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Macrophages are a group of heterogeneous cells widely present throughout the
body. Under the influence of their specific environments, via both contact and
noncontact signals, macrophages integrate into host tissues and contribute to their
development and the functions of their constituent cells. Mitochondria are essential
organelles that perform intercellular transfers to regulate cell homeostasis. Our review
focuses on newly discovered roles of mitochondrial transfers between macrophages
and surrounding cells and summarizes emerging functions of macrophages in
transmitophagy, metabolic regulation, and immune defense. We also discuss the
negative influence of mitochondrial transfers on macrophages, as well as current
therapies targeting mitochondria in macrophages. Regulation of macrophages through
mitochondrial transfers between macrophages and their surrounding cells is a promising
therapy for various diseases, including cardiovascular diseases, inflammatory diseases,
obesity, and cancer.

Keywords: macrophage, mitochondrial transfer, mitophagy, adipocyte, cardiomyocyte

INTRODUCTION

Macrophages, which were once considered to be supplied only by adult monocytes, are now
known to have both bone marrow myeloid and embryonic origins (Ginhoux and Guilliams,
2016). In addition to their immune surveillance function, macrophages show plasticity according
to their environment in different tissues; thus, they have tissue-specific roles in maintaining
homeostasis and tight interactions with surrounding cells (Gosselin et al., 2014; Lavin et al.,
2014; Okabe and Medzhitov, 2016). Aberrant differentiation, polarization, and functions of
macrophages give rise to diseases in various systems (Wynn et al., 2013; Byrne et al., 2016;

Abbreviations: AM, alveolar macrophage; ATM, adipose tissue macrophage; BMM, bone-marrow-derived macrophages;
BNIP-3, Bcl-2/adenovirus E1B 19 kDa interacting with protein-3; BMSC, bone marrow mesenchymal stem cell;
CCCP, carbonyl cyanide 3-chlorophenylhydrazone; CM, cardiomyocyte; cMAC, cardiac-resident macrophage; DAMP,
damage-associated molecular pattern; E. coli, Escherichia coli; FADH2, dihydroflavine-adenine dinucleotide; GM-CSF,
granulocyte-macrophage colony-stimulating factor; IFN-γ, interferon-γ; IL-4, interleukin-4; IL-10, interleukin-10; LPS,
lipopolysaccharide; mtDNA, mitochondrial DNA; MV, microvesicle; NADH, nicotinamide adenine dinucleotide; OXPHOS,
oxidative phosphorylation; RM, renal macrophages; ROS, reactive oxidative species; SM, splenic macrophages; TAM,
tumor associated macrophages; TLR, toll-like receptor; TNF, tumor necrosis factor; TNT, tunneling nanotube; WAT, white
adipose tissue.
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Krenkel and Tacke, 2017; Peet et al., 2020). Deficient generation
of anti-inflammatory macrophages and failed communication
between macrophages and epithelial cells, endothelial cells,
fibroblasts, and stem or tissue progenitor cells all contribute
to a state of persistent injury; this can lead to pathological
fibrosis (Wynn and Vannella, 2016) such as that occurring in
chronic lung disease (Kim et al., 2008; O’Beirne et al., 2020).
In atherosclerosis, macrophages participate in a non-resolving
inflammatory response that expands the subendothelial layer
and results in thrombosis (Moore and Tabas, 2011). Tumor-
associated macrophages (TAMs) in the tumor microenvironment
are often associated with poor prognosis and chemoresistance
and have thus recently emerged as therapeutic targets (Cassetta
and Pollard, 2018; Xiang et al., 2021).

Mitochondria are vital organelles that constantly undergo
inner cellular movements and intracellular transfers to fulfill
energy needs and promote cell survival (Liesa et al., 2009;
Youle and van der Bliek, 2012; Zampieri et al., 2021).
Macrophages rely strongly on mitochondria for their activation
and functions (Weinberg et al., 2015; Tur et al., 2017). Recent
studies have identified various tissue-resident macrophages as
important participants in intercellular mitochondrial transfers,
unveiling a new function of such macrophages (Phinney
et al., 2015; Brestoff et al., 2020; Nicolas-Avila et al., 2020).
Macrophage-related mitochondrial transfers have critical roles
in tissue homeostasis, metabolic regulation, and immune
defense under both physiological and pathological conditions
(Tables 1, 2).

DYNAMIC REGULATION OF
MITOCHONDRIA WITHIN AND
BETWEEN CELLS

Mitochondria are double-membrane organelles that are
extensively involved in cell functions. They are widely
known as the cell’s “power house” because they generate
adenosine triphosphate (ATP) via oxidative phosphorylation
(OXPHOS) and host essential lipid metabolism pathways
(Schon et al., 2012). The mitochondrial respiratory chain on
the inner membrane of mitochondria converts the power of
nicotinamide adenine dinucleotide and dihydroflavine-adenine
dinucleotide from the Krebs cycle to an electrochemical
proton gradient across the inner membrane (Scarpulla, 2008);
this electrochemical gradient fuels ATP synthase to catalyze
cellular ATP (Friedman and Nunnari, 2014). Byproducts
of mitochondrial redox reactions include reactive oxidative
species (ROS), which can initiate diverse cellular responses
ranging from cell protection to mitochondrial fission and
autophagy (Zorov et al., 2014). The electrochemical proton
gradient also powers Ca2+ uptake through uniporters on
the inner membrane to regulate cytoplasmic Ca2+ levels
(De Stefani et al., 2011). As semiautonomous organelles,
mitochondria contain mitochondrial DNA (mtDNA) and
are capable of self-replication. MtDNA is a 16.5-kb circular
double-stranded DNA that is highly compacted within the
mitochondrial matrix and encodes the core proteins of the

mitochondrial respiratory chain (Anderson et al., 1981;
Friedman and Nunnari, 2014).

