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Abstract: The efficacy of anaplastic lymphoma kinase (ALK) positive non-small-cell lung cancer
(NSCLC) treatment with small molecule inhibitors is greatly challenged by acquired resistance.
A recent study reported the newest generation inhibitor resistant mutation L1198F led to the
resensitization to crizotinib, which is the first Food and Drug Administration (FDA) approved
drug for the treatment of ALK-positive NSCLC. It is of great importance to understand how this
extremely rare event occurred for the purpose of overcoming the acquired resistance of such inhibitors.
In this study, we exploited molecular dynamics (MD) simulation to dissect the molecular mechanisms.
Our MD results revealed that L1198F mutation of ALK resulted in the conformational change at the
inhibitor site and altered the binding affinity of ALK to crizotinib and lorlatinib. L1198F mutation
also affected the autoactivation of ALK as supported by the identification of His1124 and Tyr1278 as
critical amino acids involved in ATP binding and phosphorylation. Our findings are valuable for
designing more specific and potent inhibitors for the treatment of ALK-positive NSCLC and other
types of cancer.
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1. Introduction

Lung cancer is one of the most life-threatening malignancies worldwide and is the leading
cause of cancer-related death for both men and women [1]. Anaplastic lymphoma kinase (ALK)
is a member of the receptor tyrosine kinases (RTKs), which belong to the insulin receptor kinase
superfamily [2]. Chromosomal rearrangements in the ALK gene lead to the deregulation of ALK
kinase activity, which in turn alters the downstream signaling pathways in cancer biology [3].
Abnormal expression of fused ALK genes has been implicated in the pathogenesis of several types of
cancer, including non-small-cell lung cancer (NSCLC), anaplastic large-cell lymphoma, glioblastoma,
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and neuroblastoma [4]. Despite the fact that ALK rearrangement only occurs in 3%–7% of NSCLC
patients, its total number of cases is larger than those of several other malignancies [5].

Inhibition of deregulated kinase activities by small molecule inhibitors has been proven to be
an effective treatment for many types of diseases, including chronic myeloid leukemia [6], epidermal
growth factor receptor (EGFR)-mutated [7,8], and ALK-rearranged NSCLC [9]. Crizotinib is the first
ALK inhibitor to treat NSCLC approved by the Food and Drug Administration (FDA)-approved ALK
inhibitor to treat NSCLC, which has a classical ATP-competitive mechanism of action [3]. Although
crizotinib has demonstrated itself as an efficient counter to ALK rearranged NSCLC, acquired resistance
developed quickly after its launch has made its beneficial effects temporary. Mutation-driving drug
resistance has emerged as a major roadblock for the development of targeted small molecule inhibition
for cancer treatment [10]. The principal mechanisms of acquired crizotinib resistance include secondary
resistance mutations in the kinase domain of ALK, for example, L1196M, the ‘gate-keeper’ mutation
and the C1156Y mutation [11]. Currently, the practical way to overcome such resistance is to treat
the patients with more potent and selective next-generation inhibitors [12–16]. A number of newer
generation ALK inhibitors have been developed, including ceritinib, alectinib, brigatinib, and lorlatinib,
to overcome resistance caused by mutations in the ALK protein [15–17].

Molecular dynamics (MD) simulation is a computational technique that has been widely used
to obtain information on the time evolution of conformations of proteins and other biological
macromolecules and also kinetic and thermodynamic information [18,19]. Studying the interaction
and binding patterns of the drug with MD at the molecular level helps us understand the mechanism
of the drug action and has proven to be a significant part of drug design [20,21]. Molecular dynamics
measures the change of confirmation at picosecond time intervals, which enables us to understand
instability and loss of interaction caused by mutations, as well as their adverse effects on the drug
metabolism [20]. Recently, Shaw et al. described an intriguing case of ALK inhibitors resistance [22].
L1198F mutation on the fused ALK protein resensitized a patient who had the gatekeeper C1156Y
mutation to crizotinib—the first generation ALK inhibitor. Clinically, it is extremely rare to see a cancer
mutate to become resensitized to an older generation of targeted therapy. Understanding the molecular
mechanism behind these changes of drug sensitivity is of great importance to the design of the newer
generations of ALK inhibitors. In this study, we took the MD approach to dissect the molecular
mechanism behind this event. Our results provide valuable information for the design of more specific
and effective treatment of ALK rearranged NSCLC and other types of cancer.

