biophysical Techniques to Monitor Protein Interactions

Protein-protein interactions are a hallmark of biological
systems. They mediate a vast number of critical cellular
processes, including: cell division, hormone-receptor binding,
signal transduction, enzyme allostery, molecular transport, and
electron transfer (Murakami et al., 2017). Additionally, protein-
protein interactions are essential to the function of many, if not
all, of the enzymes involved in drug metabolism and disposition
(Kandel and Lampe, 2014). These types of interactions may
take the form of interactions with electron transfer partners,
such as the case with cytochrome P450 (CYP) enzymes, or
homo and hetero dimerization as observed with sulfotransferase
(SULT; Yoshinari et al., 2001) and glutathione-S-transferase
(GST; Balogh et al., 2009) enzymes. Protein-protein interactions
between enzymes and proteins that are not directly required
for enzymatic function may also be important for modulating
specific activity of drug metabolizing enzymes in different
contexts, such as the interaction of progesterone receptor
membrane component 1 (PGRMC1) with CYP enzymes in the
endoplasmic reticulum (ER) membrane (Rohe et al., 2009; also
see the excellent recent review by Ryu et al., 2017). Unfortunately
for the experimentalist, most protein-protein interactions are
of a transient nature; i.e., short lifetime, low affinity, and low
stability; which makes them difficult to analyze, since typically
a large amount of stable complex is required for traditional
biophysical techniques (Henzler-Wildman and Kern, 2007). This
has hindered our basic understanding of the functional impact
of many protein-protein interactions in drug metabolizing
enzymes. Despite this, there have been numerous efforts made
to apply biophysical methodologies and techniques to examine
protein-protein interactions in proteins involved in metabolism
and disposition. These range from traditional types of analysis,
such as X-ray crystallography, NMR, and fluorescence, to
more exotic techniques, such as luminescence resonance energy
transfer (LRET) and conductometric monitoring. Each of these
have their strengths and limitations in regards to the amount
of sample needed, tolerance for lipid, cost, time commitment,
and the type of observable information retrieved (Table 1).
The reward for the experimentalist bold enough to apply these
biophysical techniques is a richer understanding of protein-
protein interactions in these important enzymes.

In this review, we offer an overview of many of the biophysical
techniques that have been applied over the years to understand
protein-protein interactions in drug metabolizing enzymes, with
a focus on the techniques themselves and the salient information
that has been obtained from each. Additionally, we will provide
a perspective on the future of the field and some newly emerging
techniques of interest to the active researcher.

X-RAY CRYSTALLOGRAPHY

Over the course of the previous two decades, X-ray
crystallography has provided us with an enormous amount
of information regarding protein structure in drug metabolizing
enzymes (Cupp-Vickery et al., 2000; Podust et al., 2001;
Yoshinari et al., 2001; Williams et al., 2003; Yano et al., 2004;
Nagano and Poulos, 2005; Nagano et al., 2005; Grahn et al., 2006;

He et al., 2006; Wilderman et al., 2012; Basudhar et al., 2015),
for a recent review in this area, see (Reed and Backes, 2017).
Despite this, structures of multi-protein complexes involved in
drug metabolism and disposition are exceedingly rare. While
direct examples of crystal structures of protein complexes are
uncommon, there have been many clues provided as to how
proteins might interact with one another in their native state.
One such case is the interaction of CYPs with their endogenous
electron transfer partners, cytochrome P450 reductase (CPR)
and cytochrome b5 (b5). In order to oxidize the various drugs
that serve as their substrates, CYPs must receive electron
reducing equivalents from CPR and/or b5 (Ortiz de Montellano,
2005; Henderson et al., 2013). This involves formation of a
protein complex that allows electrons to be directly shuttled
from CPR/b5 to the CYP. Despite more than 50 years of
study, the exact molecular process by which this occurs still
remains somewhat of a mystery. X-ray crystal structures utilizing
traditional techniques have demonstrated that the interaction is
predominantly mediated by electrostatics (Hiruma et al., 2013;
Tripathi et al., 2013). However, the question has remained as
to the role of conformational dynamics in the electron transfer
process, as the CPR enzyme has previously been crystalized in a
“closed” conformation (Vincent et al., 2012) that limits access to
the flavin mononucleotide (FMN) domain. In order to determine
the distinct conformational state of CPR that interacts with
the CYP enzyme, a co-crystal structure of the two proteins in
complex was needed. A breakthrough came in this regard when
Sevriukova and colleagues were able to determine the crystal
structure between the heme and FMN-containing domains of the
model cytochrome P450BM-3 (Sevrioukova et al., 1999). This
was facilitated by a novel strategy of individual expression and
purification of the heme, FMN, and FAD containing domains
of the enzyme (Sevrioukova et al., 1997) and then carefully
reconstituting both the heme containing domain with the FMN
domain (Sevrioukova et al., 1997, 1999). The structure itself
indicated that the proximal side of the heme was the primary site
of interaction with the FMN domain and, furthermore, identified
a pathway for electron transfer from the FMN domain to the
heme iron (Sevrioukova et al., 1999). This led to the hypothesis,
developed somewhat later, that a “hinging” motion opens the
protein and allows the FMN domain to directly interact with the
CYP heme (Hall et al., 2001; Hamdane et al., 2009; Sugishima
et al., 2014).

