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Atherosclerotic carotid plaques have been shown to be closely associated with the risk of stroke. Since patients with symptomatic
carotid plaques have a greater risk for stroke, stroke risk stratification based on the classification of carotid plaques into
symptomatic or asymptomatic types is crucial in diagnosis, treatment planning, and medical treatment monitoring. A deep
learning technique would be a good choice for implementing classification. Usually, to acquire a high-accuracy classification, a
specific network architecture needs to be designed for a given classification task. In this study, we propose an object-specific
four-path network (OSFP-Net) for stroke risk assessment by integrating ultrasound carotid plaques in both transverse and
longitudinal sections of the bilateral carotid arteries. Each path of the OSFP-Net comprises of a feature extraction subnetwork
(FE) and a feature downsampling subnetwork (FD). The FEs in the four paths use the same network structure to automatically
extract features from ultrasound images of carotid plaques. The FDs use different object-specific pooling strategies for feature
downsampling based on the observation that the sizes and shapes in the feature maps obtained from FEs should be different.
The object-specific pooling strategies enable the network to accept arbitrarily sized carotid plaques as input and to capture a
more informative context for improving the classification accuracy. Extensive experimental studies on a clinical dataset
consisting of 333 subjects with 1332 carotid plaques show the superiority of our OSFP-Net against several state-of-the-art deep
learning-based methods. The experimental results demonstrate better clinical agreement between the ground truth and the
prediction, which indicates its great potential for use as a risk stratification and as a monitoring tool in the management of
patients at risk for stroke.

1. Introduction

Ischemic stroke is one of the leading causes of mortality and
disability worldwide, and its prevalence is increasing yearly,
leading to a large financial burden on society and families [1,
2]. The prevention and management of patients at risk for
ischemic stroke have become a critical issue over the past
few years [3–6]. Carotid plaque is identified as one of the
main sources of ischemic stroke. The rupture of unstable

carotid plaques and the subsequent cascade can lead to
thrombosis and subsequent cerebral emboli, which block
the downstream blood vessels and result in ischemic stroke
[7]. Thus, the instability of carotid plaques is related to the
probability of the occurrence of stroke [8–12]. These find-
ings have led to explorations of the factors that lead to pla-
que vulnerability, such as intraplaque hemorrhage and
other plaque characteristics, and are of great clinical signifi-
cance for identifying patients at high risk versus low risk.
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Furthermore, identifying patients at risk would be beneficial
in assessing the effects of medical treatment and improving
their management, thus, preventing stroke [13].

Ultrasound (US) imaging is a preferred modality for
detecting carotid atherosclerotic plaques due to its advan-
tages of being nonionizing, low cost, real-time imaging,
and user-friendly. It is convenient to use B-mode ultrasound
(BUS) for monitoring plaque regression and progression in
response to medical therapy [14, 15] and evaluating the risk
of atherosclerotic events [16]. Over the past decades, many
studies have focused on plaque characterization by finding
and quantifying carotid plaque features for the evaluation
of the risk for an atherosclerotic event [17, 18]. Mathiesen
et al. carried out a longitudinal population-based study and
found that the total plaque area (TPA) appears to be a stron-
ger risk predictor than intima-media thickness (IMT) for a
first-ever ischemic stroke [10] [19]. With the development
of three-dimensional (3D) ultrasound technology, total pla-
que volume (TPV), as a 3D feature of plaque, emerged [20,
21]. Wannarong et al. measured the TPV, TPA, and IMT
in 349 patients and concluded that the measurement of
TPV is superior to both IMT and TPA for assessment of
the response to antiatherosclerotic therapy [11]. Alternative
carotid plaque metrics such as large lipid cores, ulceration,
and intraplaque hemorrhage are believed to be related to
plaque vulnerability, and calcification is related to their sta-
bility [20, 22]. Sun et al. found that high lipid content and
rupture of the fibrous cap of carotid plaques were strongly
associated with systemic atherothrombotic risk, whereas
high calcification content had no significant relationship
with risk [23]. The echogenicity analysis of plaques can pro-
vide information on plaque composition since calcification
and fibrous tissue are present as hyperechoic and other com-
ponents as hypoechoic in ultrasound images [24]. Huang
et al. developed a computer-aided method for identifying
echolucent plaques from three types of plaques and obtained
a classification accuracy of 77.46% and the area under the
curve of 0.83, potentially improving the power of risk pre-
diction of acute cerebral atherosclerotic events by ultraso-
nography [25].

Plaque texture features can also provide information for
risk assessment, and the methods of extracting textural fea-
tures from carotid plaques in ultrasound images have been
widely used. Acharya et al. described a computer-aided diag-
nosis (CAD) system which analyzed ultrasound images and
classified them into symptomatic and asymptomatic based
on the textural features [26]. Then, Acharya et al. used 32
texture features along with the degree of carotid artery ste-
nosis as a feature set in a support vector machine (SVM)
classifier for the classification of symptomatic vs. asymptom-
atic plaques and obtained an accuracy of 90.66%, sensitivity
of 83.33%, and specificity of 95.39% [27]. In 2017, Araki
et al. proposed a new approach for risk assessment by calcu-
lating 16 gray-scale texture features and feeding them into a
machine learning system. The mean classification accuracy
for all sets of partition protocols for the automated system
in the far and near carotid arterial walls were 95.08% and
93.47%, respectively [28]. Engelen et al. measured 376 sam-
ples of 3D carotid ultrasound plaques in 298 patients at

baseline and a year later concluded that the changes in pla-
que texture were strongly predictive of atherosclerotic
events [12].