Mitophagy: Mitochondrial Quantity and
Quality Control
The integrity of mitochondria may be compromised owing to
oxidative stress, starvation, ischemia–hypoxia, and aging (Spees
et al., 2006; Gustafsson and Dorn, 2019; Liu et al., 2021), leading
to energy exhaustion, ROS overproduction, and Ca2+-induced
cell apoptosis (Bock and Tait, 2020). Mitophagy is an acute
response to stress under changing developmental, bioenergetic,
and environmental conditions that enable cells to meet the
demands of metabolic reprogramming, mitochondrial quality
control, and cell differentiation (Gustafsson and Dorn, 2019).
Mitophagy is a process of cargo-specific autophagy that
eliminates damaged mitochondria to regulate mitochondrial
quality and quantity (Kim et al., 2007). During mitophagy,
serine/threonine-protein kinase PINK1 is stabilized on the
membranes of unwanted mitochondria for the subsequent
recruitment of E3 ubiquitin-protein ligase parkin from the
cytoplasm. Unwanted mitochondria then are marked by parkin-
mediated ubiquitination in the outer mitochondrial membrane
and recognized by autophagosomes (Pankiv et al., 2007; Matsuda
et al., 2010; Okatsu et al., 2010). Other mitophagy pathways
independent of ubiquitination are mediated by direct interaction
between mitophagy receptors, including Bcl-2/adenovirus E1B
19-kDa protein-interacting protein 3-like (BINP3)/NIX, and
several autophagosome proteins (Youle and Narendra, 2011;
Zhang T. et al., 2016; Koentjoro et al., 2017).

Mitochondrial Transfer
As well as mitophagy, mitochondria constantly undergo changes
in their position and morphology to deal with stress and to meet
the cell’s demands. Changes in intracellular position are driven by
the attachment and movement of mitochondria along dynamic
cytoskeletal tracks (Liesa et al., 2009; Rafelski, 2013). Changes
in track arrangements, interactions between mitochondria and
organelles including the endoplasmic reticulum and plasma
membrane, and mitochondrial fission and fusion are the main
factors that influence mitochondrial intracellular movements
(Chen et al., 2005; Lackner et al., 2013; Rafelski, 2013). Changes
in morphology most commonly involve fission and fusion
dynamics. Fusion reverses the effects of stress on the cell by
allowing functional mitochondria to complement dysfunctional
ones, whereas fission can lead to cleansing of daughter
mitochondria by mitophagy (Youle and van der Bliek, 2012).

Mitochondria movements are not constrained within cells
but also take place between cells. Mitochondrial transfers occur
both under physiological conditions, e.g., in tissue homeostasis
and stemness maintenance and in pathological conditions such
as hypoxia, inflammation, and cancer (Liu et al., 2021). The
transferred cargos may contain either healthy or damaged
mitochondria. Healthy mitochondria are transferred from donor
cells to protect recipient cells from oxidative stress and apoptosis
and to enhance their mitochondrial respiration. In the case
of stroke, astrocytes release healthy mitochondria that enter
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TABLE 1 | Intercellular mitochondrial transfer in macrophages under physiological conditions.

Donor Recipient Transferred cargo(s) Route Transfer outcome References

Cardiomyocytes Macrophages Mitochondria; sarcomeric proteins Exophers Maintains homeostasis of cardiomyocytes Nicolas-Avila et al., 2020

Adipocytes (WAT) Macrophage
subpopulation

Mitochondria Internalization Maintains systemic metabolic homeostasis Brestoff et al., 2020

WAT, white adipose tissue.

TABLE 2 | Intercellular mitochondrial transfer in macrophages under pathological conditions.

Donor Recipient Pathological
condition(s)

Induction factor(s) Cargo Route Outcome References

BMSCs AMs Acute respiratory
distress syndrome

LPS Healthy
mitochondria

EVs Enhanced macrophage OXPHOS
and phagocytosis to reduce
inflammation and lung injury

Morrison et al., 2017

BMSCs AMs Sepsis; acute
respiratory distress
syndrome

Escherichia coli; LPS Healthy
mitochondria

TNTs Enhanced macrophage
bioenergetics and phagocytosis

Jackson et al., 2016;
Jackson and
Krasnodembskaya, 2017

BMSCs BMMs Oxidative stress Culture expansion
under 21% O2

Depolarized
mitochondria;
microRNAs

MVs Outsourcing of mitophagy;
inhibition of macrophage activation

Phinney et al., 2015

CMs Macrophages Cardiac stress Isoproterenol Dysfunctional
mitochondria

Exophers Enhanced transmitophagy Nicolas-Avila et al., 2020

Adipocytes
(WAT)

Macrophage
subpopulation

Obesity;
inflammation

High-fat diet; IFN-γ
and LPS

Mitochondria Internalization Reduced transfers; accumulation
of fat

Brestoff et al., 2020

AM, alveolar macrophages; BMM, bone marrow derived macrophages; BMSC, bone marrow mesenchymal stem cell; CM, cardiomyocyte; EV, extracellular vesicle; IFN-γ,
interferon-γ; LPS, lipopolysaccharide; MV, microvesicle; OXPHOS, oxidative phosphorylation; TNT, tunneling nanotube; and WAT, white adipose tissue.

neurons to promote ATP production and viability (Islam et al.,
2012; Liu et al., 2014; Hsu et al., 2016). Transfers of healthy
mitochondria also occur between cancer cells to promote their
survival during chemotherapy (Lou et al., 2012; Desir et al., 2016;
Zampieri et al., 2021). On the other hand, stressed cells can
transfer damaged mitochondria to recipient cells to ease their
burden of impaired mitochondria. This occurs between injured
retinal ganglion cells and adjacent astrocytes and between acute
leukemia T cells and bone-marrow-derived stem cells (Davis
et al., 2014; Wang et al., 2018).