A clever strategy involving crystallization of a four amino
acid deletion mutant demonstrated that the CPR protein can
pivot along the C terminus of the hinge region and thereby
undergo a conformational rearrangement that allows sufficient
opening of the protein to expose the FMN domain to the CYP
interface (Hamdane et al., 2009). Interestingly, this hypothesis
of a conformational rearrangement being necessary for an
effective route of electron transfer to be formed between the
CPR and CYP proteins was later confirmed when CPR was co-
crystalized with heme oxygenase (HO; Sugishima et al., 2014).
In this complex, it became clear that shortening the CPR hinge
region leads to a protein that favors the open conformation
and promotes association with HO (Sugishima et al., 2014).
These studies demonstrate the utility of combining the power of
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X-ray crystallography with traditional site-directed mutagenesis
techniques to obtain answers to structural questions that might
not be readily available by either technique alone.

X-ray crystallography has also been useful for dissecting the
protein-protein interactions of another CYP electron transfer
partner, b5. Using a combination of chemical crosslinking and
protein crystal structures, Peng et al. were able to propose a
model for the b5 mediated stimulation of the 17,20-lyase activity
of cytochrome P450c17 (Peng et al., 2014), suggesting that
electrostatic interactions predominate in the CYP-b5 interaction,
as they do with the CYP-CPR complex. In another example,
X-ray crystal structures of b5 have informed our understanding
of electron transfer from b5 to individual CYPs, such as CYP2B4,
where ligand-induced structural changes were found to be
coupled to b5 effector binding (Scott et al., 2004).

It has also been useful in defining novel interactions with
CYP proteins, as well as those currently known. In an X-ray
crystallography study comparing the b5-like protein, Ncb5or,
with b5, Deng et al. determined that the positioning of the
second histidine heme ligand (His 112) in b5 is critical for
efficient electron transfer, both from b5 reductase and to the
(CYP) electron transfer partner (Figure 1; Deng et al., 2010).
These are just a few of the many examples available where X-ray
crystallography has been used to interrogate CYP and electron
transfer partner interactions.

However, CYPs are also known to form both hetero and homo
oligomers which can influence their functional activity (Davydov,
2011, 2016; Reed and Backes, 2016, 2017). In this aspect, X-ray
crystallography has contributed to our structural understanding
of the factors involved in dimer formation. For example, the
M. tuberculosis CYP126A1 protein was recently demonstrated
to form homodimers under crystallization conditions (Chenge
et al., 2017). The dimer interface is composed of interactions
along the hydrophobic B/C and F/G loop regions of the protein,
which are known substrate recognition regions. Interestingly,
the CYP126A1 protein forms a dimer both in the ligand-free
state and also with substrate bound. However, the dimer is
disrupted when the inhibitor ketoconazole is bound to the
protein, leading to conversion to the monomer (Chenge et al.,
2017). Similarly, CYP2C8 has been shown to crystalize as a
dimer (Schoch et al., 2008). As observed with CYP126A1,
the CYP2C8 homodimer was formed around interactions at
the hydrophobic F/G loop interface. The presence of the
dimer was also confirmed in solution as well as under the
original crystallization conditions used (Schoch et al., 2008).
Remarkably, two molecules of the substrate palmitic acid
were found to be bound in the dimer interface, illustrating
the potential physiological relevance of dimer formation.
In contrast to CYP126A1, the presence of ligand did not
prevent dimer formation, suggesting that homodimeric protein-
protein interaction modes may vary between different CYPs.
Despite this, the peripheral ligand binding site identified in
CYP2C8 has been proposed to be important in modulating the
cooperative effects observed with multiple ligand binding in
certain CYPs (Davydov et al., 2013a, 2015; Reed and Backes,
2017), and may also serve as a “hot spot” for protein-protein
interaction.
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FIGURE 1 | The crystal structure of the b5-like protein, Ncb5or (PDB: 3LF5),

showing the heme (in red), with the Fe atom coordinated between the two

active site histidine residues.