2. Results and Discussion

2.1. Root-Mean-Square Deviation Analysis of the Protein Backbones in Crizotinib/Lorlatinib Associated ALKs

We performed molecular dynamics simulation of the ALK-inhibitor complexes for 30 ns with
GROMACS software. We first analyzed the root-mean-square deviation (RMSD) of the protein
backbones in crizotinib or lorlatinib associated wild type, C1156Y, L1198F, and C1156Y-L1198F mutants.
As shown in Figure 1A, the RMSD of ALK–crizotinib complexes quickly reached a steady state after
5 ns of simulation. The fluctuation of the wild type ALK was slightly higher than the other mutants.
The C1156Y-L1198F mutant experienced a leap of RMSD up to 0.2 nm from around 20 ns to 25 ns.
Up to the end of the 30 ns simulation, the RMSD of C1156Y, L1198F, and C1156Y-L1198F mutants
were steady around 0.15 nm, while the value of the wild type protein was moderately higher than the
others mutants. The RMSD of ALK mutants complexed with lorlatinib were fairly stable throughout
the whole course of simulation (Figure 1B). There was no significant difference among the protein
backbones analyzed. According these results, crizotinib or lorlatinib association did not significantly
affect the RMSD protein backbones.
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Figure 1. Root-mean-square deviation (RMSD) analysis of crizotinib/lorlatinib associated mutated 
anaplastic lymphoma kinase (ALK). (A) Wild type (WT), C1156Y, L1198F, and C1156Y-L1198F ALK 
protein associated with crizotinib; (B) Wild type (WT), C1156Y, L1198F, and C1156Y-L1198F ALK 
protein associated with lorlatinib.  

2.2. Crizontinib and Lorlatinib Binds to ALK (C1156Y-L1198F) with Different Affinity 

In order to elucidate the mechanism that rendered the resensitization of ALK (C1156Y-L1198F) 
to crizotinib, we decided to focus on comparing ALK–crizotinib and ALK–lorlatinib complexes. We 
will refer to ALK (C1156Y-L1198F) double mutants simply as ALK in the future discussion. 
Structurally, crizotinib and lorlatinib bond to the same pocket of ALK protein (Figure 2A,B). The 
major difference is that lorlatinib is supposed to have a higher selectivity, which is achieved by the 
targeting of L1198 presented in only 25% of the kinases.  

 

Figure 2. ALK–crizotinib (panel A, PDB ID: 5AAB) and ALK–lorlatinib (panel B, PDB ID: 5AA8) 
complexes structures. The ligands and key amino acid residues of ALK are presented as stick models. 
The dashed red lines represent the hydrogen bonds predicted by Ligplot+. 

Binding energy analysis of ALK–inhibitor complex by AUTODOCK software revealed that 
crizotinib binds to ALK with a much lower energy (25.9 kJ/mol) compared with lorlatinib  
(123.7 kJ/mol) (Table S1). This data indicated that crizotinib bound to ALK protein tighter than 
lolatinib. The prediction was in line with the inhibition constant (Ki) and half-maximal inhibitory 
concentration (IC50) values presented by Shaw et al. [22]. Further, energy decomposition by Hawkins 
generalized Born surface area (Hawkins GB/SA), molecular mechanics Poisson–Boltzmann surface 
area (MM/PBSA) binding energy analysis also supported this conclusion (Table S1). As shown in 
Figure 3, the predicted electrostatic energy of ALK–crizotinib complex using the above-mentioned 
methods were 4.8-, 6.1-, and 8.7-folds lower than the ALK–lorlatinib complex, suggesting a higher 
affinity of crizotinib to the ALK (C1156Y-L1198F) mutant protein than lorlatinib.  

Figure 1. Root-mean-square deviation (RMSD) analysis of crizotinib/lorlatinib associated mutated
anaplastic lymphoma kinase (ALK). (A) Wild type (WT), C1156Y, L1198F, and C1156Y-L1198F ALK
protein associated with crizotinib; (B) Wild type (WT), C1156Y, L1198F, and C1156Y-L1198F ALK
protein associated with lorlatinib.