All the methods mentioned above mainly use one or
more hand-crafted features to train their respective models
for the classification. These hand-crafted features can only
describe the low-level image features, which may not repre-
sent plaque characterization comprehensively and may not
identify the different carotid plaques in the grayscale ultra-
sound image pattern. Furthermore, the selection and combi-
nation of features from a large number of handcrafted
features are time-consuming, labor-intensive, and subjective,
which results in variations in the methods’ accuracies.

With the evolution of novel and powerful deep learning
(DL) methods, many have been applied to medical image
analysis with great success in tasks such as segmentation,
registration, and classification [29, 30]. Deep learning
methods overcome the difficulty in manual definition and
selection of features. It can automatically extract features
and may mine new and high-level plaque features. Lekadir
et al. proposed a deep learning-based classification method
that utilized a convolutional neural network (CNN) for the
automatic identification of different carotid plaque constitu-
ents, which were used for early risk estimation of atheroscle-
rotic events [31]. They used approximately 90,000 plaque
image patches with a size of 15∗15 pixels extracted from lon-
gitudinal ultrasound images of the carotid arteries as the
input to the network. Experimental results showed a correla-
tion of about 0.90 between the automatic and expert assess-
ments of the lipid core, fibrous cap, and calcified tissue areas
[31]. Kats et al. used the faster region-based convolutional
neural network (Faster R-CNN) model on a small dataset
of 65 images for the detection of carotid plaques in pano-
ramic radiographs and achieved an accuracy of 83%, show-
ing the efficiency of the Faster R-CNN algorithm in plaque
detection task [32]. Furthermore, Faster R-CNN was also
used by Jain et al. for the automated localization of the com-
mon carotid artery in transverse sections in B-mode ultra-
sound images [33]. In another study, Skandha et al.
designed a computer-aided diagnosis (CADx) system con-
sisting of three kinds of deep learning classification para-
digms for cardiovascular/stroke risk stratification using
carotid ultrasound-based delineated plaque [34].

However, most studies characterized carotid plaques
using a single section of either the transverse or longitudinal
carotid ultrasound images. The features extracted from
ultrasound carotid plaques in both transverse and longitudi-
nal sections have the potential to better represent the plaque
characteristics without the need to obtain a 3D ultrasound
image of carotid plaques [35]. In addition, since the degree
of atherosclerosis in each of the bilateral carotid arteries is
different [36], the images from bilateral carotid arteries
may more comprehensively evaluate the progression of
carotid atherosclerosis and more accurately classify the
patients as to their risk for stroke. To this end, we propose
an object-specific four-path network (OSFP-Net) to inte-
grate carotid plaque features of two orthogonal 2D ultra-
sound images obtained from bilateral carotid arterial
ultrasound examinations.
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The OSFP-Net is comprised of four paths, which accept
four carotid plaque images of the bilateral carotid arteries in
transverse and longitudinal sections simultaneously as input.
Each path contains a feature extraction subnetwork (FE) and
a feature downsampling subnetwork (FD). The FEs use the
network of the same structure to automatically extract the
features from carotid plaque images. The FDs use different
object-specific pooling strategies for downsampling based
on the observation that the ultrasound carotid plaque images
in longitudinal and transverse sections have different ana-
tomical shapes and sizes. Since the carotid plaques are of
arbitrary size and are encompassed by an approximate
square in transverse ultrasound images, a spatial pyramid
pooling (SPP) strategy is needed for feature downsampling
[37], which is able to generate a fixed-length representation
regardless of the input size. Similarly, the ultrasound carotid
plaques in longitudinal sections are not only of arbitrary
sizes but also appear elongated. Therefore, the multilevel
strip pooling (MSP) strategy was adopted [38], which can
not only accept inputs of arbitrary sizes but also can enlarge
the receptive field to obtain a long-range informative con-
text. Both object-specific pooling strategies are lightweight
and can serve as efficient add-on blocks to be plugged into
the backbone networks to learn more complementary infor-
mation of plaque images from different sections, which may
help to identify the differences of carotid plaques in patients
that pose a risk for stroke [39]. As a consequence, the pro-
posed method has potential superior performance to several
popular DL-based methods for classification.