X-ray crystallography has also been useful in informing
our understanding of the function of protein dimers of other
drug metabolizing enzymes as well. Both cytosolic GST (Balogh
et al., 2009) and SULT (Yoshinari et al., 2001) enzymes have
been crystalized as dimers. Moreover, dimerization seems to be
important to function in both classes of enzymes (Kakuta et al.,
1997; Petrotchenko et al., 2001; Abdalla et al., 2002). In the
case of GST enzymes, the dimer is composed of a two-fold axis
between each monomer with multiple hydrophobic, so called
“ball-and-socket”, interactions between the different domains
of each monomer (Figure 2) (Balogh et al., 2009). The crystal
structure ofmaleylacetoacetate isomerase/glutathione transferase
zeta revealed that residues M51 and F52 from a loop between
helix α2 and strand β3, where the residues are wedged into
a hydrophobic pocket formed between the α4 and α5 helices,
thereby vividly illustrating the ball-and-socket type structure
(Polekhina et al., 2001).

In SULT enzymes, the dimerization domain (Figure 3)
consists of ten residues near the C-terminus of the protein,
represented by the consensus sequence KXXXTVXXXE, also
known as the KTVEmotif (Petrotchenko et al., 2001). In contrast
to the interaction interface observed with GST enzymes, this
region forms a hydrophilic loop that creates multiple contacts
between the two individual monomers. This is reinforced by
multiple hydrophobic contacts internal to the KTVE motif,
resulting in a “dumbbell”-like structure (Petrotchenko et al.,
2001; Yoshinari et al., 2001). While the exact role dimerization
plays in catalysis is not totally understood in these enzyme
families, it is likely that future X-ray crystal structures will help
elucidate it.

Unfortunately, our structural understanding of UGT enzymes
is much more limited. While there is ample biophysical evidence
to support the existence of UGT dimers (Meech and Mackenzie,
1997; Lewis et al., 2011; Suzuki et al., 2014), the lack of structural
data has hampered protein-protein interaction research with this

FIGURE 2 | The crystal structure of GST A1-1 (PDB: 3I6A), showing the

“ball-and-socket” dimer interface and the GSH binding site.

enzyme class. Interestingly, the structural data that does exist
for human UGT enzymes, that of a partial UGT2B7 structure,
does provide an indication for the presence of homo dimers
(Miley et al., 2007; Fujiwara et al., 2016; Audet-Delage et al.,
2017). In the asymmetric unit, the C terminus of one monomer
packs into the predicted UDPGA binding site of the other
monomer (Miley et al., 2007). At first glance, this may seem
somewhat counter intuitive, as the UDPGA co-factor is needed
for enzymatic activity. However, the UDPGA binding site of the
other UGT2B7 monomer in the asymmetric unit is not occluded,
indicating that this monomer may be active while the other sub-
unit is blocked. As Miley and co-workers demonstrated, removal
of the C-terminal residues, in an effort to eliminate blockage of
the UDPGA binding site, produced protein samples that were
highly unstable and could not be crystallized (Miley et al., 2007).
This may suggest that the blockage of the UDPGA co-factor
binding site serves as a form of regulatory control of enzymatic
activity, although this has not yet been established.

The situation with the MAO enzymes is a bit more complex,
with MAO-A being represented as a monomer, while MAO-B is
a functional homodimer (Binda et al., 2001, 2011). Comparison
studies between the human and rat MAO-A enzymes, with
the latter also being a dimer, have suggested that dimerization
increases structural stability and may directly influence the
kinetic properties of the individual enzymes (Wang and
Edmondson, 2007). Others have hypothesized that dimerization
may be essential to orient the protein dipole-dipole moment
toward the anionic membrane surface in order to promote
catalysis (Binda et al., 2011). While human MAO-A crystalized
as a monomer, it is not entirely clear if this is an artifact of the
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FIGURE 3 | The crystal structure of SULT2A3 (PDB: 1EFH), demonstrating the dimer interaction motif (center).

crystallization conditions, or has direct functional relevance, as
MAO-A is thought to be a dimer in the membrane bound form
of the enzyme (Binda et al., 2011). This illustrates a critical point
in examining protein-protein interactions withmembrane bound
proteins: protein-protein interactions are highly dependent on
local conditions, particularly the presence/absence of lipid.

