

Data Article

Experimentally determined trace element partition coefficients between hibonite, melilite, spinel, and silicate melts

D. Loroch*, S. Klemme, J. Berndt, A. Rohrbach

Institute for Mineralogy, University of Münster, Corrensstrasse 24, 48149 Münster, Germany

ARTICLE INFO

Article history: Received 24 September 2018 Received in revised form 18 October 2018 Accepted 22 October 2018 Available online 27 October 2018

ABSTRACT

This article provides new data on mineral/melt partitioning in systems relevant to the evolution of chondrites, Calcium Aluminum-Rich Inclusions (CAI) in chondrites and related meteorites. The data set includes experimentally determined mineral/melt partition coefficients between hibonite (CaAl₁₂O₁₉), melilite (Ca₂(Al,Mg)₂SiO₇), spinel (MgAl₂O₄) and silicate melts for a wide range of trace elements: Sc, Ti, V, Cr, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Rh, Cs, Ba, La, Ce, r, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Pb, Th and U. The experiments were performed at high temperatures (1350 °C < *T* < 1550 °C) and ambient pressure. The experimental run products were analyzed using electron microprobe (EMPA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The partition coefficients for 38 trace elements were calculated from the LA-ICP-MS data.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject area More specific subject area *Earth Sciences* Experimental petrology, Geochemistry, Planetology, Planetary sciences

* Corresponding author.

E-mail addresses: d.loroch@uni-muenster.de (D. Loroch), Stephan.klemme@uni-muenster.de (S. Klemme), jberndt@uni-muenster.de (J. Berndt), arno.rohrbach@uni-muenster.de (A. Rohrbach).

https://doi.org/10.1016/j.dib.2018.10.100

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

^{2352-3409/© 2018} The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

2448	D. Loroch et al. / Data in Brief 21 (2018) 2447–2463
Type of data How data was acquired	Table, figure High-temperature furnace: Gero GmbH, Germany (University of Münster) Scanning electron microscope (SEM) JEOL JSM-6610 LV in high vacuum mode equipped with EDX system (University of Münster) Electron microprobe analysis (EMPA): JEOL JXA-8530F Hyperprobe
	equipped with a field emission gun (University of Münster) Laser ablation inductively coupled plasma mass spectrometry (LA-ICP- MS): Thermo element sector field – ICP-MS with Photon Machines Analyte G2 laser ablation system (University of Münster)
Data format	Major element data of minerals and quenched melts: data in .xlsx format Trace element data of minerals and quenched melts: data in .xlsx format Mineral/melt trace element partition coefficients: data in .xlsx format Mineral/mineral trace element partition coefficients: data in .xlsx format
Experimental features	High temperature experiments were run at high temperatures to equilibrate hibonite, melilite, and spinel, with silicate melts. The experimental run products were mounted in epoxy resins and polished using a variety of diamond pastes. The mounts were carbon coated, and major elements were analyzed using EMPA techniques. Subsequently, trace element concentrations of minerals and glasses within the sam- ples were determined using LA-ICP-MS techniques.
Data accessibility	Supplementary materials

Value of the data

- The new trace element partition coefficients supplement the existing database of mineral/melt partition coefficients of minerals that are frequently found in Ca- and Al-rich inclusions in chondritic meteorites.
- The new trace element partition coefficients between hibonite, melilite and spinel and silicate melts may be used to test whether these minerals crystallized from or equilibrated with a silicate melt or whether they condensed from a vapor phase.
- This partition coefficient data set is based on experiments under oxidizing conditions, since preliminary experiments under reducing conditions, which would have been more relevant to solar nebula processes, resulted in crystals which were too small to be analyzed.
- Our mineral/mineral partition coefficients may be used to test whether hibonite, melilite and spinel are in thermodynamic equilibrium or not.

1. Data

In this article, we report new experimentally determined trace element partition coefficients between hibonite (CaAl₁₂O₁₉), melilite (Ca₂(Al,Mg)₂SiO₇), spinel (MgAl₂O₄), and silicate melts at high temperatures (Tables 3 and 4). Data were generated using high temperature experiments, which were characterized using electron microprobe and LA-ICP-MS methods (Tables 1 and 2).

Sample	Mg	gO	Al	₂ 0 ₃	Si	0 ₂	Ca	aO	Ti	02
	wt%	S.D.	wt%	S.D.	wt%	S.D.	wt%	S.D.	wt%	S.D.
	Hibonit	te								
H1-Ti2-R3	1.50	± 0.14	86.8	± 0.1	0.86	± 0.14	8.33	± 0.10	1.77	± 0.21
H1-Ti5-R4	2.01	± 0.13	85.1	± 0.7	0.64	± 0.13	8.36	± 0.08	3.16	± 0.41
H1-Ti5-R5	2.02	± 0.47	84.9	\pm 1.6	0.70	± 0.17	8.39	± 0.06	3.19	± 0.97
H2-Ti2-R2	1.87	± 0.06	85.7	± 0.3	1.22	± 0.12	8.27	± 0.09	1.84	± 0.05
H2-Ti2-R3	1.96	± 0.28	85.5	± 2.0	1.12	± 0.25	8.29	± 0.14	2.23	± 0.62
H2-Ti5-R4	2.41	± 0.07	83.8	± 0.3	0.90	± 0.19	8.30	± 0.09	3.61	± 0.16
H2-Ti5-R5	2.53	± 0.18	83.6	± 0.8	0.91	± 0.15	8.34	± 0.07	3.86	± 0.57
H3-Ti5-R4	2.37	± 0.06	84.8	± 0.4	0.81	± 0.11	8.27	± 0.09	3.57	± 0.10
H3-Ti5-R5	2.79	± 0.11	82.7	± 0.9	0.96	± 0.39	8.39	± 0.10	4.37	± 0.41
	Melilite	e								
H1-Ti2-R3	0.175	± 0.031	35.7	± 0.4	22.1	± 0.2	40.7	± 0.2	0.046	± 0.042
H3-R8	0.318	±0.030	35.1	\pm 1.4	21.6	± 0.3	40.9	± 0.2	-	-
	Spinel									
H2-R8	25.3	± 0.2	72.1	± 0.1	0.026	± 0.012	0.021	± 0.004	-	-
H3-R8	19.7	± 1.1	78.3	± 1.3	0.034	± 0.043	0.026	± 0.014	-	-
Mel3-R9	28.0	± 0.2	70.9	± 0.4	0.022	± 0.036	0.014	± 0.004	0.057	± 0.047
Mel3-R11	28.0	± 0.2	70.5	± 0.9	0.037	± 0.024	0.016	± 0.007	0.081	± 0.028
Mel3-R12	27.9	± 0.2	70.9	± 0.2	0.024	± 0.032	0.011	± 0.009	0.059	±0.052
	Silicate	Melt								
H1-Ti2-R3	0.79	± 0.13	34.0	± 0.5	32.2	± 0.9	28.6	± 0.3	2.05	± 0.21
H1-Ti5-R4	0.71	± 0.02	35.2	± 0.5	28.8	± 2.0	27.2	± 0.3	4.97	± 0.40
H1-Ti5-R5	0.66	± 0.09	31.8	± 0.6	31.6	± 2.2	29.1	± 0.5	4.60	± 0.40
H2-Ti2-R2	1.41	± 0.19	36.0	± 0.5	32.7	\pm 1.1	24.5	± 0.1	1.86	± 0.31
H2-Ti2-R3	1.38	± 0.21	33.2	± 0.2	34.9	± 1.3	25.6	± 0.4	1.92	± 0.3
H2-Ti5-R4	1.81	± 0.22	34.9	± 0.3	32.9	\pm 1.5	23.9	± 0.3	4.29	± 0.38
H2-Ti5-R5	1.59	± 0.16	31.3	± 0.4	34.7	\pm 1.0	25.3	± 0.4	4.25	± 0.24
H2-R8	2.38	± 0.17	36.2	± 0.7	31.3	± 0.8	28.1	± 0.3	-	-
H3-Ti5-R4	2.07	± 0.12	35.8	± 0.8	28.2	± 1.2	26.8	± 0.6	4.23	± 0.33
H3-Ti5-R5	1.90	± 0.18	31.2	± 0.8	36.2	\pm 1.8	28.8	± 0.1	4.42	± 0.24
H3-R8	1.69	± 0.10	37.4	± 1.3	31.6	± 2.7	27.2	± 0.4	-	-
Mel3-R9	6.04	± 0.12	19.1	± 2.1	36.1	± 4.1	36.3	\pm 3.0	1.02	± 0.15
Mel3-R11	5.33	± 0.50	19.1	\pm 1.4	38.4	\pm 1.1	31.5	± 3.9	2.16	± 0.22
M-10 D10	C 12	0.07	10.0	. 40	20 5		22.2	. 71	2.40	

