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The involvement of mitochondrial dysfunction in the pathophysiology of attention-deficit 
hyperactivity disorder (ADHD) has been suggested in several reports. Mitochondrial DNA 
(mtDNA) copy number as well as methylation of the D-loop region and peroxisome-
proliferator-activated receptor γ co-activator-1α (PPARGC1A) are considered biomarkers 
for mitochondrial dysfunction. We compared the mtDNA copy number and methylation 
ratio of the D-loop region and PPARGC1A between ADHD patients and controls and 
also among ADHD subtypes. The present study included 70 subjects with ADHD and 
70 age- and gender-matched healthy controls (HCs). We measured the relative mtDNA 
copy number in peripheral blood cells using quantitative polymerase chain reaction 
(qPCR), and the methylation ratio was measured using methylation-specific PCR (MSP) 
after bisulfite conversion. The relative mtDNA copy number was significantly higher in 
ADHD patients than in HCs ( p = 0.028). The mtDNA methylation ratio of PPARGC1A 
was decreased in ADHD patients compared with HCs ( p = 0.008). After adjusting for 
IQ level, only the mtDNA copy number differed between the ADHD and HCs ( p = 0.01). 
There was a significant difference in the methylation ratio of PPARGC1A among ADHD 
subtypes. These results suggest the possible involvement of mitochondrial dysfunction in 
the pathophysiology of ADHD. Further large cohort studies investigating the correlation 
between clinical markers and biomarkers of mitochondrial dysfunction are warranted.

Keywords: attention-deficit hyperactivity disorder (ADHD), mitochondrial dysfunction, mitochondrial DNA 
(mtDNA), peroxisome-proliferator-activated receptor γ co-activator-1α, DNA methylation

INTRODUCTION

Attention-deficit hyperactivity disorder (ADHD) is a highly prevalent and persistent 
neurodevelopmental disorder characterized by developmentally inappropriate symptoms of 
inattention, hyperactivity, and/or impulsivity (1). ADHD has an estimated heritability of 76% (2) 
and appears to be a complex polygenic disorder influenced by various genetic and environmental 
factors. Most of the genetic studies on ADHD have focused on dopaminergic and noradrenergic 
genes (3); however, the findings of these studies are inconsistent and explain only a small proportion 
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of the genetic factors in ADHD (3). Currently, the biological 
mechanism underlying ADHD pathophysiology is largely 
unknown (4).

Reportedly, mitochondrial dysfunction is involved in the 
pathogenesis of various psychiatric disorders (5–7). Mitochondria 
are specialized subcellular organelles that contribute to aerobic 
ATP generation through oxidative phosphorylation for 
energy metabolism (8). It also plays crucial roles in calcium 
signaling, which is involved in exocytosis, synaptic plasticity, 
and the generation of reactive oxygen species (ROS) in the 
brain (9, 10). Mitochondria have been implicated in multiple 
neurodevelopmental processes central to synaptopathies, 
including neuronal differentiation (11), process outgrowth (12), 
cortical migration (13), and synaptogenesis (14).

Several recent studies showed that mitochondrial dysfunction 
underlies ADHD pathogenesis. In one previous study, lower 
mitochondrial respiration, lower ATPase 6/8 transcripts levels, 
reduced mitochondrial complex V activity, loss of mitochondrial 
membrane potential, and elevated oxidative stress in ADHD 
cybrids were reported (15). Another study showed a significant 
association of mtDNA 10398 A/G polymorphism with ADHD 
in Korean children (10). In animal studies, inhibition of the 
mitochondrial respiratory chain in the brain was observed 
following administration of methylphenidate (16). However, 
to date, research regarding the role of mitochondria in the 
development of ADHD is very limited.

Mitochondria contain their own genome, i.e., the 
mitochondrial DNA (mtDNA), which encodes essential subunits 
of the respiratory chain wherein electrons are combined with 
oxygen to allow the flow of energy through mitochondria (17). 
MtDNA is highly prone to mutations caused by low-fidelity 
DNA polymerase activity (18), lack of protective histones, 
and continuous exposure to the mutagenic effects of oxygen 
radicals (19). MtDNA copy number is a strong biomarker for 
mitochondrial dysfunction, since it may be increased with 
mtDNA damage or mitochondrial dysfunction to compensate 
for mitochondrial energy metabolism (20). However, to date, 
changes in mtDNA copy number in ADHD patients have not 
been investigated.