Soluble EH (sEH) has also been observed to form dimers
upon crystallization (Argiriadi et al., 1999). The sEH dimer
structure itself is stabilized by “domain-swapped” or “handshake”
architecture, whereby the vestigial and catalytic domains adopt
unrelated α/β folds and are connected by a 16-residue,
proline-rich linker (Thr-219–Asp-234). A “domain-swapped”
architecture occurs when the domain of one monomer is
displaced by the same domain of the other monomer in
the asymmetric unit thereby forming a stable dimer interface
(Gill, 1983). While the vestigial active site does not participate
in epoxide hydrolysis, the vestigial domain plays a critical
structural role by stabilizing the dimer. More recent studies
have confirmed the importance of dimerization for enzymatic
activity (Nelson et al., 2013). Moreover, it has been suggested
that the dimer interface may make an attractive target for small
molecule therapeutics designed against sEH (Nelson et al., 2013;
Matsumoto et al., 2014).

NUCLEAR MAGNETIC RESONANCE (NMR)

A powerful and complementary technique to X-ray
crystallography is protein NMR (Lampe et al., 2008, 2010;
Vallurupalli et al., 2008; Raman et al., 2010; Ahuja et al., 2013;
Hiruma et al., 2013; Basudhar et al., 2015). In particular, solution
NMR can report not only on protein tertiary structure, but

also on conformational dynamics which are important to the
interaction with protein partners (Lampe et al., 2008, 2010). An
additional advantage is that protein NMR can be performed in
the presence of lipid bilayer mimetics, such as bicells (Ahuja
et al., 2013) or nanodiscs (Kijac et al., 2007; Gluck et al.,
2009), allowing the investigator to examine the effect of lipid
on protein-protein interactions. Protein NMR has been most
widely used to examine interactions between CYP enzymes
and their electron transfer partners (Ahuja et al., 2013; Estrada
et al., 2013, 2014, 2016). The Scott lab has been a leader in this
area, examining the interactions of CYP17A1 with b5 (Estrada
et al., 2013, 2014) and the FMN domain of reductase (Estrada
et al., 2016). This system has a particular advantage in that
multiple types of interaction can be monitored through titrations
involving substrate, CYP, b5, reductase FMN domain, or any
combination thereof. One important result to come out of these
studies is that the strength of the CYP17A1- b5 interaction is
dependent on the identity of the substrate, with the CYP17A1-
b5 interaction being stronger when the hydroxylase substrate
pregnenolone is present in the CYP17A1 active site than when
the lyase substrate 17α-hydroxypregnenolone is bound (Estrada
et al., 2013). In these titration experiments, only the b5 protein
was isotopically labeled with 15N. When the “reverse” titration
experiment was conducted (i.e., where the CYP17A1 molecule
is 15N labeled and the b5 protein was isotopically “silent”), the
results were similar (Estrada et al., 2014). Additionally, titration
of b5 into the 15N-labeled CYP17A1-pregnenolone complex
induced a set of conformational substates closely resembling
those of CYP17A1-17α-hydroxypregnenolone complex without
b5, suggesting that b5 may also be able to allosterically induce
enzymatically productive conformations in CYP17A1, even in
the absence of the lyase substrate (Estrada et al., 2013, 2014).
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While these data have yet to be replicated with any other drug
metabolizing CYP enzymes, it is intriguing to postulate that the
results may be extrapolated to b5 interactions with other CYPs.

As noted above, a particular advantage of using NMR to
examine protein-protein interactions is that it can tolerate the
presence of lipid. This fact was exploited by Ramamoorthy et al.
to determine the structure of full-length, membrane bound b5
in the presence of CYP2B4 (Ahuja et al., 2013). This was the
very first time that a structure of b5 had been determined in the
presence of a phospholipid bilayer. The structure confirmed the
electrostatic nature of the CYP-b5 interaction, revealing a large
number of charge-charge interactions between surface residues
on CYP2B4 and b5 enabling complex formation between the two
proteins (Ahuja et al., 2013). Interestingly, it also hinted at the
importance of hydrophobic interactions between the complex
and the phospholipid bilayer. Confirming the result observed
by Estrada et al. when examining the CYP17A1- b5 interaction,
Ramamoorthy et al. also observed increased affinity between the
CYP and b5 in the presence of a small molecule substrate or
inhibitor. Finally, their data suggested a pathway for electron
transfer between b5 and CYP2B4, mediated through a salt bridge
from the heme propionates of b5 with Arg125 of CYP2B4.
More recently, Ramamoorthy et al. have extended their original
studies to examine the interactions of the CYP-b5 complex
using phospholipid bilayer nanodiscs (Zhang et al., 2016). The
advantage of this versatile phospholipid bilayer memetic is that it
permits exquisite control over the composition of lipid, allowing
researchers to examine the effects of various lipid components
on structure and catalysis. The examples above illustrate the
advantages of 2D protein NMR to obtain detailed structural data
for protein-protein interactions in the CYP enzyme family.