MACROPHAGE DERIVATION,
POLARIZATION, AND INTERCELLULAR
COMMUNICATIONS

Macrophages are highly plastic cells and are present in almost
all tissues, as exemplified by alveolar macrophages (AMs) in
lung, Kupffer cells in liver, Langerhans cells in epidermal tissue,
osteoclasts in bone, splenic macrophages in spleen red pulp,
F4/80high peritoneal macrophages in peritoneum, and so on
(Wynn et al., 2013). The classical definition of macrophages
describes them as end cells of the mononuclear phagocytic
lineage derived from circulating monocytes that originate in
the bone marrow (Geissmann et al., 2010). However, more
recent studies indicate heterogeneous origins of bone-marrow-
derived macrophages (BMMs) in contrast to self-renewing
embryo-derived ones, such as the yolk sac and fetal liver
(Figure 1; Ginhoux et al., 2010; Hoeffel et al., 2012; Schulz
et al., 2012). Many tissues contain both local self-renewing

and peripheral monocyte-derived populations of macrophages
(Schulz et al., 2012).

Macrophage Polarization and Function
Macrophages have two main activation states: M1 and M2
polarization (Figure 2; Locati et al., 2020). M1-polarized
macrophages are activated by interferon-γ (IFN-γ),
lipopolysaccharide (LPS), granulocyte-macrophage colony-
stimulating factor, or tumor necrosis factor (TNF; Biswas and
Mantovani, 2010). The toll-like receptor (TLR) for LPS and
receptors for cytokines such as IFN-γ are thus activated and
induce subsequent expression of transcription factors nuclear
factor kappa-B (NF-κB), interferon regulatory factor 3 (IRF-3),
and signal transducer and activator of transcription 1 (STAT1;
Sengupta et al., 1996; Sica and Bronte, 2007). These transcription
factors are transported into the nucleus, where they upregulate
genes related to M1-polarized macrophages (Taniguchi et al.,
2001; Gao et al., 2018). M1-polarized macrophages exhibit
enhanced phagocytosis mediated by increased secretion of
pro-inflammatory cytokines and chemotactic factors; thus,
they facilitate the removal of non-self components (Sica and
Mantovani, 2012) and play important parts in Th1-mediated
immune responses (Biswas and Mantovani, 2010). M2-
polarized macrophages are stimulated by interleukin-4 (IL-4) or
interleukin-10 (IL-10) signaling, which induces signal transducer
and activator of transcription 6 (STAT6), interferon regulatory
factor 4 (IRF-4), and peroxisome proliferator-activated receptor
γ (PPARγ; Odegaard et al., 2007; Czimmerer et al., 2018).
M2-polarized macrophages can be further divided into M2a,
M2b, and M2c subgroups. The M2a and M2b phenotypes are
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FIGURE 1 | General derivation and distribution of macrophages in the body. Macrophages are derived from two main fetal organs: the fetal liver and yolk sac.
(A) Microglia in the central neural system and Langerhans cells in epidermal tissue have prenatal origins from the yolk sac and renew themselves locally after being
seeded in different systems. (B) Alveolar macrophages, F4/80high peritoneal macrophages, and splenic red pulp macrophages originate from the fetal liver and also
have postnatal self-renewal capacity. Fetal liver gives rise to hematopoietic stem cells in bone marrow. (C) Hematopoietic stem cells can develop into monocytes and
finally differentiate into other tissue-resident macrophages such as dermal macrophages, Kupffer cells, and interstitial macrophages after birth. When stimulated by
immune signals, monocytes can be recruited and differentiate into macrophages at inflammatory sites and innate immune.

activated by IL-4 and promote an immune response mediated by
Th2 (Stein et al., 1992). By contrast, M2c inhibits the immune
response and favors tissue remodeling after activation by IL-10
or glucocorticoids (Curtale et al., 2013, 2017).

Mitochondria in Macrophage
Polarization and Signal Transduction
Macrophages undergo mitochondria-related metabolic
reprogramming during activation (Haschemi et al., 2012;
Huang et al., 2014; Jin et al., 2014). M1-polarized macrophages
depend mainly on glycolysis as the first line of defense, whereas
M2-polarized macrophages largely rely on oxygen consumption
by mitochondrial respiration for their long-term functions
(Haschemi et al., 2012; Galvan-Pena and O’Neill, 2014).
Increased glucose utilization in IL-4-stimulated macrophages

requires activation of the mechanistic/mammalian target of
rapamycin complex 2 pathway, which operates in parallel
with the IL-4Rα-STAT6 pathway to facilitate M2 activation via
induction of IRF-4 (Huang et al., 2016). PPARγ-coactivator-
1b (PGC-1b) induces mitochondrial biogenesis and is also
indispensable for M2 polarization (Vats et al., 2006), and
cell-autonomous lysosomal-based lipolysis and fatty-acid
oxidation fuel the mitochondrial metabolism to maintain the M2
phenotype (Huang et al., 2014).

In addition to metabolism alteration, mitochondrial damage-
associated molecular patterns (DAMPs) such as mtDNA and
byproducts of mitochondrial respiration such as ROS have
important roles in the initiation and transduction of signals
in the immune response, especially in M1 activation (Nakahira
et al., 2011; Zhou et al., 2011). The synthesis of mtDNA,
which is induced after the engagement of TLRs, is crucial for
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FIGURE 2 | Mitochondria in macrophage polarization. Macrophages are activated and polarized in response to different stimuli, including TNF, IFN-γ, LPS, IL-4,
IL-10, and glucocorticoids. The states of macrophages fall between two extremes, M1 and M2 phenotypes, which participate in the Th1 and Th2 immune
responses, respectively. Energy metabolism in M1-polarized macrophages shifts to glycolysis compared with their precursors, and M1-polarized macrophages are
activated by mtDNA and mitochondria-produced ROS (left). Energy metabolism in M2-polarized macrophages mainly depends on mitochondrial respiration fueled by
oxygen and fatty acids (right). TNF, tumor necrosis factor; IFN-γ, interferon-γ; LPS, lipopolysaccharide; IL-4, interleukin-4; IL-10, interleukin-10; ROS, reactive
oxidative species; and mtDNA, mitochondrial DNA.