2.2. Crizontinib and Lorlatinib Binds to ALK (C1156Y-L1198F) with Different Affinity

In order to elucidate the mechanism that rendered the resensitization of ALK (C1156Y-L1198F) to
crizotinib, we decided to focus on comparing ALK–crizotinib and ALK–lorlatinib complexes. We will
refer to ALK (C1156Y-L1198F) double mutants simply as ALK in the future discussion. Structurally,
crizotinib and lorlatinib bond to the same pocket of ALK protein (Figure 2A,B). The major difference
is that lorlatinib is supposed to have a higher selectivity, which is achieved by the targeting of L1198
presented in only 25% of the kinases.
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Figure 2. ALK–crizotinib (panel A, PDB ID: 5AAB) and ALK–lorlatinib (panel B, PDB ID: 5AA8)
complexes structures. The ligands and key amino acid residues of ALK are presented as stick models.
The dashed red lines represent the hydrogen bonds predicted by Ligplot+.

Binding energy analysis of ALK–inhibitor complex by AUTODOCK software revealed that
crizotinib binds to ALK with a much lower energy (25.9 kJ/mol) compared with lorlatinib
(123.7 kJ/mol) (Table S1). This data indicated that crizotinib bound to ALK protein tighter than
lolatinib. The prediction was in line with the inhibition constant (Ki) and half-maximal inhibitory
concentration (IC50) values presented by Shaw et al. [22]. Further, energy decomposition by Hawkins
generalized Born surface area (Hawkins GB/SA), molecular mechanics Poisson–Boltzmann surface
area (MM/PBSA) binding energy analysis also supported this conclusion (Table S1). As shown in
Figure 3, the predicted electrostatic energy of ALK–crizotinib complex using the above-mentioned
methods were 4.8-, 6.1-, and 8.7-folds lower than the ALK–lorlatinib complex, suggesting a higher
affinity of crizotinib to the ALK (C1156Y-L1198F) mutant protein than lorlatinib.
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Figure 3. Energy decomposition of ALK–crizotinib and ALK–lorlatinib complexes. The binding energy
of crizotinib and lorlatinib to ALK were calculated by AutoDock Vina 1.1.2, Hawkins generalized Born
surface area (Hawkins GB/SA), and molecular mechanics Poisson–Boltzmann surface area (MM/PBSA)
methods. The relative folds of energy change were defined as the folds of binding energy decrease
from lorlatinib to crizotinib.

2.3. Root-Mean-Square Deviation Comparison of ALK–Crizotinib and ALK–Lorlatinib Complexes

ALK protein in the ALK–crizotinib and ALK–lorlatinib complexes were comparably stable
during the whole course of 30 ns simulation, except for that ALK–crizotinib complex fluctuated
during 20–25 ns (Figure 4A). Since this fluctuation only lasted for a relatively short period of time,
it might result from the adjustment of the binding pocket of ALK to the crizotinib in the process of
protein–ligand association. This was supported by the RMSD analysis of the two ligands. We found
that the RMSD of crizotinib was fluctuating violently throughout the course of simulation (Figure 4B),
indicating that the drug binding pocket of ALK was reorganized considerably upon the association
of crizotinib. Such reorganization was confined to the binding pocket of crizotinib, because the ALK
protein as a whole remained relatively steady. The RMSD of lorlatinib was extremely stable from the
start to the end (Figure 4B). Generally, a narrower fluctuation of the RMSD means the system is more
stable. The RMSD analysis results strongly indicated that the binding affinity change resulted from
L1198F mutation was not enough to explain the observed drug sensitivity shift. The deregulation of
the other key events, such as ATP association and the substrate phosphorylation, might also contribute
to the change of drug sensitivity.
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Figure 4. Root-mean-square deviation (RMSD) comparison of the ALK–crizotinib and ALK–lorlatinib
complexes Root-mean-square deviationsof the protein backbones (A); and ligands (B) in ALK–crizotinib
and ALK–lorlatinib complexes were calculated and compared.