Almost 20 years ago, Lian pioneered a novel approach
combining both X-ray crystallography and NMR to study homo-
and hetero-dimeric interactions in the GST A1-1 isoform (Lian,
1998). In the crystal structure of GST A1-1, the hydrophobic
C-terminal region of the protein is highly disordered and absent
from the structure, as is often the case with dynamic regions
of proteins. Lian’s group was able to resolve this region of
the protein in the 2D HSQC spectrum and identify residues
that might be involved in ligand binding and/or protein-
protein interactions. Since that time, a number of studies relying
on protein NMR have been conducted using GST enzymes
(McCallum et al., 1999; Mahajan et al., 2006).

While fewer structural NMR studies have been carried out
with the SULT family of enzymes, a recent novel example of
NMR, combined with the use of a nitrox spin label positioned
in dynamic regions of the enzyme, gave information regarding
dimer interaction and the structure of the catechin ligand binding
site on the protein (Cook et al., 2016). This was accomplished
by replacing each cysteine residue in the protein with an
unreactive residue, then selectively reincorporating a cysteine
at each position of interest and reacting the protein with a
nitroxyl-oxygen spin label (3-maleimido-PROXYL). The label
was attached to the protein at six individual cysteine positions in
the protein in order to saturate the dimer in a paramagnetic field
of sufficient strength to detect its effects on the solution NMR
spectrum, without compromising the catalytic integrity of the

enzyme. The design allowed the entire surface of the enzyme to be
covered in a detectible paramagnetic field and allowed ligands to
be positioned within the active site by triangulating their protons
from multiple spin labels attached at various positions within
the active site (Cook et al., 2016). After obtaining the NMR
spectrum for each mutant, the spectrum was overlaid on the
previously determined crystal structure and the final structure
was obtained using distance-constrained molecular dynamics
docking. This approach was advantageous, and preferred over
others, in that: (1) it is applicable over a wide range of ligand
affinities, (2) does not require much protein, (3) does not require
an isotopic label, and (4) has essentially no molecular weight
limitations. Moreover, the same strategy may apply to other
drug metabolizing enzyme protein-protein complexes that have
limiting cysteine residues.

Progress in applying NMR to the study of UGT enzymes has
been slower due to the integral attachment to cellular membranes
but, as in the case of the CYP enzymes, it is likely that newly
emerging technologies, such as nanodiscs and membrane bicells
will be useful in defining their interaction with protein partners.

FLUORESCENCE TECHNOLOGIES

The use of both endogenous and exogenous fluorescence
labels for conducting protein-protein interaction studies has a
long history (Lakowicz, 1999). Indeed, they have been used
very effectively in defining the structural determinants and
dynamics required for interaction among drug metabolizing
enzymes (Nisimoto et al., 1983; Schwarze et al., 1983; Wu
and Yang, 1984; Centeno and Gutierrez-Merino, 1992; Davydov
et al., 1996, 2001). Most studies to date have preferred to
use exogenous fluorophores due to the fact that they typically
exhibit much higher quantum yields than the endogenous
fluorophores; tryptophan, tyrosine, phenylalanine, and the
fluorescent prosthetic groups.

Unarguablely, the greatest use of fluorescence to monitor
protein-protein interactions has been with the CYP enzymes. A
key early study, suggesting the presence of CYP homodimers
in the ER membrane, involved monitoring the fluorescence
anisotropy of the substrate diphenylhexatriene as a proxy for
membrane rigidity (Gut et al., 1985). Fluorescence anisotropy
is the phenomena by which fluorophore containing molecules
emit polarized light when the exciting light source is also
polarized. The degree of the polarization of the emitted light is
proportional to the anisotropy (r), or rotational motion, of the
molecule (Lakowicz, 1999). This can be a powerful technique
to determine the relative size of molecules or macromolecular
complexes, and has been exploited as such in antibody-based
assays, among others (Gorovits and Horowitz, 1995; Lim et al.,
1995). In a similar fashion, fluorescence depolarization has also
been extensively used to monitor CYP-CYP interactions as well
(Greinert et al., 1979, 1982; Schwarz et al., 1993).