 Table 1

 Major element concentrations of minerals and quenched silicate melts determined by EMPA. All values are given in wt%.

able 2
race element concentrations of minerals and quenched silicate melts determined with LA-ICP-MS. All values are given in μ g/g

	Hibonite													
	H1-1	ïi2-R3	H1-7	ïi5-R4	H1-Ti5-R5		H2-Ti2-R2		H2-Ti2-R3		H2-T	ìi5-R4	H2-1	`i5-R5
	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.
Mg	13367	± 2518	15263	± 2195	14105	± 3235	14245	± 2822	17157	± 3259	18699	± 2799	20315	± 5382
Si	7058	± 1008	3778	± 668	4712	± 780	5629	± 863	9282	± 1272	5229	± 841	4912	± 758
Ca	59563	± 2104	59749	± 2165	59978	± 2172	59077	± 2166	59234	± 2095	59349	± 2167	59577	± 2119
Sc	30.6	± 2.0	28.2	± 2.1	28.3	± 2.2	28.7	± 2.0	28.3	± 1.9	24.6	± 1.9	25.5	± 1.9
Ti	11302	± 1412	21355	± 1797	19485	± 2546	12899	± 1736	14804	± 1124	24027	± 2099	28123	± 3082
V	6.26	± 0.57	3.46	± 0.47	3.44	± 0.53	5.70	± 0.62	5.98	± 0.56	4.87	± 0.59	3.82	± 0.49
Cr	29.1	± 8.3	32.1	± 9.8	25.0	± 9.1	23.9	± 9.0	27.9	± 7.6	20.7	± 9.7	23.8	± 7.6
Со	185	± 9	280	± 16	270	± 21	123	± 6	132	± 7	199	± 12	226	± 13
Ni	327	± 85	353	± 51	320	± 76	137	± 44	201	± 55	249	± 41	369	± 126
Cu	11.0	± 1.1	11.8	± 1.2	8.67	± 1.09	12.2	± 1.2	11.5	± 1.0	9.48	± 1.16	7.98	± 0.91
Zn	13.7	± 3.4	14.7	± 4.8	14.7	± 4.1	12.4	± 3.5	12.9	± 3.3	14.2	± 4.6	12.1	± 3.3
Ga	247	± 13	180	± 9	175	± 11	200	± 11	258	± 14	233	± 11	229	± 15
Ge	7.31	± 2.42	8.23	± 2.84	7.00	± 2.65	9.32	± 2.68	8.04	± 2.25	10.7	± 2.9	9.32	± 2.32
Rb	b.d.l		b.d.l		b.d.l		b.d.l		b.d.l		0.93	± 0.31	0.57	± 0.18

Table 2 (continued)