The contributions of this work are summarized as
follows:

(1) We propose an OSFP-Net, which consists of four
paths for simultaneous acceptance as input of four
arbitrarily sized plaques in bilateral carotid ultra-
sound images in both transverse and longitudinal
sections. The FE in each path automatically extracts
features for the classification and is designed to
mimic the radiologist in clinical practice by perform-
ing a more comprehensive observation of the carotid
plaques than just one section used in other studies.
In addition, since the elevational and in-plane reso-
lutions of the ultrasound images are different, the
two orthogonal images of carotid plaques provide
complementary morphological information for the
feature representation for carotid plaque
classification

(2) In the FDs, we adopt different object-specific pooling
strategies for the features downsampling based on
the consideration that the sizes in the feature maps
obtained from the four FEs should be different theo-
retically. SPP is suitable for feature downsampling of
carotid plaques in a transverse section, while MSP is
adapted for those in a longitudinal section. Both of
these can accept carotid plaques of arbitrary sizes
and enlarge the receptive field so that they capture
a more informative context to improve the classifica-
tion performance

(3) We experimentally validated our approach demon-
strating that OSFP-Net is able to achieve higher
accuracy for the classification of symptomatic and
asymptomatic subjects on the collected dataset as
an indication of classification of patients with unsta-
ble and stable plaques. The experimental results
demonstrated that OSFP-Net compares favorably to
the baseline and existing popular CNNs

In this paper, Section 2 presents the patient demograph-
ics, data acquisition, the proposed network details, the
experimental setup, and the classification metrics. Section 3
presents the experimental results, the discussion is in Section
4, and the study concludes in Section 5.

2. Materials and Methods

2.1. Patient Demographics, Data Acquisition, and
Preprocessing. Patients with carotid plaques in the study
were imaged in the Department of Neurology and the
Department of Cardiology at ZhongNan Hospital, Wuhan
University, China. A Siemens ACUSON SC2000 ultrasound
imaging system with a 9L4 linear probe (Siemens, Berlin,
Germany) was used to acquire the carotid ultrasound images
by two qualified, experienced physicians (X.C. and X.W have
35 and 13 years of experience, respectively, the two coau-
thors of this paper). Ultrasound imaging of the carotid arter-
ies involved scanning upward from the patient’s clavicle to
detect plaques in the common carotid artery, carotid sinus,
internal carotid artery, and external carotid artery. The
transverse and longitudinal images of the largest plaque area
[10] from the bilateral carotid arteries were acquired, result-
ing in four images for each patient (Figure 1). The study was
approved by the Hospital Institutional Review Board, and
each participating patient was consented. For each patient,
the Framingham clinical data [40] was also collected, includ-
ing the patient’s gender, age, body mass index (BMI), blood
pressure, blood lipids, smoking status, and the history of
atherosclerotic events (Table 1).

Although papers have been published on plaque vulner-
ability using various methods by identifying plaque compo-
sition [31, 32], it is not possible to use an independent
assessment of the risk a carotid plaque poses without follow-
ing patients with carotid atherosclerosis for many years and
scoring those who experienced transient ischemic attacks
(TIA) or strokes that are attributed to carotid plaques. As
an alternative, we used the ultrasound images with carotid
plaques of patients who experienced a cerebrovascular event
and those who did not as surrogate biomarkers of patients
with and without vulnerable plaques. Since atherosclerosis
is a systemic disease, those patients who suffered cerebrovas-
cular events may be due to plaque disruption in other vessels
and most probably have vulnerable plaques in the carotid
arteries [41].

Thus, in our study, symptomatic patients were included
if they had experienced a TIA or ischemic stroke, while
asymptomatic patients were included if they had carotid pla-
ques but did not suffer a stroke or TIA. In total, 333 patients,
including 117 patients with atherosclerotic events and 216
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event-free patients, were analyzed in the study, where four
carotid ultrasound images (the largest plaques of bilateral
carotid arteries in transverse and longitudinal sections) were
acquired for each patient generating a total of 1332 images.

2.2. Plaque Segmentation and Data Augmentation. Region-
of-interest (ROIs) was manually selected in the transverse
sections by removing the background beyond the carotid
adventitia of the vessels as shown in Figures 2(a) and 2(c),
and in longitudinal sections by selecting the ROI that
encompassed the plaque as shown in Figures 2(b) and
2(d). It should be noted that an automatic segmentation
method for carotid plaques has been studied by another
member of our laboratory [42]. Because segmentation is
not the focus of this study, the manual segmentation results
were used as the ROIs. The ROIs of all images had arbitrary
sizes for use in the training and testing.

To increase the sample size of our collected dataset, data
augmentation techniques were used to obtain additional
images [43]. The acquired dataset was augmented using scal-
ing and flipping operations, by scaling factors of 0.8, 0.9, 1.1,
and 1.2 (4-fold increase), and flipping horizontally and ver-
tically (2-fold increase), resulting in a factor of 7 image aug-
mentation, giving a total of 9324 images. This allows an
investigation of the classification performance based on

training the proposed network with or without
augmentation.

2.3. Object-Specific Four-Path Network (OSFP-Net).
Figure 3(a) shows the architecture of OSFP-Net, which was
used for feature extraction and downsampling of the carotid
plaques from the two orthogonal views of the bilateral
carotid arteries ultrasound images. Each path in the OSFP-
Net was composed of two sub-networks: a feature extraction
subnetwork and an object-specific feature downsampling
subnetwork. As shown in Figures 3(c) and 3(d), FDTS was
used to downsample the feature maps obtained from the
carotid plaque images in the transverse sections from both
sides of the patient, while FDLS was used to downsample
the feature maps obtained from the carotid plaque images
in longitudinal sections from both sides of the patient. In
the forward propagation, the four carotid plaque images of
arbitrary sizes are fed into the FEs for feature extraction
and four groups of feature maps with different sizes are
obtained. The outputs of the FEs are then connected to the
FDs to perform feature downsampling. Each FD produces
a vector of fixed length. These vectors are then concatenated
and fed into the fully connected layers for classification. Of
note, the feature maps extracted from OSBP-Net are more
distinct and comprehensive compared with those from a

(a) (b)

(c) (d)

Figure 1: Four different ultrasound images of plaques from a patient. (a) Transverse section of a plaque in the left carotid artery; (b)
longitudinal section of a plaque in the left carotid artery; (c) transverse section of a plaque in the right carotid artery; (d) longitudinal
section of a plaque in the right carotid artery.

