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1  | INTRODUC TION

Extra virgin olive oil (EVOO) is an edible oil highly appreciated by 
its perfect balance of aroma, taste, and beneficial health proper-
ties. Mediterranean countries and Portugal cover 90% of the world 
production, where Spain and Italy are the major consumers and 
producers. Andalusia accounts for 80% of the Spanish product. 
EVOO is obtained only from the olive by mechanical processes 
only in order that its features are not affected. It is considered as 
a superior quality oil and so is high-priced on the market, which 
makes it susceptible to adulteration with other cheaper oils, such as 

sunflower, hazelnut, maize, soybean, or refined olive oils (Gurdeniz 
& Ozen, 2009; Öztürk, Yalçin, & Özdemir, 2010) or indication of 
untrue geographical origin. For this reason, the European Union has 
adopted some legislation about Protected Designation of Origin 
(PDO) and Protected Geographical Indications (PGI) (Aparicio-Ruiz, 
García-González, Lobo-Prieto, & Aparicio, 2019). Classical chemi-
cal separation techniques, such as gas chromatography (GC), use 
continuous information and need derivatization of sample, with 
proper integration of separated peaks, to predict the oil content in 
various compounds. On the contrary, spectroscopic techniques—
such as near- or mid-infrared (NIR or MIR) or Fourier transform 
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Raman (FT-Raman) spectroscopy—generate continuous information 
too, but derivatization is not necessary, being reliable, rapid, and 
cost-effective. IR and Raman spectroscopies can be considered as 
complementary techniques in the identification of unknown sub-
stances in chemical samples. But, an advantage of IR over Raman 
is the cost because Raman spectroscopy needs high-powered la-
sers and amplification sources to get sensitive results, and even, 
the intense laser radiation can destroy the sample. Besides, IR 
spectroscopy has been an understood established technique for 
much longer, so IR provides a greater sensitivity and reliability than 
Raman techniques. Moreover, in the comparison of NIR vs. MIR, 
NIR requires more flexible sampling arrangements and cheaper, 
rugged instrumentation than MIR. Definitely, the utility of NIR is 
highlighted. The application of multivariate statistics to NIR spectra 
allows to obtain qualitative or quantitative information of EVOO 
(Berrueta, Alonso-Salces, & Héberger, 2007), being useful to avoid 
fraudulent practices in the oil sector.

The composition of oil is related to the distribution and the type 
of the fatty acids present in the triglycerides and on the positions 
in which they are esterified to hydroxyl groups in glycerol back-
bone. Fatty acids of vegetable oils, considered as a quality param-
eter, are classified into saturated (SFAs—such as palmitic, myristic, 
margaric, heptadecanoic, stearic, arachidic, behenic, and lignoceric 
acids), monounsaturated (MUFAs—such as palmitoleic, margaroleic, 
heptadecenoic, oleic, eicosenoic, and gadoleic acids), and polyunsat-
urated (PUFAs—such as linoleic and linolenic, and free fatty acids) 
fatty acids. The EU Commission Delegated Regulation (2016) and 
the International Olive Council (2012) consider the fatty acid com-
position among the characteristics of purity and quality being appli-
cable to olive oils.

There are many studies in the literature of the application of 
chemometrics to EVOO NIR spectra, specially, with the main aim 
of its authentication and evaluation of quality parameters. These 
works show how NIR spectra contain useful and valuable infor-
mation about EVOO. For instance, NIR spectra have been used for 
the determination of geographical origins, Protected Designations 
of Origin (PDO), or compositions (mainly, the fatty acid profile) 
(Bertran et al., 2000; Casale et al., 2012; Galtier et al., 2007; Mailer, 
2004; Sánchez-Rodríguez et al., 2013, 2014; Woodcock, Downey, & 
O’Donnell, 2008).