							Hib	<u>onite</u>						
	H1-7	Ti2-R3	H1	-Ti5-R4	H1-	Ti5-R5	H2-1	[i2-R2	H2-T	i2-R3	H2-T	i5-R4	H2-1	[i5-R5
	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.
Sr	92.5	± 4.0	94.4	± 4.4	94.7	± 5.5	91.8	± 4.2	93.0	± 4.1	94.8	± 4.5	98.8	± 4.9
Y	36.7	± 2.1	23.4	± 1.4	25.5	± 1.9	53.8	± 3.2	49.0	± 2.8	32.2	± 1.9	30.1	± 2.2
Zr	27.6	± 1.7	21.8	± 1.4	21.1	± 1.5	30.1	± 2.0	28.9	± 1.8	18.5	± 1.2	21.0	± 1.7
Nb	9.63	± 0.59	8.17	± 0.55	8.10	± 0.58	20.3	± 1.2	20.3	± 1.1	10.2	± 0.6	10.8	± 0.7
Rh	7.14	± 0.74	4.52	± 0.55	4.91	± 0.94	4.25	± 0.54	6.29	± 0.69	7.30	± 0.88	8.87	± 1.40
Cs	b.d.l	0.75	0.43	± 0.18	0.41	± 0.15	b.d.l	0.00	0.33	± 0.12	b.d.l	0.77	b.d.l	0.00
Ва	3.57	± 0.75	2.76	± 0.78	3.33	± 0.84	2.84	± 0.88	3.09	± 0.75	2.94	± 0.77	3.40	± 0.86
La	3/8	± 16	291	± 11	286	± 14	589	± 26	484	± 20	446	± 18	426	± 23
Ce	454	± 19	354	± 15	346	± 19	608	± 2/	496	± 21	44/	± 19	450	± 23
PI	3/2	± 15	281	± 13	277	± 18	421	± 18	354	± 15	300	± 15	303	± 15
INU Sm	247	± 10	190	± 12	170	± 10	420	± 25	200	± 19	202	± 15	297	± 20
5111	247	± 14	100	± 10	1/0	± 15	102	± 20	260	± 10	225	± 12	210	± 10
Cd	145	± /	102	± 3	102	± /	217	± 9 + 13	186	± 0 + 11	147	± 0 ± 10	121	± 0 + 11
Th	95.1	± 0 ± 51	674	± 7 ± 3.4	70.3	± 11 ± 51	139	± 15	120	± 11 ± 6	879	± 10 ± 4.6	83.6	± 61
Dv	46.6	± 3.1 + 3.3	31.5	± 2.4 + 21	33.7	± 3.1 + 3.1	64.8	± 49	55.8	+40	39.6	+ 2 7	36.4	± 3.1
Ho	42.4	± 2.6	28.7	+ 1.6	30.8	± 2.4	58.9	+ 3.9	52.2	+ 3.3	35.9	+ 2.0	32.4	+ 2.9
Er	15.9	+ 1.3	11.6	+ 0.9	11.6	+ 1.1	26.0	+ 2.1	22.4	+ 1.7	14.3	+ 1.0	13.8	+ 1.5
Tm	9.56	± 0.65	5.88	± 0.38	6.79	± 0.55	15.6	± 1.1	13.7	± 0.9	8.38	± 0.52	7.56	± 0.72
Yb	11.3	± 1.0	7.44	± 0.75	8.00	± 0.94	15.3	± 1.4	13.9	± 1.2	8.49	± 0.84	7.70	± 0.89
Lu	7.52	± 0.49	4.43	± 0.31	4.91	± 0.42	11.8	± 0.8	10.5	± 0.7	6.05	± 0.40	5.62	± 0.50
Hf	39.6	± 2.5	34.2	± 2.2	33.7	± 3.1	62.1	± 4.1	55.8	± 3.5	40.4	± 2.6	43.8	± 3.7
Ta	40.1	± 2.2	35.7	± 1.9	36.8	± 2.8	84.6	± 4.9	81.9	± 4.4	45.9	± 2.5	52.0	± 3.9
W	0.09	± 0.06	0.10	± 0.07	0.20	± 0.10	0.28	± 0.13	0.19	± 0.09	0.13	± 0.10	0.29	± 0.11
Pb	b.d.l		b.d.l		0.27	± 0.11	b.d.l		b.d.l		b.d.l		b.d.l	
Th	131	± 7	71.5	± 3.5	72.3	± 5.0	191	± 11	162	± 9	110	± 5	106	± 8
U	b.d.l		0.01	± 0.01	b.d.l		0.02	± 0.01	0.01	± 0.01	0.01	± 0.01	0.01	± 0.01
		Hibo	nite			Mel	ilite				Sn	inol		
	-	moo	mee				mee				<u>.</u>	mer		
	НЗ-Т	ïi5-R4	H3-T	ïi5-R5	H1-T	i2-R3	H3	-R8	H2	-R8	H3	B-R8	Me	el3-R9
	H3-T µg/g	ïi5-R4 S.D.	Η3-T μg/g	ïi5-R5 S.D.	H1-T µg/g	i2-R3 S.D.	H3 µg/g	-R8 S.D.	H2 µg/g	S.D.	Η3 μg/g	8-R8 S.D.	Me μg/g	el3-R9 S.D.
Mg	H3-T µg/g 16888	ii5-R4 S.D. ± 2734	Η3-T μg/g 20955	°i5-R5 S.D. ± 5971	H1-T μg/g 55758	i2-R3 S.D. ±10561	Η3 μg/g 2525	-R8 S.D. ± 242	Η2 μg/g 166434	S.D. ±36418	Η3 μg/g 124887	B-R8 S.D. (± 9030	Μα μg/g 17604	el3-R9 S.D. 4 ±17334
 Mg Si	H3-T μg/g 16888 17111	i5-R4 S.D. ± 2734 ± 2303	H3-T μg/g 20955 7555	ïi5-R5 S.D. ± 5971 ± 1118	H1-T μg/g 55758 110371	i2-R3 S.D. ±10561 ±14987	Η3 μg/g 2525 104108	-R8 S.D. ± 242 ±13955	Η2 μg/g 166434 b.d.l	S.D. ±36418	Η3 μg/g 124887 4197	3-R8 S.D. 7 ± 9030 ± 529	Μα μg/g 17604 b.d.l	S.D. 4 ±17334
Mg Si Ca	H3-T μg/g 16888 17111 59120	1100 11000 11000 11000 11000 11000 11000 11000 11000 11000 11000	H3-1 μg/g 20955 7555 59935	115-R5 S.D. ± 5971 ± 1118 ± 2154	H1-T μg/g 55758 110371 290740	ii2-R3 S.D. ±10561 ±14987 ±12078	H3 µg/g 2525 104108 292070	-R8 S.D. ± 242 ±13955 ± 9299	H2 μg/g 166434 b.d.l 1627	2-R8 S.D. ±36418 ± 681	Η3 μg/g 124887 4197 1872	S.D. 5.D. 529 ± 554	Μe μg/g 17604 b.d.1 1044	
Mg Si Ca Sc	H3-T μg/g 16888 17111 59120 44.5	1115-R4 S.D. ± 2734 ± 2303 ± 2034 ± 2.7	H3-T μg/g 20955 7555 59935 52.8	ii5-R5 S.D. ± 5971 ± 1118 ± 2154 ± 3.9	H1-T μg/g 55758 110371 290740 189	ii2-R3 S.D. ±10561 ±14987 ±12078 ± 14	H3 μg/g 2525 104108 292070 3.23	-R8 S.D. ± 242 ±13955 ± 9299 ± 0.36	H2 µg/g 166434 b.d.1 1627 15.4	2-R8 S.D. ±36418 ± 681 ± 2.2	H3 μg/g 124887 4197 1872 33.6		Ma μg/g 17604 b.d.1 1044 16.8	el3-R9 S.D. 4 ±17334 ± 348 ± 1.3
Mg Si Ca Sc Ti	H3-T μg/g 16888 17111 59120 44.5 21275	11120 111200 111200 1112000 1112000 1112000 11120000000000000000000000000000000000	H3-1 µg/g 20955 7555 59935 52.8 29299	Ti5-R5 S.D. ± 5971 ± 1118 ± 2154 ± 3.9 ± 3489	H1-T µg/g 55758 110371 290740 189 57273	12-R3 5.D. ± 10561 ± 14987 ± 12078 ± 14 ± 4394	H3 µg/g 2525 104108 292070 3.23 3.78 3.78	-R8 S.D. ± 242 ±13955 ± 9299 ± 0.36 ± 1.35	H2 μg/g 166434 b.d.l 1627 15.4 b.d.l	± 36418 ± 681 ± 2.2	H3 μg/g 124887 4197 1872 33.6 16.2	$3-R8$ S.D. $\frac{7 \pm 9030}{\pm 529}$ $\frac{554}{\pm 2.1}$ $\frac{4.8}{\pm 4.8}$	Μα μg/g 17604 b.d.1 1044 16.8 372	el3-R9 S.D. 4 ±17334 ± 348 ± 1.3 ± 34
Mg Si Ca Sc Ti V	H3-T µg/g 16888 17111 59120 44.5 21275 16.3 2126		H3-1 µg/g 20955 7555 59935 52.8 29299 7.11 202	15-R5 S.D. ± 5971 ± 1118 ± 2154 ± 3.9 ± 3489 ± 0.74	H1-T µg/g 55758 110371 290740 189 57273 109	i2-R3 ± 10561 ± 14987 ± 12078 ± 14 ± 4394 ± 9	H3 μg/g 2525 104108 292070 3.23 3.78 0.39	-R8 S.D. ± 242 ±13955 ± 9299 ± 0.36 ± 1.35 ± 0.09	H2 µg/g 166434 b.d.1 1627 15.4 b.d.1 1.04	$ \begin{array}{r} -R8 \\ $	H3 µg/g 124887 4197 1872 33.6 16.2 4.79	$3-R8$ S.D. $\frac{7}{\pm} 9030$ ± 529 ± 554 ± 2.1 ± 4.8 ± 0.39	Μα μg/g 17604 b.d.1 1044 16.8 372 0.62	el3-R9 S.D. 4 ±17334 ± 348 ± 1.3 ± 34 ± 0.24 ± 0.24