2.4. Identification of the Key Amino Acid Residues Affecting ALK Activity

In order to determine the key amino acid residues that are affecting the ALK activity upon
inhibitor binding, we investigated the electrostatic energy change trends of ALK–crizotinib and
ALK–lorlatinib complexes for three periods of time in MD simulation (5–10 ns, 20–25 ns, 25–30 ns)
(Table S2). Only the amino acid residues that kept the same trend of energy change, either constantly
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increasing or decreasing, were likely to affect the activity of ALK (i.e., contributing to the drug
sensitivity change). According to this criterion, we identified 174 amino acid residues (Table S2),
among which His1124, Lys1150, Met1199, Asp1203, and Glu1210 were the residues involved in the
domains of inhibitor and ATP binding (Figure 5A). We calculated the folds of energy change for the
five key residues identified (Table S3). The average folds of the relatively energy change for His1124,
Lys1150, Met1199, Asp1203, Glu1210 were 5.60, 1.14, 1.14, 7.86, and 8.55, respectively (Figure 5B).
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2.5. Crizotinib and Lorlatinib Interacts with ALK in Different Modes

We generated the two-dimensional (2D) interaction diagram of ALK–crizotinib and
ALK–lorlatinib to analyze the hydrogen bonds formation and hydrophobic interaction between ALK
and the small molecule drug (Figure 6). The N22 and N23 of crizotinib formed two hydrogen bonds
with Glu1197 and Met1199 of ALK. The distances of the two hydrogen bonds were 2.96 Å and 3.02 Å,
respectively. Lorlatinib interacted with Glu1197 and Met1199 of ALK by forming three hydrogen
bonds through the N3, N17, and N24. The distances were 2.96 Å, 2.81 Å, and 3.58 Å, respectively.
In terms of hydrophobic interaction, amino acid residues Leu1122, Ala1148, Leu1196, Ala1200, Gly1202,
and Leu1256 were conserved between crizotinib and lorlatinib. Lys1150 and Arg1253 were only
involved in ALK–crizotinib interaction, while Gly1123, Val1130, Phe1198, and Gly1269 were unique to
ALK–lorlatinib interaction.
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We also calculated the distance of the inhibitor to the hydrogen bonds forming amino acid
residues, Glu1197 and Met 1199, with respect to time (Table 1). During the whole process of simulation,
both Glu1197 and Met1199 fluctuated significantly in the ALK–crizotinib and ALK–lorlatinib
complexes. This result supported that L1198F mutation caused dramatic conformational changes to
the inhibitor binding pocket, especially the amino acid residues nearby.

Table 1. Distance analysis of inhibitor to hydrogen bonds forming amino acids of ALK.

Distance to the Inhibitor (nm)

ALK–Crizotinib ALK–Lorlatinib

0 ns 5–10 ns 20–25 ns 25–30 ns 0 ns 5–10 ns 20–25 ns 25–30 ns

Glu1197 3.02 2.53 2.68 2.66 2.81 2.94 3.02 3.02
Met1199 2.96 2.81 2.84 2.74 2.96 2.60 2.70 2.84

2.6. Root-Mean-Square Fluctuation Analysis of the Key Amino Acid Residues

We then analyzed the trends of root-mean-square fluctuation (RMSF) change for the amino acids
that participated in ATP binding, inhibitor binding, proton binding, and phosphorylation (Figure 7).
The RMSF values of His1124 and Glu1210 in ALK–crizotinib were constantly higher than that of
ALK–lorlatinib complex throughout the simulation (Table S4). The average folds of change were
1.80 for His1124 and 1.29 for Glu1210 (Table S4). His1124 is involved in ATP binding and Glu1210 is
involved in inhibitor binding, which are the two key events affecting the physiological outcome of
treatment targeting ALK.
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2.7. L1198F Mutation Affects the ATP Association of ALK

Both the electrostatic energy (Figure 5) and RMSF (Figure 7) change trends analysis identified
His1124 as a key amino acid involved in regulating the activity of ALK. Since ALK is an abnormally
expressed kinase in many types of cancers, it is not surprising to see His1124 that is a key amino
acid residue participating in ATP binding functions in the resensitization of crizotinib. A structural
study by Bossi et al. suggests that the O2 oxygen of the α-phosphate is within hydrogen-bonding
distance of the backbone carbonyl of His1124 of the P-loop [23]. A modeling study of the ALK
Gly1123–His1124 segment indicated that mutations in this part of the protein are likely to sterically
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impede ATP binding [24]. We further analyzed the interaction of ALK and ATP through RMSD
and RMSF. Because the inhibitor binding site and the ATP binding site are very close, we were
not able to perform a MD simulation of ALK–inhibitor–ATP complex. Instead, we isolated the
ALK protein from ALK–crizotinib and ALK–lorlatinib complex and combined them with ATP
molecule to run the simulation. The fluctuation of ALK in the crizotinib-associated complex was
slightly wider than that of lorlatinib (Figure 8A). The ATP in the two complexes behaved differently
(Figure 8B). In the crizotinib-associated complex, the average value of ATP fluctuation was 0.21 nm,
in comparison with 0.29 nm of the lorlatinib-associated complex. The largest fluctuation in the
crizotinib-associated complex was 0.38 nm, in comparison with 0.42 nm in the lorlatinib-associated
complexes. These differences indicated that ATP binding was less stable in the ALK–lorlatinib complex.
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deviations of the protein backbones (A); and ATP (B) in ALK–crizotinib and ALK–lorlatinib complexes
were calculated and compared.