Other aspects of fluorescence have also been exploited in
studying CYP protein-protein interactions. The technique of
fluorescence resonance energy transfer (FRET), whereby an
excited donor molecule is able to quantitatively transfer energy
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to an acceptor molecule that then emits in another region of
the spectrum, has been used successfully in several studies of
protein-protein interactions among drug metabolizing enzymes
(Nisimoto et al., 1983; Schwarze et al., 1983; Davydov et al., 1996,
2000, 2010, 2013a, 2015; Szczesna-Skorupa et al., 2003; Praporski
et al., 2009). A singular advantage of this fluorescence technique
is that it allows for an indirect measurement of distance between
the two fluorophores due to the phenomena of Förster energy
transfer (Lakowicz, 1999). In an elegant FRET study conducted
in 2003, Kemper et al. were able to observe a direct physical
interaction between individual CYPs in a live cell membrane
utilizing CYP2E1 and CYP2C2 which were labeled with donor
and acceptor fluorophores in cells transfected with murine CYP
cDNA (Szczesna-Skorupa et al., 2003). They discovered that,
while FRET occurred between individual CYP2C2 molecules in a
membrane, it could not be detected between CYP2E1monomers,
representing a homomeric self-association with CYP2C2, but not
CYP2E1. Later work confirmed the existence of the CYP2C2
dimers inmurine hepatocyte endoplasmic reticulummembranes,
demonstrating the potential in vivo relevance of these types of
protein-protein interactions (Li et al., 2011).

Sligar’s group at the University of Illinois was an early
adopter of fluorescence technologies tomonitor CYP interactions
with effector proteins, such as b5 (Stayton et al., 1988). By
selectively replacing threonine residues with cysteine in b5, they
were able to site-specifically introduce the sulfhydryl selective
fluorescent reagent, acrylodan, at different positions in the
protein. Acrylodan generally reacts with accessible thiol groups
more slowly than maleimides or iodoacetamides, but tends to
form highly stable thioether bonds (Weber and Farris, 1979).
Additionally, in the excited state there is a substantial charge
separation between the amino and carbonyl groups, which
produces large spectral shifts in a hydrophobic environment,
making it an ideal spectral probe for monitoring protein-
protein interactions. When the labeled b5 protein was allowed
to interact with CYP P-450cam, a model bacterial isoform,
a significant fluorescence enhancement and blue shift was
observed, indicating the fluorophore’s transition to a more
hydrophobic binding site and an increased binding free energy
for the two proteins.

More recently, Usanov et al. expanded on the Sligar lab’s
early work by using a chimeric b5-GFP to examine protein-
protein interactions between b5 and CYP3A4 (Yantsevich et al.,
2009). Utilizing this chimeric construct, the authors were able
to determine binding affinities between various b5 and CYP3A4
complexes. An interesting result from this report was that the
hydrophobic domain of b5 was observed to participate both in
hemeprotein interaction and electron transfer directly from b5
to the CYP enzyme. Simonov et al. used a CYP17A1 with eCFP
fused to the C-terminus and eYFP fused to the N-terminus of
b5 to examine CYP17A1- b5 protein-protein interactions using
FRET (Simonov et al., 2015). They combined this technique with
structural modeling andmolecular dynamics simulations to show
that b5 interacts directly with CYP17A1 in the ER membrane to
stimulate the lyase reaction.

Fluorescence tools have also proven useful to examine CYP-
CPR interactions. A unique approach by Davydov et al. to

study the effect of substrate binding on CYP protein-protein
interactions involved substituting the ferric-protoprophyrin
IX heme with an aluminum-protoporphyrin IX (Nisimoto
et al., 1983). While previous studies had used zinc substituted
protoporphyrins, the replacement of the iron atom with
aluminum resulted in an isosteric displacement, since both
transition metals have approximately the same interatomic
radius. Therefore, the aluminum substitution was unlikely to
have a major effect on the overall structure of the active site.
Additionally, while the aluminum atom is not able to donate
or accept electrons, it imparts a high degree of fluorescence
to the protoprophyrin, thereby introducing an internal probe
which allowed the authors to monitor the interactions between
CYP P450 BM-3 and its substrates and protein partners
using fluorescence energy transfer (Davydov et al., 2013b).
The CYP P450 BM-3 retained its ability to interact with the
reductase domain despite the substitution in the protoprophyrin
and the newly imparted fluorescence from the aluminum-
protoporphyrin IX allowed the authors to determine affinity
between the CYP domain and the reductase domain.