Moreover, there are many works analyzing the influence of 
weather, agro-climatic, or meteorological conditions on food 
content, in general, such as berries (Yang, Laaksonen, Kallio, & 
Yang, 2017), castor beans (Falasca, Ulberich, & Ulberich, 2012), 
currants (Zheng et al., 2012), grapes (Luciano, Albuquerque, 
Rufato, Miquelluti, & Warmling, 2013), mangos (Rymbai et al., 
2014), sweet potatoes (Edmunds, Clark, Villordon, & Holmes, 
2015), pineapples (Dorey, Fournier, Léchaudel, & Tixier, 2016), 
or wheat (Khokhar et al., 2017). In particular, many papers treat 
the effect of these agro-climatic conditions on olive oils (Awan, 
2014; Ozdemir, 2016; Veizi, Peçi, & Lazaj, 2016; Zaied & Zouabi, 
2016). But there are few works considering NIR data to study this 

agro-climatic influence on oils or other food products. And, in re-
lation to the multivariate statistical technique that has been ap-
plied, all the previous studies consider a non-numerical variable 
(i.e., a factor) to differentiate among agro-climatic or meteorolog-
ical groups. This factor can be subsequently used, for example, as 
an independent variable in an analysis of variance model or as a 
dependent variable in linear discriminant analysis. Nevertheless, 
this paper uses the complete agro-climatic database obtained 
from the official webpage of the Automatic Weather Stations 
(AWSs) of Andalusia, instead of clustering the information in 
groups. More specifically, the historical daily information has 
been downloaded, from 2005 to 2010, for the following variables: 
temperature, humidity, wind speed, radiation, precipitation, and 
evapotranspiration.

Furthermore, functional data analysis (FDA) is a relatively recent 
statistical method concerned with the analysis to any data set that 
can be thought of as a function or a curve (i.e., an infinite-dimensional 
variable). FDA was initially popularized by Ramsay and Silverman 
(2007), and it is actually one of the most active fields of investigation 
in data science, in general (Aneiros, Cao, Fraiman, Genest, & Vieu, 
2019). In particular, the potential of FDA to characterize, compare, 
and classify chemical data has been analyzed by Burfield, Neumann, 
and Saunders (2015). But, although FDA has been applied to some 
examples of NIR data (Aguilera, Escabias, Valderrama, & Aguilera-
Morillo, 2013; Saeys, De Ketelaere, & Darius, 2008), in no case olive 
oils data were treated by using this approach.

The aim of this work was to determine the profile in fatty acids of 
EVOO from NIR spectral data, in a first step, and to analyze whether 
the goodness of fit of the estimation can be improved by also consid-
ering agro-climatic data. Contrary to previous works analyzing and 
interrelating such sets (Sánchez-Rodríguez, Caridad, Sánchez-López, 
Marinas, & Urbano, 2019; Sánchez-Rodríguez, Sánchez-López, 
Caridad, Marinas, & Urbano, 2018), NIR and agro-climatic informa-
tion are contemplated from both scalar and functional points of view. 
The high-dimensional data are summarized by using scalar (PCA) and 
functional (FPCA) principal component analysis. The corresponding 
PCA and FPCA components are introduced as regressors in mod-
els with the fatty acid profile obtained by gas chromatography (GC, 
classical reference technique) as response. Although many works 
establish or fix the number of (F) PCA components to be retained, 
the criteria are usually empirical and nonunanimously accepted. 
That is why, in this work, PCA and FPCA components are progres-
sively introduced in the models. The reliability of these regression 
models is compared by using the dimensionless root-mean-square 
error (DRMSE), taking into account the scalar or functional approach 
of data and the number of retained components (considering the 
recommendations in the literature respect to the optimal number 
of components to avoid overfitting (Hawkins, 2004)). Finally, esti-
mations for some disaggregated fatty acids (in particular, palmitic, 
stearic, palmitoleic, oleic, linoleic, and linolenic) are also determined 
as the trade standard of olive oil is established based on particular 
fatty acids.
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2  | MATERIAL S AND METHODS