NACHT and leucine-rich repeat protein 3 (NLRP3) signaling in
M1-polarized macrophages; dysregulated NLRP3 inflammasome
activity results in uncontrolled inflammation (Zhong et al., 2018).
ROS are essential bactericidal components generated primarily
via the phagosomal NADPH oxidase machinery by phagocytes
including macrophages (Lambeth, 2004; West et al., 2011). ROS
promote production of pro-inflammatory cytokines in response
to LPS via decreasing the dephosphorylation of mitogen-
activated protein kinases (MAPKs) including c-Jun N-terminal

kinase, extracellular signal-regulated kinase, and p38 MAPK
phosphorylation (Bulua et al., 2011). ROS also contribute to
NLRP3 inflammasome activation (Sorbara and Girardin, 2011).
Moreover, mitochondrial ROS are critical to the differentiation of
M2-polarized macrophages (Angajala et al., 1605). In a study of
TAMs, which are similar to M2-polarized macrophages in terms
of their pro-angiogenic and immune-suppressive functions,
inhibition of superoxide production was shown to specifically
block the differentiation of M2 macrophages (Zhang et al., 2013).
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However, the inhibitory effect of ROS elimination on macrophage
differentiation was overcome when macrophages were polarized
to the M1 phenotype (Zhang et al., 2013).

Cell–Cell Communications Between
Macrophages and Surrounding Cells
Cell–cell communications occur frequently between
macrophages and adjacent tissue cells. Macrophages integrate
into host tissues; this entails their specialization in response to
the local environment (Varol et al., 2015). Local cells imprint
the specific functions of macrophages (Varol et al., 2015),
as exemplified by AMs, osteoclasts, and microglia. Alveolar
epithelial cells are a major source of colony-stimulating factor
2 (CSF-2), which is necessary for the differentiation of AMs
(Guilliams et al., 2013). The differentiation and function of
osteoclasts are regulated by the balance of receptor activator
of NF-κB ligand (RANKL) and osteoprotegerin produced by
osteoblasts (Takayanagi et al., 2002; Boyle et al., 2003; Ikebuchi
et al., 2018). Molecules of neuronal origin control microglial
motility and functions via chemotaxis, neurotransmitters, and
purinergic and adenosine signaling pathways (Crain et al., 2009;
Mead et al., 2012; Limatola and Ransohoff, 2014).

Cell–cell communications between macrophages and tissue
cells also facilitate tissue-specific functions of macrophages

and contribute to the development and specific functions
of resident tissues (Figure 3). The most direct type of
cell–cell communication is based on the prototypical
macrophage function, phagocytosis (Nagata, 2018). For example,
macrophages in spleen red pulp phagocytose red blood cells
(RBCs) to facilitate iron circulation (Rodrigues et al., 2017).
Slight modifications of the cell membranes of RBCs, such as
those associated with RBC senescence or damage, are sensed by
macrophages, which phagocytose such RBCs and return iron to
erythroid progenitors (Korolnek and Hamza, 2015). Microglia
(macrophages in the central neural system) contribute to neural
synapse maturation and brain development by synaptic pruning
(Paolicelli et al., 2011).

In addition to phagocytosis, other forms of cell–cell
communication exist between macrophages and their
surrounding cells. Microglia can also release signaling molecules
including brain-derived neurotrophic factor and microvesicles
(MVs) containing cytosolic proteins, lipids, and microRNAs
to regulate synaptic activity (Parkhurst et al., 2013; Maas et al.,
2017). Macrophages in adipose tissues regulate lipid metabolism
and insulin sensitivity in adipocytes via paracrine effects of
noradrenalin (Pirzgalska et al., 2017; Flaherty et al., 2019).
Perivascular macrophages in capillaries attenuate vascular
endothelial-cadherin phosphorylation in endothelial cells to
limit blood vessel permeability and maintain vascular integrity

FIGURE 3 | Interactions between macrophages and tissue cells. Macrophages interact closely with surrounding tissue cells through paracrine mechanisms,
cell-to-cell contacts, and direct phagocytosis; these interactions are vital for tissue development and their normal function. Microglia trim synapses and release signal
molecules to promote neural synapse maturation and function. Splenic macrophages phagocytose red blood cells and facilitate iron circulation. Alveolar
macrophages phagocytose surfactants produced by alveolar epithelial cells. Bone-resident osteoclasts interact with osteoblasts through both cell-to-cell contacts
and paracrine communication. Perivascular macrophages maintain vascular integrity by attenuating phosphorylation of VE-cadherin in endothelial cells via cell-to-cell
contact. Macrophages in white adipose tissue regulate lipid metabolism and insulin sensitivity in adipocytes via paracrine effects of noradrenalin. VE, vascular
endothelial.
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(He et al., 2016; Lapenna et al., 2018). BMMs develop into
osteoclasts, where they coordinate with osteoblasts for bone
modeling and remodeling through both cell contacts and
ligand–receptor interactions (Boyle et al., 2003). The best-
studied such mutual interactions are RANKL signaling in
osteoclasts and its reverse signaling in osteoblasts, which
maintains the balance between osteoclast maturation and
function (Takayanagi et al., 2002; Ikebuchi et al., 2018). After
osteoclast maturation, the proton pump in osteoclasts acidifies
the resorption organelle and releases lytic enzymes to realize
bone resorption (Boyle et al., 2003). In general, macrophages
and tissue cells interact both directly and indirectly to maintain
physiological functions of tissues.