The D-loop, 1,124 bp in size (positions 16024-576) is a non-
coding region that acts as a promoter of both the heavy and 
light strands of mtDNA and contains essential transcription and 
replication elements (21). The D-loop region is also a hotspot for 
mtDNA alterations (21). The peroxisome-proliferator-activated 
receptor γ co-activator-1α (PPARGC1A) is a co-transcriptional 
regulation factor involved in the induction of mitochondrial 
biogenesis. It activates several transcription factors like the 
nuclear respiratory factor 1 and nuclear respiratory factor 2, 
which in turn activate mitochondrial transcription factor A (22). 
The latter drives the transcription and replication of mtDNA 
(23). The methylation ratio of these two regions could also be 
considered a biomarker of mitochondrial dysfunction.

In this study, the mtDNA copy number and methylation ratios 
of the D-loop region and PPARGC1A were compared between 
ADHD subjects and healthy controls (HCs). We used an age- 
and gender-matched sample to control for biases caused by age 
and gender. We hypothesized that 1) the mtDNA copy number 

would be increased and 2) the methylation ratios of the D-loop 
region and PPARGC1A would be decreased in the ADHD 
group, leading to increased gene expression to compensate for 
mitrochondrial dysfunction.

METHODS

Participants
Kim et al. (24) provides a description of the detailed recruitment 
protocol of this study. The recruitment period of 6–17-year-
old ADHD and HCs was August 2010 to February 2015. The 
participants from two studies with the same study protocol 
were combined in the final analysis. In the first study, 90 ADHD 
patients and 33 HCs were initially recruited, and 1 HC subject 
was excluded for reason of missing genetic data (25). Among the 
191 ADHD patients and 78 HCs recruited in the second study, 
18 ADHD and 11 HCs were excluded due to missing genetic data 
(26). Consequently, the final number of total subjects included 
was 263 ADHD patients and 99 HCs. As the ADHD and HC 
groups differed in age and gender distribution, we further 
matched the ADHD group to the HC group based on age and 
gender. This resulted in 70 participants each in the ADHD and 
HC groups.

ADHD patients were recruited from the outpatient clinic 
of Seoul National University Hospital. Board-certified child 
and adolescent psychiatrists confirmed psychiatric diagnoses 
according to the Diagnostic and Statistical Manual of Mental 
Disorders, Fourth Edition (DSM-IV) criteria using the Korean 
Kiddie Schedule for Affective Disorders and Schizophrenia, 
Present and Lifetime version (K-SADS-PL) (27, 28). Exclusion 
criteria for ADHD patients were as follows: intelligence 
quotient (IQ) below 70; a hereditary genetic disorder; current 
or past history of brain trauma, organic brain disorder, seizure, 
or any neurological disorder; autism spectrum disorder, 
communication disorder or learning disorder; schizophrenia or 
any other childhood-onset psychotic disorder; major depressive 
disorder or bipolar disorder; Tourette’s syndrome or a chronic 
motor/vocal tic disorder; and obsessive compulsive disorder or 
a history of methylphenidate treatment lasting over 1 year or 
having taken the drug within the past 4 weeks. The HC group 
consisted of youth free of any psychiatric diagnoses based on the 
K-SADS-PL interview. The exclusion criteria for the HC group 
was the same as that for the ADHD group, with an additional 
criterion of a diagnosis of ADHD. IQ was measured using 
the Korean Educational Developmental Institute’s Wechsler 
Intelligence Scale for Children (29).

We used the parent-report Korean version of the ADHD 
Rating Scale-IV (ADHD-RS) to assess the severity of ADHD 
symptoms (30). The ADHD-RS includes 18 items, each item rated 
on a scale from 0 to 3. Total scores range from 0 to 54, higher 
scores implicating a greater severity. Nine items correspond to 
inattention symptoms, and nine correspond to hyperactivity–
impulsivity symptoms (31).

Written informed consent was obtained from legal guardians 
and adolescent participants; child participants provided verbal 
consent after thorough explanation of the study. All study 
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protocols were reviewed by the Institutional Review Board of 
Seoul National University Hospital, Seoul, Korea.