2.1 | Data

2.1.1 | Chemical data

This study is based on data obtained from 222 Andalusian EVOOs 
collected from 2005 to 2010. Olive oil was either extracted by 
the producers through a two-phase centrifugation system or ex-
tracted by the staff of the Agronomy Department of University 
of Cordoba with an Abencor System (which reproduces the in-
dustrial process on the laboratory scale and follows the same 
stages of grinding, beating, centrifugation and decantation). 
Samples were kept in the fridge in order to their properties were 
not modified (Baeten, Aparicio, Marigheto, & Wilson, 2003). 
Within 15 days after reception of the oil samples by the Organic 
Chemistry Department of the University of Cordoba, NIR spectra 
were obtained at the Central Service of Analyses (SCAI), also at 
the University of Cordoba. The instrument employed for spectra 
collection was a Spectrum One NTS FT-NIR spectrophotometer 
(Perkin Elmer LLC, Shelton) equipped with an integrating sphere 
module. Samples were analyzed by using a transflectance with a 
glass petri dish and a hexagonal reflector with a total transflectance 
pathlength of about 0.5 mm. A diffuse reflecting stainless steel 
surface placed at the bottom of the cup reflected the radiation 
back through the sample to the reflectance detector. The spectra 
were obtained with Spectrum Software 5.0.1, and the reflectance 
(log 1/R) spectra were collected with two different reflectors. 
Data correspond to the average of results with both reflectors in 
order to rule out the influence of them on the variability of the 
obtained results. Furthermore, spectra were afterward smoothed 
by using the Savitzky and Golay (1964) technique (that performs 
a local polynomial least squares regression in order to reduce the 
random noise of the instrumental signal). 1,237 Pretreated NIR 
data for each olive oil (representing energy absorbed at 1,237 dif-
ferent wavelengths, from 800.62 to 2,499.64 nm) were provided 
to the Department of Statistics of the University of Cordoba to be 
analyzed. NIR spectra corresponding to the observed 222 EVOO 
are shown in Figure 1.

The determinations of GC-FID fatty acid composition were 
performed by the staff of Organic Chemistry of University of 
Cordoba, according to the official methods for olive and pomace 

oil established by the European Union Commission (2011) and the 
International Olive Council (2001a, 2001b). The instrument em-
ployed was an Agilent 7890A gas chromatograph with a capillary 
column (SGE FORTE BPX-70 de 50 m × 220 μm × 0.25 μm), with the 
following conditions of analysis: 250 ºC of injector temperature, 2 
μL of injection volume, and 260 ºC of detector temperature. The 
oven temperature was programmed to remain at 180 ºC for 15 min 
and then raised to 240°C at a rate of 4°C/min and maintained at 
this temperature for 5 min. The triacylglycerol samples (olive oil 
samples) were submitted to a cold transesterification procedure 
to convert the triacylglycerol into fatty acid methyl esters. This 
method is indicated for edible oils with an index of acidity lower 
than 3.3º: Firstly, 0.1 g of olive oil is transferred into a 5-mL vol-
umetric flask; secondly, 2 ml n-heptane and 0.2 ml of a 2N KOH 
solution in methanol were added, and the reaction mixture was 
vigorously stirred; finally, the methyl esters were extracted and 
subject to GC analyses.

The EU Commission Delegated Regulation (2016) and the 
International Olive Council (2012) establish the characteristics of 
olive oils to determine purity criteria in order to authentication and 
avoid adulterations with lower quality oils. Particularly, the limit val-
ues for fatty acids are regularly updated taking into account the indi-
cations of chemical experts and are shown in Table 1.

2.1.2 | Agro-climatic data

The Spanish official webpage of the Andalusian Institute of 
Agricultural, Fisheries, Agrifood, and Organic Production Research 
and Training (at https ://www.junta deand alucia.es/agric ultur aypes 
ca/ifapa/ ria/servl et/Front Contr oller ) provides the long-run in-
formation registered in the Automatic Weather Stations (AWSs). 
Therefore, this website has been used to obtain the agro-climatic 
data of the study: Historical data can be downloaded once selected 
the name of the station, the agro-climatic measurements, and the 
start and end dates. There are approximately 120 AWSs in all the 
Andalusian provinces, with a suitable plan of maintenance and 
an exhaustive review of the records that supply the sensors. This 
work only contemplates the daily information obtained, from 2005 
to 2010 (years previous the corresponding oil harvests), for the 28 
AWSs specified in Table 2, selected due to their proximity with the 
cardinal points of extraction of oils.

F I G U R E  1   NIR spectra of EVOO

https://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController
https://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController
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Information about the following variables has been downloaded 
from each AWS: Temp, daily average temperature (ºC); Hum, daily 
average relative humidity (%); WSpe, daily average wind speed (m/s); 
Rad, daily average radiation (W/m2); Precip, daily precipitation (L/
m2); and ETo, the evapotranspiration is the loss of dampness (mm/
day) of a surface for either direct evaporation or the water loss for 
perspiration of the vegetation. Technical information about the 
measuring instruments can also be obtained from the above-men-
tioned link.