Fluorescence studies have also been useful in the study of the
human UGT enzymes (Operana and Tukey, 2007; Fujiwara et al.,
2016; Yuan et al., 2016). Turkey et al. used FRET to examine
UGT1A oligomerization in vivo (Operana and Tukey, 2007).
Using this technique, they were able to show that UGT1A1, 1A3,
1A4, 1A6, 1A7, 1A8, 1A9, and UGT1A10 all form homodimers
in live cells. Additionally, the authors confirmed heterodimer
interactions between UGT1A1 and the UGT1A3, 1A4, 1A6, 1A7,
1A8, 1A9, and UGT1A10 isoforms. More recently, Yuan et al.
used FRET to demonstrate that UGT2B7 was able to form homo
oligomers with both wild-type and mutant forms of the enzyme,
which had the possibility of affecting zidovudine glucuronidation
(Yuan et al., 2015). Yuan further went on to demonstrate that
the UGT isoforms UGT1A1, 1A9, and 2B7 were all able to form
heterodimeric complexes, expanding on their previous work that
examined homodimerization in this enzyme class (Yuan et al.,
2016).

Beckman et al took a unique approach to studying
intersubunit communication in dimeric complexes of SULT
enzymes, by examining fluorescence quenching of the enzyme’s
intrinsic fluorophores upon binding of the inhibitors, 2,6-
dichloro-4-nitrophenol (DCNP) and pentachlorophenol (PCP;
Beckmann et al., 1998). Using this technique, the authors
were able to determine that binding of the co-factor 3′-
phosphoadenosine-5′-phosphosulfate (PAPS) facilitated positive
cooperative binding between the individual subunits. This
illustrates the use of a powerful fluorescence technique that
does not rely on introduction of an extrinsic fluorophore to
obtain information on protein-protein interactions, allowing for
an examination of protein-protein interactions in the native state
of the enzyme.

Another seminal FRET study, this time involving GST P1-1,
demonstrated that the C-terminus of c-Jun N-terminal kinase
could interact directly with this GST enzyme (Wang et al., 2001).
This was an early study that identified a role for GST P1-1 in
regulating certain kinase pathways. The Atkins group has used
both intrinsic fluorescence of proteins (Wang et al., 1993; Dietze
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et al., 1996) and of ligands (Lu and Atkins, 2004) to examine the
interaction of GST dimers and their substrates.

PHOTO-AFFINITY LABELS AND
CROSSLINKING STUDIES

Photoaffinity labels and chemical crosslinking agents have long
been recognized as useful tools to understand protein-protein
interactions. Photoaffinity labels are particularly useful if they
are also enzyme substrates, as they are typically localized at
the CYP active site until activated with irradiation (Wen et al.,
2005, 2006). Wen and Lampe utilized the photoaffinity label
lapachenole in combination with cysteine-scanning mutagenesis
to identify specific residues of CYP3A4 that interact with CPR,
including cysteine 98, using LC-MS (Wen et al., 2006). Similarly,
Sulc et al. employed the photoaffinity ligand 3-azidiamantane
to label CYP2B1 (Hodek and Smrcek, 1999) and CYP2B4 (Sulc
et al., 2008). While, in this case, the diamantoid probe did not
function specifically as a probe of protein-protein interactions, it
has the potential to report on specific conformational changes in
the CYP enzyme that may accompany interaction with protein
partners.

In general, crosslinking agents are more versatile and
have been used more extensively in assessing protein-protein
interactions. In particular, LC-MS combined with crosslinking,
can be powerful in detecting specific interactions between
two proteins that are known to interact. However, the non-
specificity of most chemical crosslinking agents make the
large datasets generated from such experiments difficult to
analyze. Gao et al. developed a software tool called Pro-
CrossLink to address this specific issue (Gao et al., 2006a).
Using this tool, combined with a site-directed mutagenesis
approach and the standard crosslinking agent, 1-ethyl-3-[3-
dimethylaminopropyl]carbodiimide hydrochloride (EDC), they
were able to identify relevant protein-protein interactions that
occurred between CYP2E1 and b5 (Gao et al., 2006b). Their
strategy relied on an 18O-labeling method that incorporated
twice as many 18O atoms in cross-linked peptides as non-
cross-linked peptides when proteolysis was conducted in 18O-
labeled water. Subsequent tandem mass spectrometric (MS/MS)
analysis of the selected cross-linked peptide candidates led to
the identification of two intermolecular cross-links, one at K428-
CYP2E1 to D53-b5 and K434-CYP2E1 to the E56 residue of
b5. These results provided some of the first direct biophysical
evidence for the interacting orientations of a microsomal CYP
and b5.

More recently, investigators have used chemical crosslinkers
to identify CYP interaction with other, non-canonical proteins.
Using the amine-reactive EGS crosslinker, Losel et al. was
able to demonstrate that PGRMC1, a known CYP modulator,
interacts with a yet-to-be-identified 52 kDa protein, presumably
a CYP enzyme, in pig liver microsomes (Losel et al., 2008).
Additionally, substantial progress has been made examining
the homodimeric interactions of other CYPs, such as CYP3A4
(Davydov et al., 2015) and others (Reed et al., 2010) using
crosslinking technology.