4 Computational and Mathematical Methods in Medicine



single path CNN, thus providing a superior ability of dis-
criminative feature learning for the classification of carotid
plaques.

In addition, as we used a relatively small sample dataset
size, we used the publicly available weights for the VGG16,
which was trained against the ILSVRC12 challenge data
set, and then finetuned through transfer learning [44] for
use in our study. A dropout layer [45] was added to the net-
work before the last fully connected layer and the feed-
forward operation in the network with dropout is shown
in equations (1)–(4). Here, the Bernoulli function was used
to randomly generate a vector of 0 or 1. zðlÞ denotes the vec-
tor of the inputs into layer l, and yðlÞ denotes the vector of
outputs from layer l. wðlÞ and bðlÞ are the weights and biases
at layer l [45].

r lð Þ
j ∼ Bernoulli pð Þ, ð1Þ

~y lð Þ = r lð Þ ∗ y lð Þ, ð2Þ

z l+1ð Þ
i =w l+1ð Þ

i ~yl + b l+1ð Þ
i , ð3Þ

y l+1ð Þ
i = f z l+1ð Þ

i

� �
: ð4Þ

2.3.1. Feature Extraction Subnetworks. As shown in
Figure 3(b), the FEs in the four paths employ the same archi-
tecture, which is identical to the convolution and pooling
blocks as in VGG16, except for the pooling layer after the
last convolution layer. Each block has multiple convolution
layers (with rectified linear unit (ReLU) activation), which
uses 3 × 3 filters with strides and paddings of 1, along with
2 × 2 max-pooling layers with strides of 2. The convolution
layers operate in a sliding window manner to perform fea-
ture extraction on the input carotid plaque images of arbi-
trary sizes and generate feature maps of any size. The
inputs for each of the four subnetworks are four carotid

Table 1: Patient demographics and imaging parameters.

Variable Mean ± SD/Num (PCT) Range Count

Sex, % 333

Male 204 (61.3)

Female 129 (38.7)

Age, years

All 69 ± 11 35–99 333

Male 68 ± 11 35–99 204

Female 71 ± 4 45–95 129

Body mass index, kg/m2 22:9 ± 3:4 18.2–35.4 106

Blood pressure, mm Hg

Systolic 137 ± 15 76–203 333

Diastolic 78 ± 2 43–140 333

Laboratory values, mmol/L

Total cholesterol 4:26 ± 0:62 1.71–12.03 333

Low-density lipoprotein cholesterol 2:42 ± 0:19 0.81–7.76 333

High-density lipoprotein cholesterol 1:01 ± 0:21 0.09–3.83 333

Triglycerides 1:76 ± 0:29 0.29–18.58 333

Risk factors, %

Hypertension 218 (65.5) 333

Hyperlipidemia 58 (20.4) 285

Diabetes 93 (31.3) 297

Ever smoked 99 (43.0) 230

FRS risk, % 333

<10 36 (10.8)

10-20 144 (43.2)

>20 153 (45.9)

Imaging parameters

Ultrasound system manufacturer Siemens

System model SC2000

Ultrasound probe 9 L5

Vessels images Common, internal, external carotid arteries
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(a) (b)

(c) (d)

Figure 2: ROI for plaques in the bilateral carotid artery images in both transverse and longitudinal sections. (a) ROI of the left transverse
plaque image corresponding to Figure 1(a); (b) ROI of the left longitudinal plaque image corresponding to Figure 1(b); (c) ROI of the right
transverse longitudinal image corresponding to Figure 1(c); (d) ROI of the right longitudinal plaque image corresponding to Figure 1(d).
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(a) Object-specific Four-path Network (OSFP-Net)

Figure 3: Architecture of the object-specific four-path network (OSFP-Net). (a) The OSFP-Net is comprised of four paths for inputs of the
bilateral carotid plaque images in both the transverse and longitudinal sections. Each path contains a feature extraction subnetwork (FE) and
a feature downsampling subnetwork (FD). (b) The FE employs the same 5 convolutional and pooling blocks as VGG16, which are mainly
used for image feature extraction. (c) The FDLS applies a multilevel strip pooling (MSP) strategy for the carotid plaques in the longitudinal
section. (d) The FDTS employs a spatial pyramid pooling (SPP) strategy for the carotid plaques in the transverse section.
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plaque images of the ith subject: the left carotid images in the
transverse and longitudinal sections (Xi

LT , X
i
LL) and the right

carotid images in the transverse and longitudinal sections
(Xi

RT , X
i
RL). Here, the superscript i denotes the ith subject,

the first subscripts “L” and “R” represent the left and right
carotid arteries, and the second subscripts “T” and “L” rep-
resent the transverse and longitudinal sections. Such a strat-
egy enables the FEs to extract multiview features from four
input images of the carotid plaques simultaneously and
therefore helps to improve the prediction accuracy of the
OSBP-Net. Generally, the image sizes of the bilateral carotid
plaques in the longitudinal and transverse sections are differ-
ent. Therefore, the sizes of the feature maps extracted by FEs
from the four input images are also different.