Figure 2 depicts the agro-climatic series for the observed pe-
riod (2,191 days, in total, as there is a leap year) and the 28 AWSs. 
Taking into account the discrepancies among the curves correspond-
ing to the different AWSs, a computer program has been designed 
by using the R-project (Team RC, 2018) that permits to associate to 
each EVOO the agro-climatic curve corresponding to the year which 
is preceding to the olives harvest and to the nearest AWS (or the 
average of the nearest AWSs), for the different six agro-climatic 
variables (Temp, Hum, WSpe, Rad, Precip, and ETo). In particular, the 
programmed R-function has the following arguments: station, har-
vest year, month1-month2, and agro-climatic variable and returns as 
value the aggregated agro-climatic measurement according to the 
previous selection. Detailed information of the R code is included in 
the Supplementary Material.

Furthermore, the agro-climatic measurements have been ac-
cumulated in order to relate them more adequately to the pheno-
logical cycle of the olive grove, which could directly influence the 
composition of the oil. As shown in Figure 3, this cycle is not equally 
distributed, and therefore, the months of each period could be stud-
ied independently. In the same line, Orlandi, Bonofiglio, Romano, 
and Fornaciari (2012) study of the influence of climate data on oil 

production in southern Italy by considering meteorological variables 
on a monthly basis.

2.1.3 | Statistical methodology

NIR and agro-climatic data provide both huge databases. On one 
side, NIR spectra associated with each EVOO is the result of meas-
uring the absorbance in more than a thousand wavelengths (1,237). 
On the other side, six agro-climatic variables (temperature, humidity, 
wind speed, radiation, precipitation, and evapotranspiration) can be 
assigned to each EVOO. Each agro-climatic series is formed by 2,192 
data (corresponding to the daily measurements during six consecu-
tive years, with a leap year).

NIR and agro-climatic data can be seen either as a scalar view (i.e., 
as an extensive discretization of points) or as a functional view (i.e., 
as a curve, observed in an interval). Problems tackled by statistical 
techniques with functional data are, basically, the same of the classical 
Statistics (Aneiros et al., 2019). In particular, this work contemplates 

TA B L E  1   Fatty acid composition (in % m/m methyl esters) as 
determined by GC

Group Fatty acid Carbon number
% m/m 
methyl esters

SFA Myristic C14:0 ≤0.03

Palmitic C16:0 7.50–20.00

Heptadecanoic C17:0 ≤0.40

Stearic C18:0 0.50–5.00

Arachidic C20:0 ≤0.60

Behenic C22:0 ≤0.20

Lignoceric C24:0 ≤0.20

MUFA Palmitoleic C16:1 0.30–3.50

Heptadecenoic C17:1 ≤0.60

Oleic C18:1 55.00–83.00

Eicosenoic C20:1 ≤0.50

PUFA Linoleic C18:2 2.50–21.00

Linolenic C18:3 ≤1.00

Source: International Olive Council (2012).
Abbreviations: MUFA, monounsaturated fatty acids; PUFA, 
polyunsaturated fatty acids; SFA: saturated fatty acid.

TA B L E  2   Automatic Weather Stations (AWSs)

Province Station Code

Cadiz Villamartín 1

Cordoba Adamuz 2

Baena 3

Belmez 4

Cabra 5

Córdoba 6

El Carpio 7

Hinojosa del Duque 8

Hornachuelos 9

Palma del Río 10

Santaella 11

Granada Loja 12

Pinos Puente 13

Jaen Alcaudete 14

Chiclana de Segura 15

Jaén 16

Higuera de Arjona 17

Mancha Real 18

Marmolejo 19

Pozo Alcón 20

San José de los Propios 21

Santo Tomé 22

Malaga Antequera 23

Archidona 24

Pizarra 25

Sierra de Yeguas 26

Seville Écija 27

Osuna 28
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the fit of regression models to predict the content in fatty acids of 
EVOO as a function of (scalar or functional) NIR and agro-climatic 
data, considering the values obtained by GC as a reference. These 
models initially contain only NIR information, and then, one of the six 
agro-climatic variables is also included among the regressors. All these 
models are contemplated by a scalar and a functional point of view of 
the explanatory variables (the response is always scalar), with the aim 
of comparing the obtained results. The goodness of fit of the models 
is measured by either RMSE (i.e., the root of the squared differences 
between observed and estimated values) or DRMSE (obtained by di-
viding RMSE and the mean of the observed values). DRMSE eliminates 
the effect of the measurement units and so facilitates the comparison 
between statistical models. Obviously, the goodness of fit or reliability 
of models is better as RMSE (or DRMSE) approaches zero.