We then analyzed the RMSF change between the two complexes (Figure 9). After 60 ns of
simulation, His1124 was identified as the residue that gave the largest RMSF value difference (0.27 nm)
between the crizotinib- and lorlatinib-associated ALK protein (Table S5). This result confirmed the
importance of His1124 in resensitizing crizotinib to C1156Y-L1198F mutated ALK protein. In addition,
the RMSF analysis also found that Arg1279 gave the second largest RMSF value difference (0.24 nm)
and Tyr1278 showed a 0.11 nm RMSF difference between the two complexes compared (Table S5).
Both Tyr1278 and Arg1279 are in the YRASYY sequence that is present in the activation loop of
the kinase domain, and Tyr1278 has been defined as the first tyrosine to be phosphorylated in
this sequence [25]. Presumably, the L1198F mutation led to conformational changes in the ATP
binding pockets, including His1124. Such changes decrease the binding affinity of ATP and hinder the
autoactivation of ALK regulated by the phosphorylation on Tyr1278. These events are likely to affect
the downstream phosphorylation of ALK substrates. The critical amino acids identified in our MD
analysis, including His1124, Lys1150, Met1199, Asp1203, Glu1210, and Tyr1278, were in line with the
experimental results by another group (Table 2). These amino acid residues are involved in inhibitor
binding (Lys1150, Met1199, Asp1203, and Glu1210) [24,26], ATP binding (His1124) [24,25], and the
phosphorylation (Tyr1278) of the ALK protein [27].
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Table 2. Experimentally identified critical amino acid resides of ALK.

Residue Described Function References

His1124 ATP binding [24,25]
Lys1150 Inhibitor binding [24,26]
Met1199 Inhibitor binding [24,26]
Asp1203 Inhibitor binding [24,26]
Glu1210 Inhibitor binding [24,26]
Tyr1278 Phosphorylation [27]

2.8. Secondary Structure Analysis of the ATP and Inhibitor Binding Sites

The activity of a protein is often affected by its conformational changes. We analyzed the secondary
structure change of the amino acids around His1124 and Glu1210. The secondary structure of the
analyzed region (aa1122–1134) was relatively steady in the first 5 ns of the simulation and His1124
was located in a turn (Figure 10A, panels a and d). At 20–25 ns, the structure of the corresponding
domain in crizotinib-associated ALK was significantly different from that of the lorlatinib-associated
protein (Figure 10A, panels b and e). The change was represented by conversion from turns to
coils. This difference was still observable at the end of the simulation (Figure 10A, panels c and f).
As shown in Figure 10B, the secondary structure of aa1203–1213 was mainly composed of α-helixes
and coils. There was no noticeable difference at residues 1203 to 1213 between ALK–crizotinib and
ALK–lorlatinib complexes at the beginning of simulation (5–10 ns). During 20–25 ns, the secondary
structure of ALK–crizotinib dramatically shifted from α-helixes to coils (Figure 10B, panels b and f),
which was not the case for ALK–lorlatinib. The secondary structure of ALK–lorlatinib remained to be
fairly steady throughout the simulation. The predicted secondary structure difference was consistent
with the RMSD of crizotinib and lorlatinib, as shown in Figure 4B, indicating dramatic conformational
shifts of the ALK protein at the crucial domains to accommodate crizotinib binding.
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Figure 10. Secondary structure comparison of domains around His1124 and Glu1210. Protein Data
Bank (PDB) structures of the inhibitor associated to ALK—lorlatinib-associated (PDB ID: 5AA8; a–c)
and crizotinib-associated (PDB ID: 5AAB; d–f)—from different time points were extracted and
superimposed to analyze the secondary structure change of the domains of around His1124 (A)
and Glu1210 (B). Structures from six different time points combined and color coded (5–10 ns: 5 ns red,
6 ns orange, 7 ns yellow, 8 ns green, 9 ns blue, 10 ns purple; 20–25 ns: 20 ns red, 21 ns orange, 22 ns
yellow, 23 ns green, 24 ns blue, 25 ns purple; 25–30 ns: 25 ns red, 26 ns orange, 27 ns yellow, 28 ns green,
29 ns blue, 30 ns purple).