Measurement of mtDNA Copy Number
The mtDNA copy number was evaluated based on the ratio of 
mtDNA to nuclear DNA. The mtDNA and nuclear DNA were 
quantified based on the mitochondrial gene, cytochrome b 
(CYTB), and the single-copy nuclear pyruvate kinase (PK) 
gene, respectively. The relative amounts of mtDNA and nuclear 
DNA were measured using quantitative polymerase chain 
reaction (qPCR) with the primers reported by Yoo et al. (32). 
The primers for the CYTB gene were forward 5’-CACGA 
TTCTTTACCTTTCACTTCATC-3’ and reverse 5’-TGATCCC 
GTTTCGTGCAAG-3’. The primers for the PK gene were forward 
5’-AGCCCAAATGGCCTTGAAG-3’ and reverse 5’-AGAGACA 
GAATGCCAGTGAGCTT-3’. Genomic DNA (20 ng) was used 
as template per 10 µl reaction with IQ SYBR Green Supermix 
(Bio-Rad Laboratories, Korea) in qPCR (Bio-Rad Laboratories). 
The qPCR conditions were as follows: 95°C for 10 min (pre-
denaturation) and 40 cycles of two steps, i.e., 95°C for 15 s 
(denaturation) and 60°C for 1 min (annealing and extension). 
Each sample was performed in duplicate, and the acceptable 
standard deviation (SD) of the duplicate threshold cycle 
(∆Ct) values was set at 0.7. The run was repeated in cases of 
unacceptable SD values. The relative mtDNA copy number was 
calculated using the equation 2−∆∆Ct (∆Ct = CtmtDNA CYTB − CtPK) 
according to a previous report (32).

Bisulfite Modification of DNA and 
Methylation-Specific Polymerase Chain 
Reaction (MSP)
Genomic DNA (200–500 ng) was prepared for bisulfite conversion 
according to the manufacturer’s instructions (EpiJET Bisulfite 
conversion kit). The technique was based on bisulfite treatment 
of genomic DNA, which converts all unmethylated cytosines to 
uracils, whereas methylated cytosines remain as cytosines. The 
bisulfite-converted DNA was used as the template for methylation-
specific polymerase chain reaction (MSP) to determine the 
DNA methylation state of PPARGC1A promoter and D-loop 
region of mitochondria. The methylated or unmethylated DNA 
was quantified using primers of the PPARGC1A promoter and 
D-loop regions, as described by Sookoian et al. (33) and Zheng 
et al. (34), respectively (33, 34). The primer sequences were as 
follows: for the methylated DNA of the PPARGC1A promoter, 
forward primer 5’-ATTTTTTATTGTTATGGGGGTAGTC-3’ and 
reverse primer 5’-AAAAATATTTAAAAACGCAAACGAA-3’; 
for the unmethylated DNA of PPARGC1A promoter, forward 
primer 5’-TTTTATTGTTATGGGGGTAGTTGA-3’ and reverse 
primer 5’-AAAAAATATTTAAAAACACAAACAAA-3’; for the  
methylated DNA of D-loop region, forward primer 5’-TAGGA 
ATTAAAGATAGATATTGCGA-3’ and reverse primer 5’-ACTC 
TCCATACATTTAATATTTTCGTC-3’; and for the unmethylated  
DNA of D-loop region, forward primer 5’-GGTAGGAATTAAA 
GATAGATATTGTGA-3’ and reverse primer 5’-ACTCTCCATAC 
ATTTAATATTTTCATC-3’. The PCR conditions are presented in 
Table S1. The qPCR (Bio-Rad Laboratories) was performed using 

IQ SYBR Green Supermix (Bio-Rad Laboratories). Each sample 
was performed in duplicate using 20 ng converted DNA per 
10  µl reaction. The acceptable SD of the ∆Ct values was set at 
0.7. The level of methylated DNA was expressed as the ratio of 
the estimated amount of methylated DNA to unmethylated DNA 
level and calculated for each sample using the equation 2−∆∆Ct 
(∆Ct = Ctmethyl − Ctunmethyl).

Statistical Analyses
Independent t-tests for continuous variables and chi-square 
or Fisher’s exact tests for categorical variables were used for 
comparison of the demographic and clinical characteristics 
between the ADHD and HC groups.

Comparison of the mtDNA copy number, the methylation 
ratio of PPARGC1A gene promoter, and the methylation ratio 
of the D-loop region between the ADHD and HC groups was 
performed using Mann–Whitney U tests and also among ADHD 
subtypes using Kruskal–Wallis tests because the variables did 
not follow a normal distribution. As there was a significant 
difference in IQ score between the ADHD and HC groups, we 
applied ranked ANCOVA to compare the mtDNA copy number, 
the methylation ratio of PPARGC1A gene promoter, and the 
methylation ratio of the D-loop region between the two groups. 
Linear regression analyses were conducted to investigate the 
association between mitochondrial biomarkers and ADHD-RS 
variables, with IQ as a covariate. All statistical analyses were 
performed using SPSS (ver. 22.0; SPSS Inc., Chicago, IL, USA) 
and Prism 7 software (GraphPad Software, Inc., La Jolla, CA, 
USA). Statistical significance was set at a probability level of 
p < 0.05.