MACROPHAGE-RELATED
MITOCHONDRIAL TRANSFER

The involvement of macrophages in intracellular mitochondrial
transfers is emerging as a critical phenomenon in various tissues.
Macrophages often function as recipients that digest depolarized
or fragmented mitochondria, thereby favoring the survival
and maintaining the functions of surrounding cells. Transfers
of healthy mitochondria also contribute to the polarization
and homeostasis of both recipient and donor macrophages.
In general, macrophage-related mitochondrial transfers have
mutual effects on both macrophages and their surrounding
cells (Figure 4A).

Macrophages Mediate Transmitophagy
Damaged mitochondria are generally degraded by mitophagy, a
cell-autonomous activity (Davis and Marsh-Armstrong, 2014).
In the case of ganglion cells and astrocytes, transcellular
mitophagy (hereafter called transmitophagy) has been proposed
as a means of extracellular degradation that lightens the
burden of stressed cells (Davis et al., 2014). Recently, different
groups of macrophages have been reported as potential
handlers of damaged mitochondria during transmitophagy.
Accumulating evidence also indicates that the mitophagy level
inside macrophages influences macrophage polarization and
function (Table 3; Kim et al., 2016; Larson-Casey et al., 2016;
Zhao et al., 2017; Bhatia et al., 2019; Patoli et al., 2020; Zhang et al.,
2020). Thus, transmitophagy may exert influences on both donor
cells and recipient macrophages to regulate tissue homeostasis.

Cardiomyocytes Transfer Mitochondria to
Macrophages
Cardiomyocytes (CMs) are highly specialized smooth muscle
cells with extremely long lifespan and low turnover rate, which
rely on a large pool of mitochondria to meet their intensive
energy demands (Bergmann et al., 2009). Accumulation of
damaged mitochondria leads to cardiac hypertrophy and
heart failure (Bertero and Maack, 2018). Thus, elimination
of dysfunctional mitochondria is vital for CM survival and
function. Although most studies of CMs have focused on
their intracellular clearance of fragmented mitochondria
(Chen and Dorn, 2013; Gong et al., 2015; Tong et al., 2019),

Nicolas-Avila et al. (2020) recently proposed intercellular
mitochondrial transfer between CMs and surrounding cardiac-
resident macrophages (cMACs) as an extracellular route by
which CMs dispose of dysfunctional mitochondria.

In this study, altered mitochondrial morphology and
reduced cristae density were observed in cMAC-deficient
mice, suggesting impaired cardiac mitochondria homeostasis.
Moreover, cMAC-deficient mice showed impaired systolic
function, which could be restored by supplementation with
cMACs; this finding emphasized the crucial role of cMACs
in ensuring the mitochondria health of CMs (Nicolas-Avila
et al., 2020). Further investigation revealed that cMACs took
up mitochondria with compromised membrane integrity from
CMs via exophers under physiological conditions (Nicolas-
Avila et al., 2020). Under pathological conditions, as in an
isoproterenol-induced mouse model of cardiac ischemia,
dysfunctional mitochondrial transfer from CMs to cMACs
was significantly increased. These results imply that the
outsourcing of dysfunctional mitochondria from CMs to
cMACs might have a protective function against cardiac stress
(Nicolas-Avila et al., 2020). Nevertheless, as mitophagy and
mitochondria influence the activation state of cMACs, how
cMACs endure damaged mitochondria from CMs under stress
remains unknown, as does how stress itself influences ability
of cMACs to deal with dysfunctional mitochondria. Moreover,
considering the heterogeneity of macrophages, single-cell
sequencing may help to identify distinct subgroups responsible
for transmitophagy.

Bone Marrow Stem Cells Transfer Mitochondria to
Macrophages
Bone marrow mesenchymal stem cells (BMSCs) naturally
reside in a hypoxic stem cell niche and regulate self-renewal
and mobilization of hematopoietic stem cells via crosstalk
with adjacent macrophages (Mendez-Ferrer et al., 2010; Chow
et al., 2013; Morrison and Scadden, 2014). In an ex vivo co-
culture system, macrophages were shown to receive depolarized
mitochondria from BMSC exosomes, thus enhancing the
ability of BMSCs to deal with oxidative stress by improving
mitochondrial bioenergetics. Depolarized mitochondria are first
loaded into LC3-positive vesicles and then migrate toward the
cell periphery, where they are incorporated into outward budding
blebs and subsequently taken up by macrophages (Phinney
et al., 2015). This phenomenon may also occur in vivo between
local macrophages and BMSCs administered to patients. BMSC-
to-macrophage mitochondrial transfers represent a possible
mechanism by which macrophages in stem cell niches protect
BMSCs under stress, yet direct in vivo evidence for this
mechanism is still lacking (Phinney et al., 2015).

Metabolic Regulation of Donor Cells
As mitochondria are centers of energy metabolism and
coordinate aerobic respiration fueled by either glucose or
lipids (Schon et al., 2012), mitochondrial transfers involving
macrophages are not only used for transmitophagy but also
meet metabolic ends, as exemplified by adipocytes in white
adipose tissue (WAT) and adipose tissue macrophages (ATMs).
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FIGURE 4 | Macrophages are emerging as key players in mitochondrial transfers with clinical implications. (A) Macrophages mediate intercellular mitochondrial
transfers of either healthy or damaged mitochondria from surrounding tissue cells. Transferred healthy mitochondria improve the function of recipient macrophages.
Damaged mitochondria are degraded via mitophagy to ease donor cells’ stress or reutilized in macrophages. (B) Mitochondrial transfers involving macrophages can
be targeted for therapeutic purposes through promotion of mitochondrial transfers or mitochondrial transplantation; this is a promising approach for diseases
including cardiac stress, obesity, acute lung injury, and sepsis.

TABLE 3 | Mechanisms of mitophagy in macrophages.