2.3.2. Feature Downsampling Subnetworks. As illustrated in
Figures 3(c) and 3(d), FD is a composite layer of multilevel
pooling. The pooling strategy of this layer positively impacts
the performance of the network, especially for objects of
arbitrary sizes. As mentioned above, the feature maps
extracted from the four input images of arbitrary sizes by
the FEs are also arbitrarily sized. Such observation motivates
us to use different pooling strategies in the FDs of different
paths. As the ROIs are similar to squares for the
transverse-sectional carotid images in paths 1 and 3, the
SPP is needed to perform feature downsampling and gener-
ate a fixed-length representation regardless of the sizes of the
feature maps. For longitudinal-sectional carotid plaque
images, the ROIs are approximately long-strips. To ensure
the FDs enlarge the receptive field and acquire more long-
range context, an MSP module is required.

Let the size of the k feature maps extracted from the
bilateral transverse-sectional carotid plaque images in paths
1 and 3 using the SPP module be Hi

LT ×Wi
LT and Hi

RT ×
Wi

RT . The output vectors VLT and VRT obtained in FDs

using j-level SPP module of pools (an × an, n = 1, 2,⋯j)
can be written as follows:

VLT =VRT = k〠
j

n=1
a2n: ð5Þ

Similarly, let the size of the k feature maps extracted
from bilateral longitudinal-sectional carotid plaque images
in paths 1 and 3 using the MSP module be Hi

LL ×Wi
LL and

Hi
RL ×Wi

RL. The output vectors VLT and VRT obtained in
FDs using the j-level MSP module of strips
(an × bn, n = 1, 2,⋯j) can be calculated as follows:

VLL =VRL = k〠
j

n=1
an × bn: ð6Þ

The meanings of superscripts and subscripts are the
same as those described in 2.3.1. Details of the calculation
method are given in [38]. In the training phase, we adopted
different pooling settings and found that 3-level SPP module
of pools (1 × 1, 2 × 2, 3 × 3) and 3-level MSP module of
strips (1 × 1, 2 × 1, 3 × 1) result in the best prediction. The
settings and outputs are indicated in Table 2.

2.4. Experimental Setup. We used an open-source deep
learning framework, PyTorch, for training and testing the
proposed network and popular CNNs for comparison pur-
poses. All training and testing procedures were performed
on an Ubuntu 64-bit desktop personal computer with an
Intel Core I9-10900K central processing unit (CPU) and
32GB of random-access memory. An NVIDIA RTX 2080
Ti graphical processing unit (GPU) with CUDA 10.1 was
used for acceleration.

The cross-entropy function was used as the cost func-
tion, and the stochastic gradient descent (SGD) optimizer
was adopted to minimize the cost function [46]. The number
of iterations was 30, the momentum was 0.9, and the learn-
ing rate was set to 0.001, which was reduced by a factor of 10
after every 6 iterations.

During the training and testing phases, we used batch
data to train the network. The batch data needed to be con-
sistent in all dimensions because the batch array was
required to be converted into a tensor during the training
and testing phases. Consequently, the batch size was set to
1 when using OSFP-Net accepted images with arbitrary sizes
as inputs.

2.5. Evaluation Metrics. In this paper, the aim was to identify
the plaque differences between the patients who experienced
atherosclerotic events or those who were event-free, which is
a binary classification problem. Thus, we used the following
five common classification evaluation metrics to evaluate the
classification performance of OSFP-Net.

accuracy = TP + TN
TP + FP + TN + FN

, ð7Þ

Table 2: Different settings and outputs in FD modules. k refers to
the number of feature maps.

Paths
Input
image

FDs Total
strips/
bins

Outputs
Module

1st-
level

2nd-
level

3rd-
level

1 LT SPP 1 × 1 2 × 2 3 × 3 14 bins 14 k

2 LL MSP 1 × 1 2 × 1 3 × 1 6 strips 6 k

3 RT SPP 1 × 1 2 × 2 3 × 3 14 bins 14 k

4 RL MSP 1 × 1 2 × 1 3 × 1 6 strips 6 k

Table 3: Comparison of sample size and data set partitioning
among the baseline VGG16, FP-VGG16, and OSFP-Net.

Method Path Plaques
No. of
input

No. of
samples

Training
set

Testing
set

VGG16 One 1332 1 1332 1068 264

FP-
VGG16

Four 1332 4 333 267 66

OSFP-
Net

Four 1332 4 333 267 66
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sensitivity =
TP

TP + FN
, ð8Þ

specificity =
TN

TN + FP
, ð9Þ

precision =
TP

TP + FP
, ð10Þ

F1 − score = 2 × precision × recall
precision + recall,

ð11Þ

where TP, FP, TN, and FN represent the numbers of true-

1

0 5 10 15 20 25 30

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

Ac
cu

ra
cy

Epochs

VGG16
FP-VGG16
OSFP-net

Figure 4: Accuracy comparison between the baseline VGG16, FP-VGG16, and OSFP-Net as a function of network epochs.