Moreover, the fact that the number of explanatory variables 
greatly overcomes the number of cases origins the appearance of 
multicollinearity (or collinearity). This situation is incompatible with 
the hypothesis of uncorrelation of general linear models (regression 
models, in particular) and provides coefficients estimates being unsta-
ble before any little change. For that reason, to avoid the presence of 
multicollinearity, the information contained in (NIR or agro-climatic) 
data can be condensed in a few components or latent factors. With 
this goal, this work uses principal component analysis, a multivariate 

statistical technique which calculates, from the predictor, a reduced 
number of components or factors, orthogonal between themselves, 
by maximizing their internal variance. The above-mentioned predictors 
(NIR spectra and agro-climatic curves) can be considered from a scalar 
or functional view, resulting principal component analysis (PCA) or the 
corresponding functional version (FPCA, where the functional data are 
represented by a orthogonal basis of functional principal components). 
The objective is not only to reduce the dimensionality of high-dimen-
sional data sets on a reduced number of components displaying them 
in a space of a less dimension than but also, fundamentally, to use these 
PCA and FPCA components to predict the fatty acid profile of EVOO 
in regression models.

Furthermore, the literature includes many works analyzing the op-
timal number to be retained in principal component analysis (Saccenti 
& Camacho, 2015; Vitale et al., 2017). Some of them consider the pos-
sibility of progressively including components in the model until one 
does not significantly increase the explained variability of data. In par-
ticular, the classical and ad hoc Kaiser's rule (by default in many statis-
tical software) suggests that those factors explaining a percentage of 
variability equal or higher than 10 (technically, with eigenvalues equal 
or higher than 1) should be retained. Some authors do not recommend 
using this cutoff criterion as it constitutes a case-specific strategy (not 
easily generalizable for data of various nature), and it tends to extract 
too many factors and so over-extracts components. The overfitting of 
statistical models is not recommended as it could introduce noise in the 
regression coefficients and cause some problems in the verification of 
hypotheses of linear models (Hawkins, 2004). Other more recently 
developed strategies are based in cross-validation. These computa-
tional criteria are completely data-driven and distribution-free, but 
they sometimes do not discriminate relevant from noisy components 
and lead to an excessive time and memory consumption. As the most 
of the established criteria have an empirical character, provided very 
different results, and are not unanimously applied, this work does not 
fix the number of factors. Therefore, PCA and FPCA components are 
progressively introduced in regression models and RMSE is calculated 
as a function of the number and the type (NIR and agro-climatic) of the 

F I G U R E  2   Agro-climatic spectra for 
the 28 AWSs

F I G U R E  3   Phenological cycle of the olive grove
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components included in the model, in order to analyze the evolution of 
the corresponding regression errors. Finally, the results are compared 
taking into account the recommendations of the literature to avoid the 
overfitting.

Regarding the software, the R-project (Team RC, 2018) has been 
used to connect the databases of NIR and agro-climatic curves; 
then, the packages of “pls” (Wehrens & Mevik, 2007), “fda” (Ramsay, 
Wickham, Graves, & Hooker, 2010), and “fda.usc” (Febrero-Bande, 
& Oviedo de la Fuente, 2012) have been used to fit the scalar and 
functional statistical models. The Supplementary Material contains 
the code of the R-project programs.

3  | RESULTS AND DISCUSSION

In this section, regression models are fit to predict the fatty acids 
profile of EVOO (obtained by GC as a reference), firstly, as a func-
tion of the NIR information and, secondly, when the agro-climatic 
daily data are added to the model. NIR spectra and agro-climatic 
curves are treated by scalar and functional points of view, being in 
both cases summarized by principal component analysis (PCA and 
FPCA, respectively). The goodness of fit of the statistical models is 
compared by using DRMSE and taking into account de number of 
components retained in the model.