Cell type Pathological condition Mechanism Outcome References

SM Atherosclerosis Inhibition of mitophagy via mTORC1 signaling Macrophage apoptosis Zhang et al., 2020

SM Polymicrobial sepsis Inhibition of PINK1-dependent mitophagy through
activation of inflammatory caspases 1 and 11

Macrophage activation Patoli et al., 2020

BMM Kidney fibrosis Inhibition of mitophagy through downregulation of
MFN2 and parkin

Promotion of M2 polarization Bhatia et al., 2019

RM Diabetic nephropathy Inhibition of mitophagy Promotion of M1 polarization Zhao et al., 2017

AM Idiopathic pulmonary
fibrosis

Promotion of mitophagy via enhancing mitochondrial
ROS production

Macrophage survival Larson-Casey et al., 2016

BMM Sepsis Promotion of mitophagy induced by SESN2 Suppression of inflammasome
hyperactivation in macrophages

Kim et al., 2016

AM, alveolar macrophages; BMM, bone marrow derived macrophages; RM, renal macrophages; and SM, splenic macrophage.
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In a recent study focusing on mitochondrial transfers between
adipocytes in WAT and ATMs, nearly half of the ATMs in
mice internalized mitochondria from neighboring adipocytes
under physiological conditions (Brestoff et al., 2020). The
significance of these mitochondrial transfers was confirmed in a
mouse model of obesity fed a high-fat diet, where adipocyte-to-
macrophage mitochondrial transfers were drastically decreased
(Brestoff et al., 2020).

Adipose tissue macrophages regulate the glucose utilization
and energy expenditure of adipocytes (Pirzgalska et al., 2017;
Flaherty et al., 2019), and obesity induces a phenotype switch in
ATMs (Lumeng et al., 2007). In turn, changes in ATM phenotypes
contribute to WAT inflammation and obesity-induced insulin
resistance (Han et al., 2013; Kratz et al., 2014). Indeed, decreased
adipocyte-to-macrophage mitochondrial transfers are related to
an obesity-induced inflammatory state in WAT. First, the pro-
inflammatory environment induced by IFN-γ, LPS activation,
and M1 polarization contributes to a macrophage-intrinsic
impairment in mitochondrial uptake (Brestoff et al., 2020).
Second, the uptake ability of adipose-resident macrophages
depends on the heparan sulfate biosynthesis pathway, which
has been reported to show anti-inflammatory effects (Brestoff
et al., 2020). Inhibition of heparan sulfate biosynthesis leads
to aberrant mitochondrial uptake, accompanied by decreased
energy expenditure and fat accumulation in adipose tissue
(Brestoff et al., 2020).

Intriguingly, gene enrichment analysis of mitochondria-
recipient macrophages has defined a transcriptionally distinct
subgroup of macrophages that are capable of mitochondrial
internalization, with traits resembling those of anti-inflammatory
macrophages (Brestoff et al., 2020). More investigations are
needed to trace the derivation and characteristics of the
transcriptionally distinct macrophage subgroups, as well as their
response to the metabolic state in obesity, in order to understand
the complexity of ATMs. Moreover, as evidence suggests
that ATMs are highly plastic according to their surrounding
environment, and obesity is strongly associated with the number,
derivation, and functional changes of ATMs (Lumeng et al.,
2008; Xu et al., 2013), regulation of ATM subgroups toward
mitochondrial uptake subgroups is a promising therapeutic
approach for obesity and related metabolic syndromes.

Functional Regulation of Macrophages
by Mitochondrial Transfers
In addition to the favorable effects on surrounding cells
of mitochondrial transfers from macrophages, macrophages
themselves are influenced by transferred mitochondria. BMSCs
modulate the function of AMs by transferring mitochondria via
both contact-dependent and paracrine routes; this modulation
can be exploited as a mechanism for BMSC therapy for acute lung
injury (Jackson et al., 2016; Morrison et al., 2017). In Escherichia
coli-treated co-culture system, MSCs were shown to transfer
mitochondria to human macrophages via tunneling nanotubes
(TNTs); this enhanced their phagocytic capacity and facilitated
the antimicrobial effects of the BMSCs (Jackson et al., 2016).
In a later study using a transwell system for macrophage and

BMSC co-culture, BMSCs significantly increased the proportion
of M2-polarized and phagocytic macrophages via transferring
BMSC-derived extracellular vesicles (EVs) containing healthy
mitochondria (Morrison et al., 2017).

In murine models, adoptive transfer of murine AMs
treated with MSC-derived EVs protects mice from LPS-
induced lung injury by alleviating the inflammatory cell
recruitment, suggesting that anti-inflammatory M2 polarization
occurs when AMs receive healthy mitochondria (Morrison
et al., 2017). Importantly, BMSC-conditioned medium taken
from rhodamine-6G-pretreated MSCs with dysfunctional
mitochondria could not cause such changes, indicating
the presence of functional mitochondria rather than
mitochondrial components that induce such activation changes
(Morrison et al., 2017).

Instead of mitochondria-derived immune signals, an
increased energy supply from functional mitochondria is
responsible for enhanced phagocytosis in AMs; the ATPase
inhibitor oligomycin completely reversed the effect of MSC-
conditioned medium on BMM phagocytosis (Morrison et al.,
2017). However, AMs are a heterogeneous group of cells,
especially in acute lung injury, which is characterized by acute
immune response and subsequent tissue repair (Duan et al.,
2012; Short et al., 2014). Whether self-replicative tissue-resident
AMs or monocyte-derived AMs recruited during the acute
immune response enable mitochondrial recipients to undergo
M2 polarization and change of function remains unclear.
In addition, mitochondrial transfers enhance the function
of recipient macrophages by improving their mitochondrial
bioenergetics (Phinney et al., 2015). Unhealthy mitochondria
extruded by BMSCs still exhibit residual membrane potential,
which provides evidence for their mitochondrial membrane
integrity and fusion ability (Phinney et al., 2015). Depolarized
but not totally fragmented mitochondria undergo mitochondrial
fusion in macrophages for reutilization (Phinney et al.,
2015). In addition to mitochondria, these vesicles contain
miR451, miR1202, miR630, and miR638, which represses TLR
expression, thereby tolerizing macrophages to mitochondrial-
transfer-induced inflammation caused by excessive mtDNA
(Phinney et al., 2015).