Table 4: Sensitivity, specificity, precision, and F1-score comparisons between the baseline VGG16, FP-VGG16, and OSFP-Net. The best
results are highlighted in bold. The listed metrics were obtained on the test dataset.

Fold Method
Metrics (%)

SEN SPE PRE F1-score

1

VGG16 79.5 83.0 66.0 72.1

FP-VGG16 87.5 100.0 100.0 93.3

OSFP-Net 95.8 95.2 92.0 93.9

2

VGG16 74.0 85.5 75.5 74.7

FP-VGG16 80.0 95.7 88.9 84.2

OSFP-Net 95.0 95.7 90.5 92.7

3

VGG16 81.6 90.5 83.3 82.5

FP-VGG16 80.0 100.0 100.0 88.9

OSFP-Net 90.0 100.0 100.0 94.7

4

VGG16 84.7 89.2 86.2 85.5

FP-VGG16 95.7 90.7 84.6 89.8

OSFP-Net 100.0 100.0 100.0 100.0

5

VGG16 88.9 91.8 80.0 84.2

FP-VGG16 93.1 100.0 100.0 96.4

OSFP-Net 100.0 97.3 96.7 98.3

Avg. ±Std.
VGG16 81:8 ± 5:0 88:0 ± 3:3 78:2 ± 7:1 79:8 ± 5:4

FP-VGG16 88:4 ± 6:8 97:3 ± 3:7 94:7 ± 6:6 91:2 ± 4:7
OSFP-Net 96.2± 3.7 97.6± 2.0 95.8± 4.0 95.9± 2.8
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positive, false-positive, true-negative, and false-negative
cases, respectively. Sensitivity measures the ability to cor-
rectly recognize positive cases, while specificity indicates
the ability to correctly classify negative cases. Precision
denotes the proportion of positive cases that were classified
as positive cases, and the F1-score represents the harmonic
average of precision and recall and is typically used for the
optimization of a model towards either precision or recall.

In addition, a receiver operating characteristic (ROC)
curve [47] was generated to further analyze the classification
performance of the proposed OSFP-Net by determining the
false positive rate (FPR = 1 − specificity) and the true posi-
tive rate (TPR = sensitivity). The area under the ROC curve
(AUC) [48] was then calculated to provide the evaluation
metric. Since the proposed algorithm performance may be
higher or lower than the means obtained by the other

methods, we used the two-sided T-test to test whether our
method is statistically significantly different from the other
methods [49]. Furthermore, we used the paired T-test for
the analysis since we compared the metrics obtained for
the same plaque generated by the different methods [50].
A Holm-Bonferroni correction [51] was applied for adjust-
ing the p values when multiple T-tests were used. The
Holm-Bonferroni correction is a commonly used version
of the Bonferroni correction method that is less conservative
but did not change the conclusion compared to the use of
the Hochberg test [52]. The corrected p value for the kth-
test, denoted pk is computed as

pk = N − k + 1ð Þp, ð12Þ

when there are N comparisons. If the pk is less than the given
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Figure 5: Accuracy comparison using the dataset with or without data augmentation.

Table 5: Classification metrics were obtained on the testing set using OSFP-Net with or without data augmentation on the training set. The
p value for the T-tests is shown in the bracket. DA√ = with augmentation, DA × = no augmentation.

DA Sensitivity (%) Specificity (%) Precision (%) F1-score (%)
√ 94.5 (p = 0:52) 99.1 (p = 0:25) 98.1 (p = 0:35) 96.2 (p = 0:87)
× 96.2 97.6 95.8 95.9

Table 6: The comparative accuracy, sensitivity, specificity, precision, and F1-score results of the proposed OSFP-Net and other well-known
classification methods. The p value for the statistical T-test is shown in the brackets.

Methods Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1-score (%)
ResNext50 88.4 (1.8E-08) 88.7 (0.026) 88.0 (0.0002) 79.7 (0.0001) 83.9 (0.0002)

DenseNet121 88.2 (2.8E-09) 81.6 (0.001) 91.7 (0.0008) 83.6 (0.002) 82.5 (0.0002)

EfficientNet-b7 86.5 (1.2E-10) 83.0 (0.0009) 88.4 (7.8E-05) 78.7 (0.0007) 80.7 (0.0002)

OSFP-Net 97.3 96.2 97.6 95.8 95.9
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significance level α, which is 0.05, it indicates that the results
of the two methods are significantly different.

2.6. Experimental Protocol. A cross-validation (CV) para-
digm that uses the K5 protocol (80% training and 20% test-
ing) was employed to ensure the reliability of the results and
comprehensive evaluation. The 333 patients in the dataset
were randomly and equally divided into five subsets, ensur-
ing the training and testing subsets did not overlap. The five
subsets were obtained by using the following method. First,
we numbered the 333 patients and set the number of
patients in each subset to be in the range from 65 to 70.
Then, we used a random seed to generate five numbers
within the range, such that the sum of the five numbers
was 333. Based on the five numbers, we randomly sampled
patients from the 333 samples to obtain the five subsets.
The numbers were 66, 66, 66, 66, and 69, resulting in five
groups of patients that did not overlap, and the sample sizes
were relatively balanced. For each experiment, four subsets
were used for training, and one subset was used for testing.
For the classification evaluation indicator (such as accuracy),
the five values generated by the 5-fold cross-validation were
then averaged. Among the five experiments, the best model
parameters obtained during the 5-fold cross-validation were
used to construct the proposed OSFP-Net. Note that the
average value of the 5-fold cross-validation experiments
was used in the evaluation of the metrics.