Mg Si Ca Sc Ti V Cr	H3-T µg/g 16888 17111 59120 44.5 21275 16.3 24.9	ij5-R4 s.D. ± 2734 ± 2303 ± 2034 ± 2.7 ± 1994 ± 1.2 ± 6.3	H3-1 µg/g 20955 7555 59935 52.8 29299 7.11 23.7 100	ij5-R5 S.D. ± 5971 ± 1118 ± 2154 ± 3.9 ± 3489 ± 0.74 ± 8.3	H1-T μg/g 55758 110371 290740 189 57273 109 b.d.l	i2-R3 S.D. ±10561 ±14987 ±12078 ±14 ±4394 ±9	H3 µg/g 2525 104108 292070 3.23 3.78 0.39 b.d.1 16.2	-R8 S.D. ± 242 ±139555 ± 9299 ± 0.36 ± 1.35 ± 0.09	H2 µg/g 166434 b.d.1 1627 15.4 b.d.1 1.04 b.d.1 2525	2-R8 ± 36418 ± 681 ± 2.2 ± 0.50	H3 µg/g 124887 4197 1872 33.6 16.2 4.79 18.5 1.65	$\begin{array}{c} 3 - R8 \\ \hline S.D. \\ 2 \pm 9030 \\ \pm 529 \\ \pm 554 \\ \pm 2.1 \\ \pm 4.8 \\ \pm 0.39 \\ \pm 9.8 \end{array}$	Ma μg/g 17604 b.d.1 1044 16.8 372 0.62 25.5	$ \begin{array}{c} El3-R9 \\ S.D. \\ 4 \pm 17334 \\ \pm 348 \\ \pm 1.3 \\ \pm 34 \\ \pm 0.24 \\ \pm 6.7 \\ \pm 0.2 \end{array} $
Mg Si Ca Sc Ti V Cr Co	H3-T µg/g 168888 17111 59120 44.5 21275 16.3 24.9 142 144	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	H3-T µg/g 20955 7555 59935 52.8 29299 7.11 23.7 196 207	$\begin{array}{c} 15-R5 \\ \hline S.D. \\ \pm 5971 \\ \pm 1118 \\ \pm 2154 \\ \pm 3.9 \\ \pm 3489 \\ \pm 0.74 \\ \pm 8.3 \\ \pm 11 \\ \end{array}$	H1-T μg/g 55758 110371 290740 189 57273 109 b.d.l 686 682	$ \frac{1}{12-R3} $ s.D. $ \pm 10561 $ $ \pm 14987 $ $ \pm 12078 $ $ \pm 14 $ $ \pm 4394 $ $ \pm 9 $ $ \pm 38 $ $ 254 $	H3 µg/g 2525 104108 292070 3.23 3.78 0.39 b.d.1 18.2 17.5	-R8 5.D. ± 242 ±13955 ± 9299 ± 0.36 ± 1.35 ± 0.09 ± 1.1	H2 µg/g 166434 b.d.1 1627 15.4 b.d.1 1.04 b.d.1 3577	2-R8 ± 36418 ± 681 ± 2.2 ± 0.50 ± 467 5222	H3 µg/g 124887 4197 1872 33.6 16.2 4.79 18.5 1409 2722	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	Ma μg/g 17604 b.d.1 1044 16.8 372 0.62 25.5 413	$ \begin{array}{c} El3-R9 \\ S.D. \\ 4 \pm 17334 \\ \pm 348 \\ \pm 1.3 \\ \pm 34 \\ \pm 0.24 \\ \pm 6.7 \\ \pm 39 \\ 212 $
Mg Si Ca Sc Ti V Cr Co Ni	H3-T µg/g 168888 17111 59120 44.5 21275 16.3 24.9 142 142 144 10.4	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	H3-T μg/g 20955 7555 5995 52.8 29299 7.11 23.7 196 207 5.02	$\begin{array}{c} 15-R5 \\ \hline S.D. \\ \pm 5971 \\ \pm 1118 \\ \pm 2154 \\ \pm 3.9 \\ \pm 3489 \\ \pm 0.74 \\ \pm 8.3 \\ \pm 11 \\ \pm 78 \\ \pm 0.87 \end{array}$	H1-T μg/g 55758 110371 290740 189 57273 109 b.d.1 686 1206 02 °	$ \begin{array}{r} $	H3 µg/g 2525 104108 292070 3.23 3.78 0.39 b.d.l 18.2 17.5 2.42	-R8 5.D. ± 242 ± 13955 ± 9299 ± 0.36 ± 1.35 ± 0.09 ± 1.1 ± 5.9 + 0.32	H2 µg/g 1664344 b.d.1 1627 15.4 b.d.1 1.04 b.d.1 3577 12392 122	$\pm -R8$ ± 36418 ± 681 ± 2.2 ± 0.50 ± 467 ± 5282 ± 17	H3 µg/g 124887 4197 1872 33.6 16.2 4.79 18.5 1409 3732 72.2	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	Μα μg/g 17604 b.d.1 1044 16.8 372 0.62 25.5 413 1098 7.97	$ \begin{array}{c} E13-R9 \\ S.D. \\ 4 \pm 17334 \\ \pm 348 \\ \pm 1.3 \\ \pm 34 \\ \pm 0.24 \\ \pm 6.7 \\ \pm 39 \\ \pm 216 \\ \pm 10 \\ 1 \\ 1 \\ 216 \\ 1 \\ 1 \\ 1 \\ $
Mg Si Ca Sc Ti V Cr Co Ni Cu 7n	H3-T µg/g 16888 17111 59120 44.5 21275 16.3 24.9 142 144 10.4 8.41	$\begin{array}{c} \hline \\ \hline $	H3-1 µg/g 20955 7555 59935 52.8 29299 7.11 23.7 196 207 5.93 8 75	$\begin{array}{c} \text{```5-R5} \\ \text{S.D.} \\ \pm 5971 \\ \pm 1118 \\ \pm 2154 \\ \pm 3.9 \\ \pm 3489 \\ \pm 0.74 \\ \pm 8.3 \\ \pm 11 \\ \pm 78 \\ \pm 0.87 \\ \pm 3.25 \end{array}$	H1-T µg/g 55758 110371 290740 189 57273 109 b.d.1 686 1206 93.8 73.0	$\begin{array}{c} & \\ & \\ & \\ i2-R3 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	H3 µg/g 2525 104108 292070 3.23 3.78 0.39 b.d.1 18.2 17.5 2.42 1.45	$-R8$ ± 242 ± 13955 ± 9299 ± 0.36 ± 1.35 ± 0.09 ± 1.1 ± 5.9 ± 0.32 ± 0.70	H2 µg/g 166434 b.d.1 1627 15.4 b.d.1 1.04 b.d.1 3577 12392 122 137	$\pm -R8$ ± 36418 ± 681 ± 2.2 ± 0.50 ± 467 ± 5282 ± 17 ± 48	H3 µg/g 124887 4197 1872 33.6 16.2 4.79 18.5 1409 3732 73.3 371	$ \begin{array}{c} 1 \\ \hline 1 \\ \hline 3 \\ \hline 3 \\ \hline 8 \\ \hline 5 \\ \hline 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	Ma μg/g 17604 b.d.1 1044 16.8 372 0.62 25.5 413 1098 7.87 9.32	$ \begin{array}{c} E13-R9 \\ S.D. \\ 4 \pm 17334 \\ \pm 348 \\ \pm 1.3 \\ \pm 34 \\ \pm 0.24 \\ \pm 6.7 \\ \pm 39 \\ \pm 216 \\ \pm 1.01 \\ \pm 382 \end{array} $
Mg Si Ca Sc Ti V Cr Co Ni Cu Zn	H3-T µg/g 16888 17111 59120 44.5 21275 16.3 24.9 142 144 10.4 8.41 236	$\begin{array}{c} 1 \\ \hline 1 \hline 1$	H3-1 μg/g 20955 7555 59935 52.8 29299 7.11 23.7 196 207 5.93 8.75 2244	$\begin{array}{c} \text{```5-R5} \\ \text{S.D.} \\ \pm 5971 \\ \pm 1118 \\ \pm 2154 \\ \pm 3489 \\ \pm 3489 \\ \pm 0.74 \\ \pm 8.3 \\ \pm 11 \\ \pm 78 \\ \pm 0.87 \\ \pm 3.87 \\ \pm 3.7 \end{array}$	H1-T μg/g 55758 110371 290740 189 57273 109 b.d.1 686 1206 93.8 73.0 815	$\begin{array}{c} & \\ & \\ & \\ i2-R3 \\ & \\ & \\ \pm 10561 \\ & \\ \pm 14987 \\ & \\ \pm 12078 \\ & \\ \pm 140 \\ & \\ \pm 4394 \\ & \\ \pm 9 \\ & \\ \pm 384 \\ & \\ \pm 354 \\ & \\ \pm 9.9 \\ & \\ \pm 25.4 \\ & \\ \pm 47 \end{array}$	H3 µg/g 2525 104108 292070 3.23 3.78 0.39 b.d.1 18.2 17.5 2.42 1.45 2.42 1.12	$\begin{array}{c} -\text{R8} \\ \hline \text{S.D.} \\ \pm 242 \\ \pm 13955 \\ \pm 9299 \\ \pm 0.36 \\ \pm 1.35 \\ \pm 0.09 \\ \pm 1.1 \\ \pm 5.9 \\ \pm 0.32 \\ \pm 0.70 \\ \pm 0.$	H2 µg/g 166434 b.d.1 1627 15.4 b.d.1 1.04 b.d.1 3577 12392 122 137 577	2-R8 ± 36418 ± 681 ± 2.2 ± 0.50 ± 467 ± 5282 ± 17 ± 469	H3 µg/g 124887 4197 1872 33.6 16.2 4.79 18.5 1409 3732 73.3 37.1 258	$\begin{array}{c} \text{area}\\ are$	Μα μg/g 17604 b.d.1 1044 16.8 372 0.62 25.5 413 1098 7.87 9.32 272	$ \begin{array}{c} El3-R9 \\ S.D. \\ 4 \pm 17334 \\ \pm 348 \\ \pm 1.3 \\ \pm 34 \\ \pm 0.24 \\ \pm 6.7 \\ \pm 39 \\ \pm 216 \\ \pm 1.01 \\ \pm 3.82 \\ \pm 21 \\ \end{array} $