HOW MACROPHAGES MEDIATE
MITOCHONDRIAL TRANSFERS

Macrophages mediate mitochondrial transfers through various
mechanisms in different systems. Phagocytosis, the most typical
macrophage function, contributes substantially to the mediation
of mitochondrial transfers by macrophages (Phinney et al.,
2015; Nicolas-Avila et al., 2020). In an ex vivo oxidative
stress model of BMSCs, BMMs nibbled the surfaces of
human BMSCs, enabling uptake of mitochondria-containing
phagosomes budding from the plasma membrane (Phinney
et al., 2015). Pre-incubation with dextran sulfate, an inhibitor
of phagocytosis, significantly reduced uptake of MVs from
BMSCs by BMMs (Phinney et al., 2015). Isolated cMACs feature
large phagolysosome-like vacuoles and have been shown to
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actively phagocytose materials from CMs; these materials were
later proven to be mitochondria-contained exophers (Nicolas-
Avila et al., 2020). The engulfed exophers become Lamp1+

phagolysosomes in cMACs (Nicolas-Avila et al., 2020). Western
blotting analyses revealed inflammasome activation in the hearts
of cMAC-depleted mice, possibly owing to the presence of free
mitochondria and mtDNA caused by abrogated mitochondria
transfers in the absence of cMACs (Oka et al., 2012; Nicolas-Avila
et al., 2020). Inflammasome activation in turn caused autophagic
arrest and impaired exopher production in CMs (Nicolas-Avila
et al., 2020). Therefore, cMACs prevent inflammasome activation
and protect autophagy flux in CMs to support exopher formation
for mitochondrial transfers (Nicolas-Avila et al., 2020).

Whether macrophages obtain mitochondria through cell–cell
contact, such as through TNTs, in addition to phagocytosis
was also investigated in the case of BMSC antimicrobial
therapy (Jackson et al., 2016). Depletion of AMs abrogates the
antimicrobial effects of BMSCs (Jackson et al., 2016), and TNTs
containing mitochondria are extended from BMSCs to AMs
(Jackson et al., 2016). It seems that BMSCs play an active part
in this case. However, mitochondrial transfers were reduced but
still evident after blockage of TNT formation in BMSCs by
cytochalasin B (Jackson et al., 2016); in a later study, this was
attributed to AMs also acquiring BMSC mitochondria through
EVs in a manner independent of TNT formation by BMSCs
(Islam et al., 2012). Therefore, although TNTs formed by BMSCs
are partially responsible for the acquisition of mitochondria by
AMs, the AMs also acquire mitochondria from BMSCs via EVs
(Islam et al., 2012; Jackson et al., 2016).

Furthermore, several critical molecules that may contribute
to macrophage-mediated mitochondrial transfer have been
identified. For example, AMs selectively uptake mitochondria
containing EVs from BMSCs by recognizing CD44 on the
surfaces of EVs (Islam et al., 2012). Anti-CD44 antibody
partially abrogated the effects of BMSC-conditioned medium
on macrophages, whereas antibodies administered to AMs in
the absence of MSC-conditioned medium had no influence
(Islam et al., 2012). In addition, EXT1, an important gene in
the heparan sulfate biosynthesis pathway, has been reported
to be indispensable for ATMs to obtain mitochondria from
adipocytes (Brestoff et al., 2020). Conditional deletion of EXT1
in myeloid cells reduces heparan sulfate levels in ATMs, impairs
mitochondria transfer, and promotes fat mass accumulation
(Brestoff et al., 2020). However, the direct association between
the heparan sulfate biosynthesis pathway and the function of
macrophages remains unclear (Brestoff et al., 2020). More studies
are needed to decipher the mechanisms underlying macrophage-
mediated mitochondrial transfers.

TARGETING MITOCHONDRIA IN
MACROPHAGES FOR THERAPEUTIC
PURPOSES

Great progress has been made in recent years in modulating
the tissue environment via macrophages, particularly in the field
of antitumor immunotherapy (Tacke, 2017; Xia et al., 2020).

Most of those therapies target molecular pathways related to
the recruitment and phenotypes of macrophages (Pathria et al.,
2019), for instance, the CSF-1 receptor (Cassier et al., 2015;
Cannarile et al., 2017) and agonistic CD40 therapy (Wiehagen
et al., 2017). Targeting energy metabolism and mitochondria-
related signal transduction in macrophages shows good prospects
for developing efficient interventions.