RESULTS

Table S2 contains the demographic and clinical characteristics 
of the 263 ADHD patients and 99 HCs. Significant differences in 
age and gender existed between the ADHD and HC groups (p < 
0.001), but these were compensated for in the analyses by our 
age- and gender-matched sample. The demographic and clinical 
characteristics of the age- and gender-matched ADHD and HC 
groups are presented in Table 1. The IQ level was lower in ADHD 
patients than in HCs, but no differences in age, gender, maternal 
and paternal education levels, or family income were observed 
between the two groups.

The mtDNA copy number in the blood samples was 
significantly increased in the ADHD group compared with the 
HC group (p = 0.028; Figure 1). In the DNA methylation ratio 
study, the ADHD group showed a lower methylation ratio than 
the HC group at the PPARGC1A promoter region (p = 0.008; 
Figure 2A). No significant difference was observed in the DNA 
methylation ratio of the D-loop region between the ADHD 
and HC groups (Figure 2B). After adding IQ as a covariate, 
the statistical difference of the mtDNA copy number between 
the two groups remained significant (p = 0.01), but there was 
no significant difference in the DNA methylation ratio of the 
PPARGC1A promoter region and the D-loop region.
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There were no significant differences in mtDNA copy number 
and the methylation ratio of the D-loop region among subtypes 
in the ADHD group (p = 0.894 and p = 0.802, respectively). 
There was a significant difference in the methylation ratio of 
the PPARGC1A promoter region among ADHD subtypes (p = 
0.030; inattentive subtype 0.17 ± 0.09, hyperactive–impulsive 
subtype 0.12 ± 0.03, combined subtype 0.23 ± 0.12, not-
otherwise specified subtype 0.20 ± 0.12). These results remained 
significant when excluding the not-otherwise specified subtype 
(p = 0.019). No significant associations were observed between 
mitochondrial biomarkers and variables of ADHD-RS (Table 2).

DISCUSSION

In the present study, mtDNA copy numbers were compared for the 
first time between ADHD patients and healthy youth. The mtDNA 
copy number was increased in the ADHD group compared with the 
HC group, even after adjusting for IQ. Regulation of mtDNA copy 
number is essential for cells to meet their energy requirements, 
especially for those requiring high energy such as neurons. 
Therefore, an increased mtDNA copy number may be induced by 
a compensatory mechanism against mitochondrial dysfunction 

arising from genetic and/or environmental causes (20). The relative 
mtDNA copy number did not show any significant associations 
with the variables of the ADHD-RS, possibly due to the lack of 
adequate statistical power to detect an association, or because the 
mtDNA copy number has no direct impact on the clinical features 
of ADHD. Further studies with larger samples are warranted.

TABLE 1 | Demographic and clinical characteristics of the age- and gender-matched attention-deficit hyperactivity disorder (ADHD) and healthy control (HC) groups.

Characteristic ADHD (n = 70) HC (n = 70) p value

Age (years), mean (SD) 9.8 (2.6) 10.0 (2.6) 0.650
Sex (male), N (%) 44 (62.9) 44 (62.9) 1.000
IQ, mean (SD) 105.7 (12.9) 114.8 (12.1) <0.001
Paternal education, years, mean (SD) 14.8 (1.9) 14.6 (2.6) 0.546
Maternal education, years, mean (SD) 14.7 (2.2) 13.2 (3.5) 0.696
ADHD subtype, N (%)
 Inattentive 25 (35.7)
 Hyperactive–impulsive 22 (31.4)
 Combined type 14 (20)
 NOS 8 (11.4)

ADHD, attention-deficit hyperactivity disorder; HC, healthy control; IQ, intelligence quotient; NOS, not otherwise specified; NS, non-significant.

FIGURE 1 | Comparison of the mitochondrial DNA (mtDNA) to nuclear 
DNA (nDNA) ratio in peripheral blood between attention-deficit hyperactivity 
disorder (ADHD) and control groups.*p < 0.05.