In order to determine the number of (scalar or functional) princi-
pal components to be retained, Table 3 includes this optimal number 
of components when a classical ad hoc (Kaiser's rule) or a computa-
tional (cross-validation) criterion is considered. Both PCA and FPCA 
regressions are contemplated, when either only NIR or also agro-cli-
matic information is added. The results for the classical criterion 
are different to the results for the actual criterion, but, in general, 
the results suggest that, in general, to retain more than around ten 
components could cause overfitting in the regression model. For this 
reason, the following figures contemplate de-evolution in DRMSE 
when PCA and FPCA components, from one to ten, are introduced 
in the regression models.

Figure 4 shows DRMSE in the estimation of SFAs, MUFAs, 
and PUFAs when NIR spectral information is considered by scalar 
and functional approaches. The graphics can be overlapped and 

compared because DRMSE is dimensionless, independent of the 
units of measurement. The following conclusions can be obtained 
from the observation of Figure 4:

• The more accurate estimations are obtained for MUFAs (green 
lines) fatty acids, and less reliable estimations are provided for 
PUFAs (blue lines). The differences are even more significant 
when the number of components in the model is low. In fact, 
DRMSE is quite stable in the estimations of MUFAs and PUFAs, 
with a slight improvement with the introduction of (PCA or FPCA) 
components in the models. The situation for PUFAs is the op-
posite as the estimations have a high corresponding DRMSE ini-
tially, and it decreases with the introduction of components in the 
models.

• For each fatty acid, the goodness of fit of estimations from the 
PCA and FPCA regression models is quite similar and, so, the 
treatment of NIR data by a functional view does not improve the 
estimations obtained by their scalar view when only chemical 
spectral data are used.

Figures 5‒7 depict DRMSE in the estimations of SFAs, MUFAs, 
and PUFAs fatty acids of EVOO by using only NIR spectral informa-
tion (black lines) or also adding a specific agro-climatic information 

TA B L E  3   Optimal number of components by considering classical and actual criteriaa

 N. comp in PCA regression N. Comp in FPCA regression

Spectral information Kaiser's rule Cross-validation Kaiser's rule Cross-validation

NIR NIR 4 7 3 6

NIR + AGR NIR + TEMP 7 6 7 7

NIR + HUM 9 10 9 8

NIR + WSPE 10 11 10 11

NIR + RAD 8 10 8 10

NIR + PRECIP 11 10 11 8

NIR + ETo 10 11 10 9

aIn all cases, the percentage of variability of data explained by the selected components is greater than 85%. 

F I G U R E  4   DRMSE in SFA, MUFA, and PUFA estimations by 
PCA* and FPCA** regression models from NIR data
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(the remaining lines): temperature (red), humidity (green), wind 
speed (dark blue), radiation (light blue), precipitation (pink), or evapo-
transpiration (yellow). In each case, both set of data are treated from 
a scalar (thin lines) or functional (thick lines) point of view in other 
to fit the corresponding PCA or FPCA regression models. The main 
conclusions are as follows:

• In general, the goodness of fit of the estimations of SFAs, MUFAs, 
and PUFAs is better when the agro-climatic information (in ad-
dition to the NIR one) is also included. Only in the estimation of 
PUFAs fatty acids, when the number of components is progres-
sively increased, the best estimations are obtained from models 
only containing NIR information.

• Also in general terms, the goodness of fit of the three types of 
fatty acids is better when data (NIR or agro-climatic) are treated 

from a functional approach for a low number of components (in 
FPCA regression).

• Taking into account, the differences between the type of 
agro-climatic information included in the regression models, for 
a low number of components, evapotranspiration (yellow line), 
temperature (red line), and precipitation (pink line), are the vari-
ables providing the first significant reduction in SFAs DRMSE. In 
the case of MUFAs and PUFAs DRMSE, the most relevant vari-
ables (because of the corresponding decrease in DRMSE) are the 
evapotranspiration (yellow line) and wind speed (dark blue line).