Targeting glycolysis and mitochondrial ROS have been
reported as effective therapeutic strategies for controlling
inflammation mediated by M1-polarized macrophages. Dimethyl
fumarate, a derivative of Krebs cycle intermediate fumarate,
downregulates aerobic glycolysis in activated peritoneal
macrophages to inhibit inflammation; thus, it has a critical
role in the treatment of multiple sclerosis (Linker and Haghikia,
2016). Similarly, itaconate, an endogenous metabolite, is required
for activation of the anti-inflammatory transcription factor Nrf2
in LPS-activated mouse and human macrophages (Mills et al.,
2018). In addition, 4-octyl itaconate, a cell-permeable itaconate
derivative, protects against LPS-induced cytokine production
and inflammation in vivo (Mills et al., 2018). On the other
hand, diphenyliodonium, a global and mitochondrial ROS
scavenger, was shown to impair LPS-induced NLRP3 expression,
thereby inhibiting IL-1β and IL-18 production in macrophages
(Sazanov, 2007). Other promising candidates include metformin
and rotenone, which regulate glycolysis and ROS via targeting
pyruvate kinase and could also inhibit inflammation induced
by M1-polarized macrophages (Palsson-McDermott et al., 2015;
Mills and O’Neill, 2016; Peruzzotti-Jametti and Pluchino,
2018). Activation of M2-polarized macrophages can be
regulated by OXPHOS. Acute inhibition of the polyamine-
eIF5A-hypusine axis by Eif5a small interfering RNA (siRNA),
Dhps-siRNA, and deoxyhypusine synthase inhibitor GC7 blunts
OXPHOS-dependent M2 activation while leaving aerobic
glycolysis-dependent M1 activation intact (Puleston et al.,
2019). Genetic and GC7-driven inhibition of eIF5AH silenced
mitochondria has been reported to prevent anoxic death of
kidney cells and to improve outcomes of kidney transplants
(Melis et al., 2017).

In addition to conventional M1/M2 polarization, high
levels of fatty acid oxidation in TAMs promote mitochondrial
OXPHOS, ROS production, and JAK1 phosphorylation, leading
to STAT6 activation and transcription of genes that regulate
TAM generation and function (Su et al., 2020). Given the
importance of fatty acid oxidation in TAMs, interfering in
lipid metabolism could be a promising therapeutic approach for
cancer (Su et al., 2020). In atherosclerosis, Dicer plays a protective
part in coordinately regulating the inflammatory response in
lesional macrophages through enhancing fatty-acid-fueled
mitochondrial respiration. Promoting Dicer/miR-10a-dependent
metabolic reprogramming in macrophages has potential
therapeutic applications for the prevention of atherosclerosis
(Wei et al., 2018).

Studies of mitochondrial transfer provide new strategies
for modification of macrophages. In the cases of the
myocardium and adipose, where spontaneous cell-to-
macrophage mitochondrial transfers occur under physiological
conditions (Brestoff et al., 2020; Nicolas-Avila et al., 2020),
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impaired ability of macrophages to take up mitochondria from
surrounding cells could contribute to pathogenesis. Enhancing
macrophage-related mitochondrial transfer is thus a promising
therapeutic strategy. In acute lung injury and sepsis (Islam
et al., 2012; Jackson et al., 2016), mitochondrial transplantation
into macrophages could promote macrophage phagocytosis and
train the immune system (Figure 4B; Yamada et al., 2020). The
development of new treatments calls for more studies on the
basic mechanisms underlying mitochondrial transfers involving
macrophages. Key molecules responsible for mitochondrial
transfer signaling in macrophages and mitochondrial transfer
routes should be identified.

CONCLUSION AND PERSPECTIVES

Mitochondrial transfers from donor cells promote the survival
of recipient cells by enabling the recovery of mitochondrial
function, as exemplified by neurons and osteocytes with low
self-renewal rates (Hayakawa et al., 2016; Gao et al., 2019),
chemoresistant cancer cells (Pasquier et al., 2013; Tan et al.,
2015; Moschoi et al., 2016), and therapeutic use of stem cells
(Zhang Y. L. et al., 2016; Yao et al., 2018). Recent studies
have reported that macrophage-related mitochondrial transfers
have important roles in processing unhealthy mitochondria as
well as utilizing healthy mitochondria. Notably, mitochondria
transferred from tissue cells to macrophages could also function
as important messengers. In acute inflammation, activated
monocytes give out mitochondria-related DAMPs including
mitochondrial membrane components and mitochondrial 16S
ribosomal RNA to activate an inflammatory response in
endothelial cells (Pober and Sessa, 2007; Ait-Oufella et al., 2010;
Puhm et al., 2019). Macrophages, which are important immune
cells, can also be activated by mitochondria-related DAMPs
(Nakahira et al., 2011; Zhou et al., 2011); therefore, mitochondrial
transfers could function as immune signals. Besides, since
macrophages in acute inflammatory responses are derived from
recruited monocytes (Geissmann et al., 2010), macrophages
might play a similar role as monocytes to give out mitochondrial
components as immune signals.

Unhealthy mitochondria received by macrophages usually
undergo either reutilization or degradation (Phinney et al., 2015;
Brestoff et al., 2020; Nicolas-Avila et al., 2020). Reutilization of

unhealthy mitochondria in macrophages resident in the stem cell
niche is achieved by mitochondrial fusion to enhance OXPHOS
in these macrophages (Phinney et al., 2015). Alternatively,
degradation of unhealthy mitochondria can be achieved by
transmitophagy in macrophages (Phinney et al., 2015; Brestoff
et al., 2020; Nicolas-Avila et al., 2020). In addition, unhealthy
mitochondria received by macrophages may be extruded by
migrasomes, which are newly identified vesicular structures that
discharge cellular contents during migration (Ma et al., 2015).
In an ex vivo study, BMMs exposed to mild mitochondria
stress induced by carbonyl cyanide 3-chlorophenylhydrazone
were observed to leave behind migrasomes containing damaged
mitochondria (Jiao et al., 2021), indicating that BMMs may
be donor cells for mitochondrial transfers (Jiao et al., 2021).
Further studies are required to determine whether migrasomes
containing mitochondria are received by surrounding cells as a
route of mitochondrial transfer.

Macrophages are widely distributed, enabling them to
maintain tissue homeostasis, and related to various diseases
(Wynn et al., 2013). However, studies to date have only described
limited situations in which macrophage-related transfers exert
their effects. This is the beginning of a conversation, not the
final word. Targeting mitochondrial transfers in macrophages
is a strategy that shows great potential in a range of fields
including cancer and infectious diseases (Na et al., 2018).
Therefore, future studies should focus on the development
of techniques to regulate macrophage-related mitochondrial
transfers for therapeutic purposes (Figure 4B).
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