Mg Si Ca Sc Ti V Cr Co Ni Cu Zn Ga Ga	H3-T µg/g 16888 17111 59120 44.5 21275 16.3 24.9 142 144 10.4 8.41 236 6 28	$\begin{array}{c} \hline \\ \hline $	H3-1 μg/g 20955 7555 52.8 29299 7.11 23.7 196 207 5.93 8.75 244 8 93	$\begin{array}{c} \text{```5-R5} \\ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	H1-T μg/g 55758 110371 290740 189 57273 109 b.d.1 686 1206 93.8 73.0 815 b.d.1	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ \pm 10561 \\ \pm 14987 \\ \pm 12078 \\ \pm 14 \\ \pm 4394 \\ \pm 9 \\ \\ \pm 354 \\ \pm 9.9 \\ \pm 354 \\ \pm 9.9 \\ \pm 25.4 \\ \pm 47 \end{array}$	H3 µg/g 2525 104108 292070 3.23 3.78 0.39 b.d.1 18.2 17.5 2.42 1.45 112 2.73	$-R8$ ± 242 ± 13955 ± 9299 ± 0.36 ± 1.35 ± 0.09 ± 1.1 ± 5.9 ± 0.32 ± 0.70 ± 6.92	H2 µg/g 166434 b.d.1 1627 15.4 b.d.1 1.04 b.d.1 3577 12392 122 137 577 13.3	2-R8 ± 36418 ± 681 ± 2.2 ± 0.50 ± 467 ± 5282 ± 17 ± 48 ± 69 ± 55	H3 µg/g 124887 4197 1872 33.6 16.2 4.79 18.5 1409 3732 73.3 37.1 258 b d 1	$\begin{array}{c} 1 \\ \hline \\ 3 \\ - R8 \\ \hline \\ \hline \\ s.D. \\ \hline \\ \pm 529 \\ \pm 554 \\ \pm 2.1 \\ \pm 4.8 \\ \pm 0.39 \\ \pm 9.4 \\ \pm 9.4 \\ \pm 515 \\ \pm 5.3 \\ \pm 9.2 \\ \pm 12 \end{array}$	Μα μg/g 17604 b.d.1 1044 16.8 372 0.62 25.5 413 1098 7.87 9.32 373 373 5.03	$ \begin{array}{c} El3-R9 \\ S.D. \\ 4 \pm 17334 \\ \pm 348 \\ \pm 1.3 \\ \pm 34 \\ \pm 0.24 \\ \pm 6.7 \\ \pm 216 \\ \pm 1.01 \\ \pm 3.82 \\ \pm 21 \\ \pm 22 \\ \pm 21 \\ \pm 22 \\ \pm 22 \\ \end{bmatrix} $
Mg Si Ca Sc Ti V Cr Co Ni Cu Zn Ga Bb	H3-T µg/g 16888 17111 59120 44.5 21275 16.3 24.9 142 144 10.4 8.41 236 6.28 b.d l	$\begin{array}{c} \\ $	H3-1 μg/g 209555 7555 59935 52.8 29299 7.11 23.7 196 207 5.93 8.75 244 8.93 b.d.1	$\begin{array}{c} \dot{1}5-R5\\ \hline S.D.\\ \pm\ 5971\\ \pm\ 1118\\ \pm\ 2154\\ \pm\ 3.9\\ \pm\ 3489\\ \pm\ 0.74\\ \pm\ 8.3\\ \pm\ 11\\ \pm\ 78\\ \pm\ 0.87\\ \pm\ 3.25\\ \pm\ 17\\ \pm\ 2.46\\ \end{array}$	H1-T μg/g 55758 110371 290740 189 57273 109 b.d.1 686 1206 93.8 73.0 815 b.d.1 b.d.1	$\begin{array}{c} \pm 10561 \\ \pm 10561 \\ \pm 14987 \\ \pm 12078 \\ \pm 14 \\ \pm 4394 \\ \pm 9 \\ \pm 38 \\ \pm 354 \\ \pm 9.9 \\ \pm 25.4 \\ \pm 47 \end{array}$	H3 ++g/g 2525 104108 292070 3.23 3.78 0.39 b.d.1 18.2 17.5 2.42 1.45 1.45 1.45 1.12 2.73 0.14	$-R8$ 5.D. ± 242 ± 13955 ± 9299 ± 0.36 ± 1.35 ± 0.09 ± 1.1 ± 5.9 ± 0.32 ± 0.70 ± 6 ± 0.92 ± 0.06	H2 µg/g 166434 b.d.1 1627 15.4 b.d.1 1.04 b.d.1 3577 12392 122 137 577 13.3 0.82	2-R8 ± 36418 ± 681 ± 2.2 ± 0.50 ± 467 ± 5282 ± 17 ± 48 ± 69 ± 5.5 ± 0.34	H3 µg/g 124887 1872 33.6 16.2 4.79 18.5 1409 3732 73.3 37.1 258 b.d.1 b.d.1	$\begin{array}{c} 3-R8 \\ \hline & \\ & \\$	Ma μg/g 17604 b.d.1 1044 16.8 372 0.62 25.5 413 1098 7.87 9.32 373 5.03 0.27	$ \begin{array}{c} El3-R9 \\ S.D. \\ 4 \pm 17334 \\ \pm 348 \\ \pm 1.3 \\ \pm 34 \\ \pm 0.24 \\ \pm 0.24 \\ \pm 216 \\ \pm 1.01 \\ \pm 3.82 \\ \pm 21 \\ \pm 2.20 \\ + 0.15 \\ \end{array} $
Mg Si Ca Sc Ti V Cr Co Ni Cu Zn Ga Ge Sr	H3-T µg/g 16888 17111 59120 44.5 21275 16.3 24.9 142 144 10.4 8.41 236 6.28 b.d.1 86.3	$\begin{array}{c} \hline \\ \hline $	H3-1 µg/g 20955 7555 59935 52.8 29299 7.11 23.7 196 207 5.93 8.75 244 8.93 b.d.1 107	$\begin{array}{c} \text{```5-R5} \\ \text{S.D.} \\ \pm 5971 \\ \pm 1118 \\ \pm 2154 \\ \pm 3.9 \\ \pm 3489 \\ \pm 0.74 \\ \pm 8.3 \\ \pm 11 \\ \pm 78 \\ \pm 0.87 \\ \pm 3.25 \\ \pm 17 \\ \pm 2.46 \\ + 5 \end{array}$	H1-T µg/g 55758 110371 290740 189 57273 109 b.d.l 686 93.8 73.0 815 b.d.l b.d.l b.d.l b.d.l	$\begin{array}{c} & \\ & \\ & \\ i2-R3 \\ & \\ & \\ & \\ \pm 10561 \\ & \\ \pm 14987 \\ & \\ \pm 12078 \\ & \\ \pm 140 \\ & \\ \pm 4394 \\ & \\ \pm 90 \\ & \\ \pm 354 \\ & \\ \pm 9.9 \\ & \\ \pm 25.4 \\ & \\ \pm 47 \\ & \\ \end{array}$	H3 ++g/g 2525 104108 292070 3.23 3.78 0.39 b.d.1 18.2 17.5 2.42 1.45 112 2.73 0.14 110	$-R8$ 5.D. ± 242 ± 13955 ± 9299 ± 0.36 ± 1.35 ± 0.09 ± 1.1 ± 5.9 ± 0.32 ± 0.70 ± 6 ± 0.92 ± 0.06 ± 5	H2 µg/g 166434 b.d.1 1627 15.4 b.d.1 1.04 b.d.1 3577 12392 122 137 5777 13.3 0.82 b.d.1	$\begin{array}{c} 2-R8 \\ \hline & S.D. \\ \pm 36418 \\ \pm 2.2 \\ \pm 0.50 \\ \pm 467 \\ \pm 5282 \\ \pm 17 \\ \pm 48 \\ \pm 69 \\ \pm 5.5 \\ \pm 0.34 \end{array}$	H3 µg/g 1248877 4197 1872 33.6 16.2 4.79 18.5 1409 3732 73.3 37.1 258 b.d.1 b.d.1 b.d.1 5.02	$ \begin{array}{c} 3-R8 \\ \hline \\ \hline \\ & \\ \hline \\ & \\ \hline \\ & \\ & \\ & \\ &$	Ma μg/g 17604 b.d.1 1044 16.8 372 0.62 25.5 413 1098 7.87 9.32 373 5.03 0.27 b.d.1	$ \begin{array}{c} El3-R9 \\ S.D. \\ 4 \pm 17334 \\ \pm 348 \\ \pm 1.3 \\ \pm 34 \\ \pm 0.24 \\ \pm 6.7 \\ \pm 39 \\ \pm 216 \\ \pm 1.01 \\ \pm 3.82 \\ \pm 21 \\ \pm 2.20 \\ \pm 0.15 \\ \end{array} $