3. Materials and Method

3.1. Retrieving the Protein Data Bank Files

The three-dimensional (3D) structures wild type and mutated ALK complexed with inhibitor
were downloaded from the Research Collaboratory for Structural Bioinformatics (RCSB) PDB using
accession numbers: 2XP2, 4CLI, 5AAA, 5AAB, 5AAC, 5AA8, 5AA9, and 5A9U [26]. The 2XP2, 5AAA,
5AAB, and 5AAC are complexed with crizotinib and 4CLI, 5AA8, 5AA9, and 5A9U are complexed
with lorlatinib.

3.2. Molecular Docking

The molecular graphics of ALK–inhibitor complexes were prepared and analyzed with the
University of California, San Francisco (UCSF) Chimera package [28]. In this process, (i) solvent and
non-complexed ions were removed; and (ii) hydrogens and charges (of amber ff99sb force field) were
added to the protein [28]. The docking was performed with DOCK 6.5 program (UCSF) under the
following parameters: 5AAB, box margin = 0.5 nm, select spheres = 1.0 nm, max orientations = 2300;
5AA8, box margin = 0.5 nm, select spheres = 1.0 nm, max orientations = 5000.

AutoDock Vina analyses were performed in cubes with 1.5 nm side length (5AAB,
center_x = 37.935, center_y = 47.567, center_z = 17.016; 5AA8, center_x = 38.053, center_y = 47.101,
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center_z = 16.983). The side chains of the ligands were allowed for flexible torsion. The maximum
energy difference between the optimal energy and the highest energy was set to be 3, and the lowest
predicted energies were extracted for further analysis.

The ALK–inhibitor complexes were first analyzed by grid scoring of DOCK 6.5, followed by
a second round scoring with Descriptor and Hawkins GB/SA algorithms. Descriptor scoring calculates
the standard energy within a system. Hawkins GB/SA scoring calculates the energy through molecular
mechanics generalized born surface area (MM/GBSA).

3.3. Molecular Dynamics Simulation

Molecular dynamics simulations were performed using GROMACS 4.6.7 [29] package and Amber
ff99sb force field with TIP3P water model [30]. Crizotinib and lorlatinib were under the general Amber
force field (GAFF) and the charges were added by AM1-BBC method. We performed system check with
parmchk program and generated additional parameters of force field. To generate the ligand topology
file, we used AnteChamber PYthon Parser interfacE (ACPYPE) [31]. Particle Mesh Ewald (PME) [32]
was utilized to consider the long-range electrostatic interactions and the Linear Constraint Solver
(LINCS) [33] algorithm was used to constrain bonds. The receptor–ligand complexes were solvated
in a dodecahedron box of water, with a distance of 1.0 between the solute and the box. All systems
were neutralized by adding Na+ and Cl− at 0.15 mol/L. Before MD simulations, the complexes were
relaxed to <1000 kJ/mol·nm by up to 50,000 cycles of steep descent minimization. After energy
minimization, temperature of the system was controlled in the constant number of particles, volume,
and temperature (NVT) ensemble to 300 K over 100 ps. The 100 ps constant number of particles,
pressure, and temperature (NPT) equilibration was then performed with a reference pressure of 1 bar.
After that, 30 ns MD simulations were performed with a time step of 2 fs and the coordinates of the
complexes were saved every 8 ps.

3.4. Root-Mean-Square Fluctuation and Root-Mean-Square Deviation Analysis

The RMSF, RMSD, and secondary structure elements were analyzed by g_rmsf, g_rmsd,
and do_dssp modules of the GROMACS 4.6.7 suite [29].

3.5. Binding Energy Calculation and Energy Decomposition

Molecular dynamics trajectory visualization was performed with VMD 1.9.2 [34]. The g_mmpbsa
module of GROMACS 4.6.7 and mm_pbsa.pl tool of Amber 9 (University of California, San Francisco,
CA, USA) were applied to calculate the free energies in biomolecular interactions.