Finally, Figures S1–S3 in Appendix (see Supplementary Material) 
shows DRMSE associated with some disaggregated fatty acids, namely 
palmitic and stearic (SFAs fatty acids), palmitoleic and oleic (MUFAs), 
and linoleic and linolenic (PUFAs). Their particular estimation is signif-
icant in order to analyze the traceability and purity of olive oils as the 
limit values for fatty acids established by the EU Commission Delegated 
Regulation (2016) and the International Olive Council (2012), periodi-
cally updated, are fixed for disaggregated (not aggregated in SFAs, 
MUFAs, and PUFAs) fatty acids. Nevertheless, the aspect of the 
graphic for the disaggregated acid is quite similar to the corresponding 
aggregated one. The following conclusions can be obtained:

• In an individual interpretation of the graphics, in general lines, 
the conclusions for the disaggregated fatty acids are similar to 
the ones obtained for SFAs, MUFAs, and PUFAs: functional PCA 
regression models including NIR and agro-climatic (mainly, tem-
perature, or evapotranspiration) information provide the best 
goodness of fit. Only in the case of linoleic and linolenic (as for 
PUFAs fatty acids, in general), the situation is the opposite for a 
number of components greater than seven–eight (a higher num-
ber than recommended to avoid overfitting in Table 3).

• As dimensionless RMSE (DRMSE) are represented in y-axis with 
the same range (0 to 0.4), the values for the different graphics can 

F I G U R E  5   RMSE in SFA estimations by PCA* and FPCA** 
regression models from NIR and agro-climatic data

F I G U R E  6   RMSE in MUFA estimations by PCA* and FPCA** 
regression models from NIR and agro-climatic data

F I G U R E  7   RMSE in MUFA estimations by PCA* and FPCA** 
regression models from NIR and agro-climatic data
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be compared. Although Figure 4 depicts that the most accuracy 
is associated with MUFAs estimations, there is a great difference 
in the DRMSE associated with the disaggregated palmitoleic and 
oleic acids, being better the estimations of the last one. In fact, 
oleic estimations are the best among all the disaggregated fatty 
acids estimations. The minor difference exits between SFAs (pal-
mitic and stearic) acids. The estimations for linoleic and linolenic 
(PUFAs acids) are quite different too.

4  | CONCLUSIONS

Last years, fast, reliable, and cost-effective analytical procedures 
have been established in studies about purity, authentication, and 
traceability of olive oils. In this sense, NIR spectra have been ha-
bitually used, in combination with chemometrics, to determine in-
teresting qualitative and quantitative information about olive oils. 
Moreover, the literature contains many works analyzing the influ-
ence of agro-climatic conditions on food components, in general, 
and on olive oils, in particular. But all these works contemplate 
this agro-climatic information as a factor, a non-numerical variable. 
Furthermore, FDA actually constitutes an active field of investiga-
tion in data science, being used with chemical data, in particular, 
with NIR spectra. Nevertheless, FDA has not been applied to olive 
oil data.

Therefore, this work highlights that NIR spectra are partic-
ularly useful to estimate MUFAs fatty acids (in particular, oleic 
fatty acid). But the reliability or goodness of fit of all fatty acids 
predictions (SFAs, MUFA, PUFA, and for the disaggregated fatty 
acids: palmitic, stearic, palmitoleic, oleic, linolenic, and linole-
nic) can be improved by adding agro-climatic data (specially, 
temperature and evapotranspiration) in the regression models. 
The high-dimensional information contained in NIR spectra and 
agro-climatic curves is summarized by using principal components 
analysis, where both scalar and functional approaches are used. 
The corresponding PCA and FPCA components are progressively 
introduced in regression models, whose goodness of fit is mea-
sured by DRMSE (dimensionless RMSE, useful in comparisons). 
The classical Kaiser's rule and the actual cross-validation have 
been applied to determine the optimal number of components to 
be retained in the regression models (being obtained, in general, 
values around ten). The results show how the functional point of 
view and the use of both NIR and agro-climatic information is bet-
ter in the estimation of the fatty acids profile for a low number of 
components, the ideal situation to avoid the overfitting. Finally, 
as the International Olive Council (2012) establishes the char-
acteristics of purity criteria for olive oils by using disaggregated 
fatty acids (see Table 1), DRMSE is depicted for palmitic, stearic, 
palmitoleic, oleic, linolenic, and linolenic fatty acids under the 
same previous assumptions. Although MUFAs estimations are, in 
general, the best, the disaggregated estimations for palmitoleic 
and oleic are different in reliability, being the last ones consider-
ably better in goodness of fit.
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