3. Results and Discussion

3.1. Effectiveness of the OSFP-Net. The first experiment was
conducted to verify the classification performance of
OSFP-Net using the four plaque images simultaneously as
inputs of the transverse and longitudinal bilateral carotid
sections. We compared the predictions of the baseline one-
path VGG16, four-path VGG16 (FP-VGG16), and the
OSFP-Net. The sample size and data set partitioning are
shown in Table 3. The experimental results are illustrated
in Figure 4, which shows that the OSFP-Net accurately clas-
sified the two carotid plaque types and achieved superior
performance (ACC: 97.3%) over the baseline VGG16
(ACC: 86.6%) and FP-VGG16 (ACC: 93.9%). As shown in
Table 4, the OSFP-Net achieved an overall classification sen-
sitivity of 96.2%, specificity of 97.6%, precision of 95.8%, and
F1-score of 95.9%. Compared with the baseline VGG16, the
OSFP-Net outperforms it in terms of sensitivity (14.4%
improvement), specificity (9.6% improvement), precision
(17.6% improvement), and F1-score (16.1% improvement).
The comparison with FP-VGG16 showed that although the
specificity and accuracy obtained by OSFP-Net in fold1
and fold5 are slightly lower than FP-VGG16, the sensitivity
and F1-score are higher than FP-VGG16. Moreover, in
fold2, fold3, and fold4, the performance metrics obtained
by OSFP-Net were superior to FP-VGG16 resulting in an
overall performance of OSFP-Net outperforming FP-
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Figure 6: Confusion matrices of the compared networks for the classification of carotid plaques. SP and AP represent symptomatic and
asymptomatic patients, respectively.
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Figure 7: Continued.
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VGG16. These results demonstrate that the OSFP-Net with
the integration of the four paths improves the classification
performance and shows that object-specific pooling modules
are a powerful supplement for the network.

3.2. Effect of Sample Size on Performance Using OSFP-Net.
This experiment evaluated the effect of sample size on the

classification performance for risk assessment using OSFP-
Net. In this work, the sample size was increased using data
augmentation, which included image scaling and flipping.
This protocol made use of the optimal kernel, which was
obtained in the first experiment (Section 3.1). This paradigm
for increased sample size using data augmentation is
repeated for each fold of 5-fold cross-validation. For ease
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Figure 7: ROC curves for discriminating symptomatic and asymptomatic patients based on carotid plaque images for all the compared
networks using 5-fold cross-validation on the collected dataset. AUC: area under the curve.
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of comparison, we only increased the samples size of the
training set, and the samples and quantity of the testing set
were the same as the first experiment.

As shown in Figure 5, when the training set was aug-
mented with data augmentation, the accuracy obtained on
the testing set is higher than that without data augmentation
before the 12th epoch, but there is no significant difference
after the 12th epoch. In both cases, the accuracy exceeded
95%.

Table 5 shows the classification metrics obtained on the
testing set using OSFP-Net with or without data augmenta-
tion. The results of the T-tests showed that there were no
statistically significant differences between the results when
the training was performed with and without data augmen-
tation, indicating that OSFP-Net has good learning potential
and classification performance on a small sample size with-
out data augmentation.

3.3. Comparison with the State-of-the-Art Classification
Networks. Table 6 and Figures 6 and 7 show the results of
the comparison of the proposed approach with previous
state-of-the-art classification methods. As shown in
Table 6, our approach using OSFP-Net outperforms all of
the well-known classification methods including ResNext50
[53], DenseNet121 [54], and EfficientNet-b7 [55] in all met-
rics. As shown in Table 6, OSFP-Net obtained better perfor-
mance than ResNext50 in the term of accuracy (8.9%
improvement), sensitivity (7.5% improvement), specificity
(9.6% improvement), precision (16.1% improvement), and
F1-score (12.0% improvement), than DenseNet121 in terms
of accuracy (9.1% improvement), sensitivity (14.6%
improvement), specificity (5.9% improvement), precision
(12.2% improvement), and F1-score (13.4% improvement),
and than EfficientNet-b7 in the term of accuracy (10.8%
improvement), sensitivity (13.2% improvement), specificity
(9.2% improvement), precision (17.1% improvement), and
F1-score(15.2% improvement). T-tests comparing the met-
rics generated by OSFP-Net to the other methods showed
that there were statistically significant differences.

Figure 6 shows the confusion matrices of ResNext50
[53], DenseNet121 [54], EfficientNet-b7 [55], and OSFP-
Net for the classification of the symptomatic and asymptom-
atic patients. It is apparent that the proposed OSFP-Net pro-
vided the best classification rates for the two types of
patients. For the symptomatic patients, our proposed net-
work achieves an accuracy of 0.976, while the highest accu-
racy among popular CNNs is 0.917 obtained by
DenseNet121. The accuracy of ResNext50 and
EfficientNet-b7 in this category is lower than 0.900.
Although DenseNet121 achieved the second-highest classifi-
cation rate of 0.917 for symptomatic patients, it performed
poorly in the classification of asymptomatic patients, which
were misclassified at a rate of 0.184 symptomatic patients.