SPR AND SURFACE IMMOBILIZATION

Surface Plasmon Resonance (SPR) and related surface biolayer
technologies have been mainstay technologies for examining
protein-protein interactions in a variety of systems for many
years (Cooper, 2002). These technologies rely on immobilization
of the target, or “receptor,” protein onto the solid surface of a
chip (usually Au), then a (potential) protein partner, the “ligand,”
is allowed to flow over the surface of the chip and, if binding
occurs, this results in a cascading plasmon wave in the gold
layer that causes a detectable change in the refractive index of an
incident light source (usually a laser) that is directly proportional
to the binding interaction (Cooper, 2002). Early studies with
CYP enzymes demonstrated the sensitivity of this technology in
monitoring ligand binding directly to CYP enzymes, paving the
way for more sophisticated protein-protein interaction studies
(Pearson et al., 2006). More recently, this technology has been
applied to examining CYP interactions with electron transfer
partners (Ivanov et al., 1997, 1999, 2001; Kuznetsov et al., 2004;
Archakov and Ivanov, 2011; Yablokov et al., 2017).

Yablokov et al. used a modified construct of b5 covalently
attached through an NHS linkage to a gold SPR chip to directly
monitor the interactions between b5 and various human CYP
isoforms, including both CYP’s whose activity was allosterically
regulated by b5 and those whose activity was unchanged in
the presence of b5 (Yablokov et al., 2017). Interestingly, they
determined that the CYP-b5 interactions fell into two classes:
those that were enthalpy driven and those that were entropy
driven. The CYP-b5 interactions that were enthalpy driven
tended to belong to CYPs that were allosterically regulated by
b5 (i.e., whose activity could be modulated by b5), whereas the
CYP-b5 interactions that were entropy driven tended to represent
the CYP’s whose activity was unaffected by b5. The authors
attributed the differences in these effects to positive 1H values
corresponding to displacement of the solvation shells of proteins
upon clustering (Yablokov et al., 2017).

Gannett and his team applied SPR to examine CYP-CYP
interactions between CYP2C9, CYP3A4, CYP2D6, and other
isoforms (Bostick et al., 2016). Somewhat surprisingly, they
found that the highest affinity complex was formed between
CYP2C9 and CYP2D6, a heterodimeric complex, with the affinity
between CYP2C9 and CPR being lower than that of heterodimers
and CYP2C9 homodimers. Additionally, they observed that the
affinities of specific complexes were highly dependent on the
order of addition of the individual proteins involved.

Previously, in a clever application combining two
technologies, Shimada and Guengerich used immobilized
CYP proteins, coupled with an enzyme-linked affinity approach,
to measure relative affinities between the CYP-CPR complexes
and CYP-b5 complexes (Shimada et al., 2005). Individual
CYP proteins were purified and bound to separate wells
of a polystyrene plate, after which the biotinylated partner
enzymes were added. Finally, a streptavidin-peroxidase complex
was added to each well and protein-protein interaction was
monitored by measuring peroxidase activity of the bound
biotinylated proteins. This allowed for an indirect calculation of
Kd’s for the individual CYPs to CPR and b5.
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The ever-expanding and versatile nature of the SPR
platform(s) indicate that this technology will continue to
be useful for monitoring protein-protein interactions in the
immediate future and beyond.

EMERGING BIOPHYSICAL
TECHNOLOGIES TO EXAMINE
PROTEIN-PROTEIN INTERACTIONS AND
FUTURE PERSPECTIVE

Today is an exciting time to study protein-protein interactions
in drug metabolizing enzymes. A number of new technologies
are beginning to emerge that have the power to revolutionize our
understanding of how protein-protein interactions modulate the
activity of these important proteins. Quartz crystal microbalance
studies have helped define the protein-protein interactions
between CYP17A1 and b5, in part explaining enzymatic product
distribution ratios (Simonov et al., 2015). Additionally, these
types of studies have also been useful in identifying sites
of protein-protein interaction in CYP19 (aromatase; Martin
et al., 2015). Along with quartz crystal microbalance studies,

conductometric monitoring is another emerging technology that
has the potential to provide information on protein-protein
interaction in drug metabolizing enzymes (Spera et al., 2013).

In conclusion, the future use of traditional and emerging
biophysical technologies to monitor protein-protein interactions
is likely to provide us with further insight to the function
and regulation of these enzymes critically important for drug
metabolism and disposition.
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