Mg Si Ca Sc Ti V Cr Co Cu Zn Ga Ge Rb Sr Y	H3-T µg/g 16888 17111 59120 44.5 21275 16.3 24.9 142 144 10.4 8.41 236 6.28 b.d.l. 86.3 28.7	$\begin{array}{c} 1112 \\ \hline 1112 $	H3-1 µg/g 20955 7555 59935 52.8 29299 7.11 23.7 196 207 5.93 8.75 244 8.93 b.d.1 107 27.0	$\begin{array}{c} \text{```5-R5} \\ \hline \text{S.D.} \\ \pm 5971 \\ \pm 1118 \\ \pm 2154 \\ \pm 3.9 \\ \pm 0.74 \\ \pm 8.3 \\ \pm 11 \\ \pm 78 \\ \pm 0.87 \\ \pm 3.25 \\ \pm 17 \\ \pm 2.26 \\ \end{array}$	H1-T µg/g 55758 110371 290740 189 57273 109 b.d.l 686 1206 93.8 73.0 815 b.d.l b.d.l 422 189	$\begin{array}{c} & \\ & \\ & \\ i2-R3 \\ & \\ & \\ \pm 10561 \\ & \\ \pm 14987 \\ & \\ \pm 12078 \\ & \\ \pm 12078 \\ & \\ \pm 12078 \\ & \\ \pm 354 \\ & \\ \pm 99 \\ & \\ \pm 354 \\ & \\ \pm 99 \\ & \\ \pm 354 \\ & \\ \pm 99 \\ & \\ \pm 25.4 \\ & \\ \pm 47 \\ & \\ \\ \pm 21 \\ & \\ \pm 12 \end{array}$	H3 µg/g 2525 104108 292070 3.23 3.78 0.39 b.d.1 18.2 17.5 2.42 1.45 112 2.73 0.14 110 93.2	$-R8$ ± 242 ± 13955 ± 9299 ± 0.36 ± 1.35 ± 0.09 ± 1.1 ± 5.9 ± 0.32 ± 0.70 ± 6 ± 0.92 ± 0.92 ± 4.1	H2 µg/g 166434 b.d.1 1627 15.4 b.d.1 1.04 b.d.1 3577 12392 122 137 577 13.3 0.82 b.d.1 b.d.1	$\begin{array}{c} \pm$	H3 µg/g 1248877 4197 1872 33.6 16.2 4.79 18.5 1409 3732 73.3 37.1 258 b.d.1 b.d.1 5.02 4.59	$\begin{array}{c} 3-R8 \\ \hline \\ \hline \\ & 5.D. \\ \hline \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	Ма µg/g 17604 b.d.1 1044 16.8 372 0.62 25.5 413 1098 7.87 9.32 373 5.03 0.27 b.d.1 0.20	$ \begin{array}{c} El3-R9 \\ S.D. \\ 4 \pm 17334 \\ \pm 348 \\ \pm 1.3 \\ \pm 34 \\ \pm 0.24 \\ \pm 6.7 \\ \pm 39 \\ \pm 216 \\ \pm 1.01 \\ \pm 3.82 \\ \pm 21 \\ \pm 2.20 \\ \pm 0.15 \\ \pm 0.08 \\ \end{array} $
Mg Si Ca Sti V Cr Co Ni Cu Zn Ga Ge Rb Sr Y Zr	H3-T µg/g 16888 17111 59120 44.5 21275 16.3 24.9 142 144 10.4 8.41 236 6.28 b.d.1 86.3 28.7 23.0	$\begin{array}{c} 1112 \\ \hline 1112 $	H3-1 µg/g 20955 59935 52.8 29299 7.11 23.7 196 207 5.93 8.75 244 8.93 b.d.1 107 27.0 34.0	$\begin{array}{c} \text{```5-R5} \\ \hline \text{S.D.} \\ \pm 5971 \\ \pm 1118 \\ \pm 2154 \\ \pm 3.9 \\ \pm 0.74 \\ \pm 8.3 \\ \pm 11 \\ \pm 78 \\ \pm 0.87 \\ \pm 3.25 \\ \pm 17 \\ \pm 2.46 \\ \pm 5 \\ \pm 2.2 \\ \pm 2.7 \end{array}$	H1-T µg/g 55758 110371 290740 189 57273 109 b.d.1 686 1206 93.8 73.0 815 b.d.1 b.d.1 422 189 169	$\begin{array}{c} & \\ & \\ & \\ i2-R3 \\ & \\ & \\ \pm 10561 \\ \pm 14987 \\ \pm 14987 \\ \pm 14 \\ \pm 4394 \\ \pm 9 \\ \\ \pm 354 \\ \pm 354 \\ \pm 354 \\ \pm 9.9 \\ \pm 25.4 \\ \pm 47 \\ \\ \pm 21 \\ \pm 12 \\ \pm 13 \end{array}$	H3 µg/g 2525 104108 292070 3.23 3.78 0.39 b.d.l 18.2 17.5 2.42 1.45 112 2.73 0.14 110 93.2 b.d.l	$\begin{array}{c} -\text{R8} \\ \hline \text{S.D.} \\ \pm 242 \\ \pm 13955 \\ \pm 9299 \\ \pm 0.36 \\ \pm 1.35 \\ \pm 0.09 \\ \pm 1.1 \\ \pm 5.9 \\ \pm 0.32 \\ \pm 0.70 \\ \pm 6 \\ \pm 0.92 \\ \pm 0.06 \\ \pm 5 \\ \pm 4.1 \end{array}$	H2 µg/g 166434 b.d.1 1627 15.4 b.d.1 1.04 b.d.1 3577 12392 122 137 577 13.3 0.82 b.d.1 b.d.1 b.d.1 b.d.1	$\begin{array}{c} \pm$	H3 µg/g 124887 4197 1872 33.6 16.2 4.79 18.5 1409 3732 73.3 37.1 258 b.d.1 b.d.1 5.02 4.59 6.04	$\begin{array}{c} 1 \\ \hline \\$	Mα μg/g 17604 b.d.1 1044 16.8 372 0.62 25.5 413 1098 7.87 9.32 373 5.03 0.27 b.d.1 0.20 b.d.1	$ \begin{array}{c} El3-R9 \\ S.D. \\ 4 \pm 17334 \\ \pm 348 \\ \pm 1.3 \\ \pm 34 \\ \pm 0.24 \\ \pm 6.7 \\ \pm 39 \\ \pm 216 \\ \pm 1.01 \\ \pm 3.82 \\ \pm 21 \\ \pm 2.20 \\ \pm 0.15 \\ \pm 0.08 \\ \end{array} $
Mg Si Ca Sc Ti V Cr Co Ni Cu Zn Ga Ge Rb Sr Y Zr Nb	H3-T µg/g 16888 17111 59120 44.5 21275 16.3 24.9 142 144 10.4 8.41 236 6.28 b.d.1 86.3 28.7 23.0 12.6	$\begin{array}{c} \text{ii5-R4} \\ \hline \text{s.D.} \\ \pm 2734 \\ \pm 2303 \\ \pm 2034 \\ \pm 2.7 \\ \pm 1994 \\ \pm 1.2 \\ \pm 6.3 \\ \pm 9 \\ \pm 25 \\ \pm 1.0 \\ \pm 2.711 \\ \pm 1.74 \\ \pm 1.74 \\ \pm 1.74 \\ \pm 1.4 \\ \pm 0.7 \end{array}$	H3-1 μg/g 20955 7555 59935 52.8 292999 7.11 23.7 196 207 5.93 8.75 244 8.93 b.d.1 107 27.0 34.0 21.4	$\begin{array}{c} \dot{1}\dot{1}\dot{5}-R5\\ \hline S.D.\\ \pm\ 5971\\ \pm\ 1118\\ \pm\ 2154\\ \pm\ 3.9\\ \pm\ 3.49\\ \pm\ 0.74\\ \pm\ 8.3\\ \pm\ 11\\ \pm\ 78\\ \pm\ 0.87\\ \pm\ 3.25\\ \pm\ 17\\ \pm\ 2.26\\ \pm\ 2.2\\ \pm\ 2.7\\ \pm\ 1.4\end{array}$	H1-T μg/g 55758 110371 290740 189 57273 109 b.d.l 686 1206 93.8 73.0 815 b.d.l b.d.l 422 189 169 117	$\begin{array}{c} \pm 10561\\ \pm 10561\\ \pm 14987\\ \pm 14987\\ \pm 14\\ \pm 4394\\ \pm 9\\ \pm 38\\ \pm 354\\ \pm 9.9\\ \pm 25.4\\ \pm 47\\ \pm 21\\ \pm 12\\ \pm 13\\ \pm 8\end{array}$	H3 µg/g 2525 104108 292070 3.23 3.78 0.39 b.d.1 18.2 17.5 2.42 1.45 112 2.73 0.14 110 93.2 b.d.1 0.03	$\begin{array}{c} -\text{R8} \\ \hline \text{S.D.} \\ \pm 242 \\ \pm 13955 \\ \pm 9299 \\ \pm 0.36 \\ \pm 1.35 \\ \pm 0.09 \\ \pm 1.1 \\ \pm 5.9 \\ \pm 0.32 \\ \pm 0.70 \\ \pm 6 \\ \pm 0.92 \\ \pm 0.06 \\ \pm 5 \\ \pm 4.1 \\ \pm 0.02 \end{array}$	H2 µg/g 166434 b.d.1 1627 15.4 b.d.1 1.04 b.d.1 3577 12392 122 137 5777 13.3 0.82 b.d.1 b.d.1 b.d.1 0.4	$\begin{array}{c} \pm$	H3 µg/g 124887 4197 1872 33.6 16.2 4.79 18.5 1409 3732 73.3 37.1 258 b.d.1 b.d.1 5.02 4.59 6.04 1.18	$\begin{array}{c} 1.1111 \\ 1.11111 \\ 1.11111111111111111$	Μα μg/g 17604 b.d.1 1044 16.8 372 0.62 25.5 413 1098 7.87 9.32 373 5.03 0.27 b.d.1 0.20 b.d.1 0.03	$\begin{array}{c} \text{el3-R9} \\ \hline \text{S.D.} \\ \hline \\ 4 \ \pm 17334 \\ \pm 348 \\ \pm 1.3 \\ \pm 34 \\ \pm 0.24 \\ \pm 6.7 \\ \pm 39 \\ \pm 216 \\ \pm 1.01 \\ \pm 3.82 \\ \pm 21 \\ \pm 2.20 \\ \pm 0.15 \\ \pm 0.08 \\ \pm 0.03 \end{array}$