The ROC curves for OSFP-Net and all compared net-
works are given in Figure 7. The ROC analysis showed that
area under the curve (AUC) obtained by OSFP-Net was
0.99 on fold3 and was equal to 1 on other folds, which were
higher than those of ResNext50, DenseNet121, and
EfficientNet-b7. The AUC of the average ROC obtained by

OSFP-Net is 1, which indicates good precision of OSFP-
Net for the classification of carotid plaques.

3.4. Discussion. The accurate and objective classifications of
carotid plaques provide important information for stroke
risk assessment and can help to plan optimal treatment
strategies [56, 57]. In this study, a novel classification
method, OSFP-Net, was proposed to classify carotid plaques
in patients who are symptomatic and asymptomatic, which
is an indication of patients who do not have or do have vul-
nerable plaques. Although asymptomatic patients may prog-
ress to have vulnerable plaques and become symptomatic, at
the time of imaging, their plaques appeared to be stable.
Thus, periodic imaging of asymptomatic patients with
carotid plaques may identify when their plaques become vul-
nerable. As well, periodic imaging of patients with vulnera-
ble plaques who are being treated medical (e.g., statins and
diet) may help to identify if their plaques become less dan-
gerous [57].

Our method is based on and extends the commonly used
clinical 2D ultrasound imaging and examination method of
the bilateral carotid plaques in both the transverse and lon-
gitudinal sections. Current published classification research
on carotid ultrasound images only analyzed plaques from a
single section, either in a transverse or longitudinal section.
We explored using four images of plaques of arbitrary sizes
from the bilateral carotid arteries in both sections as simul-
taneous inputs and employed two different object-specific
pooling strategies to perform feature downsampling, to pro-
vide a more comprehensive and informative feature repre-
sentation to boost the accuracy without the need for 3D
US imaging. The results demonstrate that our proposed
method outperforms VGG16, FP-VGG16, ResNext50, Den-
seNet121, and EfficientNet-b7 with a mean test accuracy of
97.3% on the collected dataset when the total sample size
was the same. Hence, this method may be used as a
computer-aided assessment tool to help physicians assess
the risk of stroke and the effectiveness of medical manage-
ment. Furthermore, it should be noted that the performance
achieved on the dataset with a small sample size is similar to
that obtained by increasing the sample size through data
augmentation. This indicates that the proposed method
has great potential in feature learning and representation
to improve classification performance on a small sample
size, which is of significance for medical image classification
when large datasets are not available.

Although high classification accuracy, as well as sensitiv-
ity, specificity, precision, and F1-score are reached in our
experiment, we acknowledge a few limitations that warrant
subsequent follow-up work. First, a key limitation is that
the ground truth was determined by clinicians using prior
history of symptoms and physical examination. However,
in some cases, the symptoms may be caused by plaques in
an area other than the carotid artery. Since atherosclerosis
is a systemic disease, patients with unstable plaques in other
vessels most likely have vulnerable plaques in the carotid
arteries [41]. Nonetheless, some labeled images belonging
to symptomatic patients may have been mislabeled and
should have been labeled as asymptomatic leading to errors
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in the ground truth determination, which will result in a
decrease in the classification accuracy. Second, we note that
the carotid plaque images in our data set were obtained only
at a one point in time, which cannot reflect the changes and
regression/progression of carotid plaques. Thus, it would be
important to collect carotid images and clinical information
at multiple time points during follow-up sessions to provide
a more accurate dataset of classified plaques and make it
available to investigators to develop image-based prediction
tools for the identification of risk for stroke. Third, for our
study, we collected images of the largest plaque in each of
the bilateral carotid arteries of each patient. If the patient
has multiple plaques, further improvement on the proposed
model will be required to flexibly accept variable numbers of
images of plaques. Finally, in our work, since patients are
routinely imaged with carotid ultrasound, we only explored
whether the simple imaging of the carotid plaques can dis-
tinguish between symptomatic and asymptomatic patients
as a step to provide information on vulnerable plaques.
Although our proposed method has achieved satisfactory
results, it may be better to combine feature representation
of carotid plaques in ultrasound images with the patients’
clinical information, such as Framingham clinical data [40]
as listed in Table 1. These improvements remain to be fur-
ther addressed in follow-up studies.

4. Conclusions

In this paper, we proposed a novel object-specific four path
network for the classification of carotid plaques in ultra-
sound images to aid in the stratification of patients at risk
for ischemic stroke. The proposed network simultaneously
accepts four plaque images of arbitrary sizes from bilateral
carotid arteries in both transverse and longitudinal sections
as inputs, which captures a more comprehensive and infor-
mative feature representation to boost the performance of
classification. A 5-fold cross-validation was used to evaluate
the effectiveness of our network on a collected clinical data-
set. The experimental results demonstrated that our network
is more effective and outperforms such popular networks as
ResNext50, DenseNet121, and EfficientNet-b7 in terms of
accuracy, sensitivity, specificity, precision, and F1-score.
Thus, our network may potentially assist clinicians in using
a more objective risk assessment metric and monitoring tool
to aid in the assessment of the risk for cerebrovascular
events.
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