FIGURE 2 | DNA methylation level of PPARGC1A promoter region (A) and 
D-loop region (B). PPARGC1A, peroxisome-proliferator-activated receptor 
γ co-activator-1α; ADHD, attention-deficit hyperactivity disorder. *p < 0.05.
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Recent studies on the role of mitochondrial functions 
in neurodevelopmental disorders have focused on autism 
spectrum disorder (ASD). In several reports, the mtDNA 
copy number was increased in the peripheral blood of ASD 
patients (32). Bioenergetic crisis during brain development, and 
mtDNA mutation or deletion, has been previously suggested 
to cause neurodevelopmental disorders (15); the present study 
may contribute to the mitochondria hypothesis regarding 
neurodevelopmental disorders. Studies on mitochondrial genetic 
brain function are scarce. Heteroplasmic mice (which refers to 
generation of mice containing an equal mixture of two different 
types of mtDNA) exhibited impaired memory retention capacity 
(35). These results suggests connection between subtle changes 
in mtDNA and broad effects on brain function.

One mechanism leading to increased mtDNA copy number 
is increased oxidative stress (36). Although studies on oxidative 
stress in ADHD have been inconsistent, several studies have 
reported elevated oxidative stress in ADHD patients (37–39). 
Increases in oxidant levels could be linked to the pathophysiology 
of ADHD by impairment of dopamine structure and function 
(40). For example, mitochonridal dysfunction could lead to 
elevated levels of hydrogen peroxide (H2O2), which suppresses 
striatal dopamine release (41), leading to the dopamine 
deficiency found in ADHD. Dopamine is easily oxidized and 
generates highly reactive metabolites, such as dopamine quinine, 
causing a viscous cycle of further mitochondrial dysfunction and 
oxidative stress (42).

In the present study, decreased methylation at the promoter 
region of PPARGC1A in ADHD patients compared with controls 
was reported for the first time. The PPARGC1A controls the 
production of mitochondrial proteins and is considered the 
master regulator of mitochondrial biogenesis (43). Recently, 
PPARGC1A has been implicated in dopamine neuronal function 
and viability (44). However, there was no difference in the level 
of methylation of PPARGC1A after adjustment for IQ. Defective 
mitochondrial energy production and the resulting increased 
levels of free radicals have been indicated to be culprits in 
intellectual-disability-related diseases like Down, Rett, and 
Fragile X syndrome (45). Although individuals with intellectual 
disability were excluded from our study, our results suggest that 
methylation ratio of the PPARGC1A is associated with IQ raher 
than ADHD per se. The D-loop region is critical in controlling 
the replication of mtDNA and transcription and organization of 
the mitochondrial nucleoid (46). The methylation ratio of the 
D-loop region was not different between the ADHD patients and 

HCs. This may be due to the small sample size or to a possible 
lack of cytosine methylation in the mitochondrial genome; 
in a previous study, an artifact of mtDNA bisulfite sequencing 
was identified that can lead to an overestimation of mtDNA 
methylation levels (47).

This study had several limitations. First, the relatively small 
sample size may have limited the statistical power of the results. 
Second, we included all subtypes of ADHD due to the limited 
sample size so that the study group was heterogeneous in terms 
of various behavioral characteristics. Moreover, there was a 
significant difference in the methylation ratio of the PPARGC1A 
gene promoter among ADHD subtypes. Further studies with 
larger sample sizes are warranted to clarify the effect of subtypes 
on the results. The case-control study design may also have 
resulted in population stratification. Moreover, we analyzed 
peripheral blood, whereas brain tissues are considered the 
standard target tissues for psychiatric disorders. However, 
the mtDNA copy number in peripheral blood was shown to 
correlate with the mtDNA copy number in brain tissues in mice 
(48). Further studies investigating the change of mitochondrial 
biomarkers in brain tissues are warranted to confirm the results 
of this study. In addition, MSP was performed with just one 
methylation site in the promoter region of the PPARGC1A gene 
and D-loop region, and this method could not encompass the 
other methylation sites and mitochondrial biogenesis-related 
genes. Finally, our study only included Korean children and 
adolescents, which may limit the generalizability of the results 
to other ethnic populations.

In sum, we observed an elevated mtDNA copy number 
in ADHD patients compared with HCs. The results from the 
present study indicate the possible involvement of mitochondrial 
dysfunction in the pathophysiology of ADHD. Further studies 
with larger cohorts investigating the correlation between 
clinical markers and biomarkers of mitochondrial dysfunction 
are warranted to help further elucidate the clinical role of 
mitochondrial dysfunction in ADHD.
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