Mg Si Ca Sc Ti V Cr Co Ni Cu Zn Ga Ge Rb Sr Y Zr Nb Rh	H3-T µg/g 16888 17111 59120 44.5 21275 16.3 24.9 142 144 10.4 8.41 236 6.28 b.d.1 86.3 28.7 23.0 12.6 6.31	$\begin{array}{c} 111200\\ \hline 1112000\\ \hline 1112000\\ \hline 1112000\\ \hline 1112000\\ \hline 111200\\ \hline 11120$	H3-1 μg/g 20955 7555 59935 52.8 29299 7.11 23.7 196 207 5.93 8.75 244 8.93 b.d.1 107 27.0 34.0 21.4 8.78	$\begin{array}{c} \dot{\text{i}} 5\text{-R5} \\ \hline \text{S.D.} \\ \pm 5971 \\ \pm 1118 \\ \pm 2154 \\ \pm 3.9 \\ \pm 0.74 \\ \pm 3.9 \\ \pm 0.74 \\ \pm 8.3 \\ \pm 11 \\ \pm 78 \\ \pm 0.87 \\ \pm 3.25 \\ \pm 17 \\ \pm 2.46 \\ \pm 5 \\ \pm 2.7 \\ \pm 2.7 \\ \pm 1.4 \\ \pm 1.51 \end{array}$	H1-T μg/g 55758 110371 290740 189 57273 109 b.d.1 686 1206 93.8 73.0 815 b.d.1 b.d.1 422 189 169 117 45.2	$\begin{array}{c} \pm 10561 \\ \pm 10561 \\ \pm 14987 \\ \pm 12078 \\ \pm 14 \\ \pm 4394 \\ \pm 9 \\ \pm 38 \\ \pm 354 \\ \pm 9.9 \\ \pm 25.4 \\ \pm 47 \\ \pm 21 \\ \pm 12 \\ \pm 13 \\ \pm 8 \\ \pm 5.4 \end{array}$	H3 µg/g 2525 104108 292070 3.23 3.78 0.39 b.d.1 18.2 17.5 2.42 1.45 112 2.73 0.14 110 93.2 b.d.1 112 2.73 0.14 110 93.2 b.d.1 0.03 0.05	$\begin{array}{c} -\text{R8} \\ \hline \text{S.D.} \\ \pm 242 \\ \pm 13955 \\ \pm 9299 \\ \pm 0.36 \\ \pm 1.35 \\ \pm 0.09 \\ \pm 1.1 \\ \pm 5.9 \\ \pm 0.32 \\ \pm 0.70 \\ \pm 6 \\ \pm 0.92 \\ \pm 0.06 \\ \pm 5 \\ \pm 4.1 \\ \pm 0.02 \\ \pm 0.02 \\ \end{array}$	H2 µg/g 166434 b.d.1 1627 15.4 b.d.1 1.04 b.d.1 3577 12392 122 137 5777 13.3 0.82 b.d.1 b.d.1 b.d.1 b.d.1 d.1 b.d.1 1.3 577 1.3.3 0.82 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 1.04 b.d.1 b.	$\begin{array}{c} 2-R8 \\ \hline S.D. \\ \pm 36418 \\ \pm 2.2 \\ \pm 0.50 \\ \pm 467 \\ \pm 5282 \\ \pm 17 \\ \pm 48 \\ \pm 69 \\ \pm 5.5 \\ \pm 0.34 \\ \pm 0.07 \end{array}$	H3 µg/g 124887 4197 1872 33.6 16.2 4.79 18.5 1409 3732 73.3 37.1 258 b.d.1 b.d.1 5.02 4.59 6.04 1.18 9.49	$\begin{array}{c} \text{Here} \\ \hline \text{B-R8} \\ \hline \text{S.D.} \\ \hline \\ \hline \\ & \pm 529 \\ \pm 554 \\ \pm 2.1 \\ \pm 4.8 \\ \pm 0.39 \\ \pm 9.4 \\ \pm 515 \\ \pm 5.3 \\ \pm 9.2 \\ \pm 12 \\ \hline \\ & \pm 0.41 \\ \pm 0.18 \\ \pm 1.75 \\ \pm 0.08 \\ \pm 0.08 \\ \pm 0.081 \\ \end{array}$	Μα μg/g 17604 b.d.1 1044 16.8 372 0.62 25.5 413 1098 7.87 9.32 373 0.27 b.d.1 0.20 b.d.1 0.20 d.0.3 14.4	$213-R9$ S.D. 4 ± 17334 ± 348 ± 1.3 ± 34 ± 0.24 ± 6.7 ± 39 ± 216 ± 1.01 ± 3.82 ± 21 ± 2.20 ± 0.15 ± 0.08 ± 0.03 ± 1.5
Mg Si Ca Sc Ti V Cr Co Ni Cu Cn Ga Ge Rb Sr Y Zr Nb Rh Cs	H3-T μg/g 16888 17111 59120 44.5 21275 16.3 24.9 142 144 10.4 8.41 236 6.28 b.d.1 86.3 28.7 23.0 12.6 6.31 b.d.1	$\begin{array}{c} \pm \\ \hline \\ \text{ii5-R4} \\ \pm \\ 2734 \\ \pm \\ 2034 \\ \pm \\ 2034 \\ \pm \\ 2034 \\ \pm \\ 27 \\ \pm \\ 1094 \\ \pm \\ 25 \\ \pm \\ 1.2 \\ \pm \\ 25 \\ \pm \\ 1.0 \\ \pm \\ 2.7 \\ \pm \\ 1.2 \\ \pm \\ 1.74 \\ \pm \\ 1.74 \\ \pm \\ 1.74 \\ \pm \\ 0.7 \\ \pm \\ 0.81 \\ \end{array}$	H3-1 μg/g 20955 7555 59935 52.8 29299 7.11 23.7 196 207 5.93 8.75 244 8.93 b.d.1 107 27.0 34.0 21.4 8.78 b.d.1	$\begin{array}{c} \dot{\text{i}5-\text{R5}} \\ \hline \text{S.D.} \\ \pm 5971 \\ \pm 1118 \\ \pm 2154 \\ \pm 3.9 \\ \pm 0.74 \\ \pm 8.3 \\ \pm 11 \\ \pm 78 \\ \pm 0.87 \\ \pm 3.25 \\ \pm 17 \\ \pm 2.46 \\ \pm 5 \\ \pm 2.46 \\ \pm 5 \\ \pm 2.2 \\ \pm 2.7 \\ \pm 1.4 \\ \pm 1.51 \end{array}$	H1-T μg/g 55758 110371 290740 189 57273 109 b.d.1 686 1206 93.8 73.0 815 b.d.1 b.d.1 422 189 169 117 45.2 1.53	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	H3 µg/g 2525 104108 292070 3.23 3.78 0.39 b.d.1 18.2 17.5 2.42 1.45 112 2.73 0.14 110 93.2 b.d.1 0.05 0.08	$\begin{array}{c} -\text{R8} \\ \hline \text{S.D.} \\ \pm 242 \\ \pm 13955 \\ \pm 9299 \\ \pm 0.36 \\ \pm 1.35 \\ \pm 0.09 \\ \pm 1.1 \\ \pm 5.9 \\ \pm 0.32 \\ \pm 0.70 \\ \pm 6 \\ \pm 0.92 \\ \pm 0.06 \\ \pm 5 \\ \pm 4.1 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.03 \\ \end{array}$	H2 µg/g 166434 b.d.1 1627 15.4 b.d.1 1.04 b.d.1 3577 12392 122 137 577 13.3 0.82 b.d.1 b.d.1 b.d.1 0.14 b.d.1 0.14 b.d.1 1.04 1	$\begin{array}{c} 2-R8 \\ \hline S.D. \\ \pm 36418 \\ \pm 2.2 \\ \pm 0.50 \\ \pm 467 \\ \pm 5282 \\ \pm 17 \\ \pm 48 \\ \pm 69 \\ \pm 5.5 \\ \pm 0.34 \\ \pm 0.07 \end{array}$	H3 µg/g 124887 4197 1872 33.6 16.2 4.79 18.75 1409 3732 73.3 37.1 258 b.d.1 b.d.1 5.02 4.59 6.04 1.18 9.49 b.d.1	$\begin{array}{c} 1 \\ \hline \\$	Μα μg/g 17604 b.d.l 1044 16.8 372 25.5 413 1098 7.87 9.32 373 5.03 0.27 b.d.l 0.20 b.d.l 0.32 14.4 b.d.1	$\begin{array}{c} \text{el3-R9} \\ \hline \text{S.D.} \\ 4 \pm 17334 \\ \pm 348 \\ \pm 1.3 \\ \pm 34 \\ \pm 0.24 \\ \pm 6.7 \\ \pm 39 \\ \pm 216 \\ \pm 1.01 \\ \pm 3.82 \\ \pm 21 \\ \pm 2.20 \\ \pm 0.15 \\ \pm 0.08 \\ \pm 0.03 \\ \pm 1.5 \end{array}$