The MM/PBSA was used to calculate the binding free energy of ALK–ligand complexes,
as described in our previous study [35]. In this approach, the binding free energy (∆G) calculation
formula is [36]:

∆G = ∆EMM + ∆Gsol − T∆S (1)

∆EMM = ∆Ebonded + (∆Evdw + ∆Eele) (2)

∆Gsol = ∆Gpolar + ∆Gnonpolar (3)

The Van der Waals (∆Evdw) and electrostatic interaction (∆Eele) can be calculated through
molecular mechanics (MM) method (Equation (2)). The bonded interactions (∆Ebonded) consisted
of bond, angle, dihedral, and improper interactions. In the single trajectory approach, ∆Ebonded is
always taken as zero because the conformations of protein and ligand are identified as a constant before
and after they bond together [37]. The free energy of salvation (∆Gsol) consists of the polar solvation
free energy and the nonpolar part which can be estimated with the Poisson–Boltzmann (PB) equation
and the solvent-accessible surface area (SASA). −T∆S stands for the changing of conformational
entropy upon ligand binding, which usually is ignored in practice because of its high computational
cost and low prediction accuracy.
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In our research, the binding free energy by MM/GBSA is the sum of the gas-phase interaction
energy (∆EMM) plus the solvation free energy (∆Gsol) minus the product of the absolute temperature
and entropy change (T∆S) (Equation (4)).

∆G = ∆EMM + ∆Gsol − T∆S (4)

∆EMM = ∆Evdw + ∆Eele (5)

∆Esol = ∆EGB + ∆ESUR (6)

The gas-phase interaction energy (∆EMM) was composed of the van der Waals (∆Evdw) and
electrostatic interaction (∆Eele) energies between receptor and ligand, and the solvation free energy
(∆Gsol) was the sum of the electrostatic contributions calculated by the generalized Born (GB)
approximation model (EGB) and the nonpolar contributions obtained using the SASA (ESUR).
The entropic contribution (T∆S) was ignored as it is computationally expensive to calculate and
yields a low prediction accuracy. These terms were calculated using Equations (5) and (6).

3.6. Calculation of the Electrostatic Energy and Root-Mean-Square Fluctuation Change Trends

If the energy change from ALK–crizotinib to ALK–lorlatinib of the same amino acid residue was
the same between 5–10 ns and 20–25 ns simulation, the residue received a score of 1. If the energy
change trend was opposite, the residue received a score of −1. The trend between 20–25 ns and
25–30 ns was scored in the same way. The total energy change trend parameter was calculated by
adding the score of the two-time periods together. A value of “2” suggested that the energy was
changing in the same trend from ALK–crizotinib to ALK–lorlatinib in the investigated periods of time.
The RMSF change trend of the key amino acids was analyzed in the same way as described above.

4. Conclusions

Acquired resistance to small molecule inhibitors is now a great challenge in the treatment of
NSCLC and many other types of cancer. It is of great value to understand the molecular mechanism
resulting in the occurrence of such resistance, which will in turn help the development of more specific
and potent drugs to treat the disease. In this study, we exploited molecular dynamics simulation
approach to understand how the lorlatinib ALK resistance mutation L1198F led to the resensitization
to the first-generation inhibitor crizotinib. We found that crizotinib bound to C1156Y-L1198F ALK with
a higher affinity than lorlatinib. This difference is at least partially caused by the conformational change
that resulted from the L1198F mutation, as revealed by the RMSD analysis. By energy decomposition,
we identified five amino acid residues that are located in the inhibitor and ATP binding domains of
ALK. Root-mean-square fluctuation analysis further confirmed the importance of His1124 and Glu1210
as key amino acid residues that regulate the activity of ALK. We also found that Tyr1278 and Arg1279,
located in the activation loop of the kinase domain, were also affected by the L1198 mutation. With all
these results, we concluded that the L1198F mutation led to conformational changes at the inhibitor
and ATP binding sites of ALK protein, which affected the downstream phosphorylation of the key
residues. In clinical practice, it is very rare to see a resistance point mutation result in resensitization to
the previous generation of inhibitors. In this study, we elucidated the molecular mechanism of such an
intriguing drug sensitivity shift. These findings are valuable to the design of new targeted therapies
for the treatment of ALK-positive cancer.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/3/482/s1.
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