Mg Si Ca Sc Ti V Cr Co Ni Cu Cu Ga Ge Rb Sr Y Zr Nb Rh Cs Ba	H3-T μg/g 16888 17111 59120 44.5 21275 16.3 24.9 142 144 10.4 8.41 236 6.28 b.d.1 86.3 28.7 23.0 12.6 6.31 b.d.1 9.20	$\begin{array}{c} 111000\\ \hline 1110000\\ \hline 1110000\\ \hline 1110000\\ \hline 111000\\ \hline 111000$	H3-1 μg/g 20955 7555 59935 52.8 29299 7.11 23.7 196 207 5.93 8.75 244 8.93 b.d.1 107 27.0 34.0 21.4 8.78 b.d.1 4.85	$\begin{array}{c} $$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	H1-T μg/g 55758 110371 290740 189 57273 109 b.d.1 686 1206 93.8 73.0 815 b.d.1 b.d.1 b.d.1 422 189 169 117 45.2 1.53 61.9	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	H3 µg/g 2525 104108 292070 3.23 3.78 0.39 b.d.1 18.2 17.5 2.42 1.45 112 2.73 0.14 110 93.2 b.d.1 0.03 0.05 0.08 1.15	$\begin{array}{c} -\text{R8} \\ \hline \text{S.D.} \\ \pm 242 \\ \pm 13955 \\ \pm 9299 \\ \pm 0.36 \\ \pm 1.35 \\ \pm 0.09 \\ \pm 1.1 \\ \pm 5.9 \\ \pm 0.32 \\ \pm 0.70 \\ \pm 6.02 \\ \pm 0.92 \\ \pm 0.06 \\ \pm 5 \\ \pm 4.1 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.03 \\ \pm 0.23 \end{array}$	H2 µg/g 166434 b.d.1 1627 15.4 b.d.1 1004 b.d.1 3577 12392 1222 137 577 13.3 0.82 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 1.33 0.82 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 12392 122 137 577 13.3 0.82 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.55 1.54 b.d.1 1.55 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.55 1.54 b.d.1 1.54 b.d.1 1.55 1.54 b.d.1 1.54 b.d.1 1.55 1	2-R8 ± 36418 ± 681 ± 2.2 ± 0.50 ± 467 ± 5282 ± 17 ± 48 ± 69 ± 5.5 ± 0.34 ± 0.07 ± 0.79	H3 µg/g 124887 4197 1872 33.6 16.2 4.79 18.72 33.6 16.2 4.79 18.72 33.6 16.2 4.79 18.72 33.6 16.2 4.79 18.72 33.6 16.2 4.79 18.72 33.6 16.2 4.79 18.72 33.6 16.2 4.79 18.72 33.6 16.2 4.79 18.72 37.1 25.8 b.d.1 5.02 4.59 6.04 1.18 9.49 b.d.1 3.65	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array}\\ \hline \\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \\ \\ \end{array}\\ \begin{array}{c} \\ \\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array}\\ \begin{array}{c} \\ \\ \\ \\ \end{array}\\ \begin{array}{c} \\ \\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \\ \end{array}\\ \begin{array}{c} \\ \\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \end{array}\\ \begin{array}{c} \\ \end{array}\\ \end{array}$	Μα μg/g 17604 b.d.1 1044 16.8 372 25.5 413 1098 7.87 9.32 373 5.03 0.27 b.d.1 0.20 b.d.1 0.03 14.4 b.d.1 0.88	$\begin{array}{c} \text{el3-R9} \\ \hline \text{S.D.} \\ \hline \text{4 } \pm 17334 \\ \pm 348 \\ \pm 1.3 \\ \pm 34 \\ \pm 0.24 \\ \pm 6.7 \\ \pm 39 \\ \pm 216 \\ \pm 1.01 \\ \pm 3.82 \\ \pm 21 \\ \pm 2.20 \\ \pm 0.15 \\ \pm 0.08 \\ \pm 0.03 \\ \pm 1.5 \\ \pm 0.35 \end{array}$
Mg Si Ca Sc Ti V Cr Co Ni Cu Zn Ga Ge Sr Y Zr Nb Rh Cs Ba La	H3-T µg/g 168888 17111 591200 44.5 21275 16.3 24.9 142 144 10.4 8.41 236 6.28 b.d.1 86.3 28.7 23.0 12.6 6.31 b.d.1 9.20 319	$\begin{array}{c} 1 \\ \hline 1 \hline 1$	H3-1 μg/g 20955 7555 59935 52.8 29299 7.11 23.7 196 207 5.93 8.75 244 8.93 b.d.1 107 27.0 34.0 21.4 8.78 b.d.1 4.85 336	$\begin{array}{c} \dot{1}\dot{5}-R5\\ \hline S.D.\\ \pm 5971\\ \pm 1118\\ \pm 2154\\ \pm 3.9\\ \pm 3489\\ \pm 0.74\\ \pm 8.3\\ \pm 11\\ \pm 78\\ \pm 0.87\\ \pm 3.25\\ \pm 17\\ \pm 2.26\\ \pm 17\\ \pm 2.46\\ \pm 5\\ \pm 2.2\\ \pm 2.7\\ \pm 1.4\\ \pm 1.51\\ \pm 1.04\\ \pm 19\\ \end{array}$	H1-T μg/g 55758 110371 290740 189 57273 109 b.d.1 686 1206 93.8 73.0 815 b.d.1 b.d.2 1.53 61.9 1176	$\begin{array}{c} \pm 10561 \\ \pm 10561 \\ \pm 14987 \\ \pm 12078 \\ \pm 14 \\ \pm 4394 \\ \pm 9 \\ \pm 38 \\ \pm 354 \\ \pm 9.9 \\ \pm 25.4 \\ \pm 47 \\ \pm 21 \\ \pm 12 \\ \pm 13 \\ \pm 8 \\ \pm 5.4 \\ \pm 1.00 \\ \pm 10.5 \\ \pm 53 \end{array}$	H3 ++g/g 2525 104108 292070 3.23 3.78 0.39 b.d.1 18.2 17.5 2.42 1.45 112 2.73 0.14 110 93.2 b.d.1 0.03 0.05 0.08 1.15 51.2	$\begin{array}{c} -\text{R8} \\ \hline \text{S.D.} \\ \pm 242 \\ \pm 13955 \\ \pm 9299 \\ \pm 0.36 \\ \pm 1.35 \\ \pm 0.09 \\ \pm 1.1 \\ \pm 5.9 \\ \pm 0.32 \\ \pm 0.70 \\ \pm 6 \\ \pm 0.92 \\ \pm 0.06 \\ \pm 5 \\ \pm 4.1 \\ \pm 0.02 \\ \pm 0.02 \\ \pm 0.03 \\ \pm 0.23 \\ \pm 0.23 \\ \pm 1.7 \end{array}$	H2 µg/g 166434 b.d.1 1627 15.4 b.d.1 1.04 b.d.1 3577 12392 122 137 577 13.3 0.82 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.57 1.2392 1.22 1.37 5.77 1.3.3 0.82 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.54 b.d.1 1.577 1.5392 b.d.1	2-R8 ± 36418 ± 681 ± 2.2 ± 0.50 ± 467 ± 5282 ± 17 ± 48 ± 69 ± 0.50 ± 407 ± 3.5 ± 0.34 ± 0.07 ± 0.79	H3 µg/g 124887 124887 1872 33.6 16.2 4.79 1855 1409 3732 73.3 37.1 258 b.d.1 5.02 4.59 6.04 1.18 9.49 b.d.1 3.65 0.11	$\begin{array}{c} 1 \\ \hline \\$	Μ μg/g 176044 b.d.1 1044 16.8 372 25.5 413 7.87 9.32 373 5.03 0.27 b.d.1 0.20 b.d.1 0.20 b.d.1 0.03 14.4 b.d.1 0.88 b.d.1	$\begin{array}{c} \text{el3-R9} \\ \hline \text{S.D.} \\ \hline \text{4 } \pm 17334 \\ \pm 348 \\ \pm 1.3 \\ \pm 34 \\ \pm 0.24 \\ \pm 0.24 \\ \pm 0.24 \\ \pm 216 \\ \pm 1.01 \\ \pm 3.82 \\ \pm 216 \\ \pm 0.15 \\ \pm 0.15 \\ \pm 0.08 \\ \pm 0.03 \\ \pm 1.5 \\ \pm 0.35 \end{array}$

		Hib	onite		<u>Melilite</u>				<u>Spinel</u>					
	НЗ	-Ti5-R4	H3-'	Ti5-R5	H1-1	Гі2-R3	H	3-R8	H	2-R8	H	3-R8	Me	13-R9
	μg/g	s S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.
Pr	244	± 12	269	± 14	1258	± 57	76.6	± 2.7	b.d.l	0.04	0.08	± 0.01	0.03	± 0.02
Nd Crea	215	± 11	237	± 1/	1082	± 63	91.1	± 3.9	0.15	± 0.24	0.13	± 0.02	0.13	± 0.09
5111	158	± 9	182	± 10	930	± 01	129	± 0	0.50	± 0.30	0.24	± 0.05	0.05	± 0.08
Eu	87.1	± 4.5	99.8 104	± 6.9	222	± 30	93.0	± 3.0	D.G.I		0.07	± 0.01	0.03	± 0.03
Gu Th	67.0 56.4	± 0.4	645	± 9	202	± 30	124	± 0	0.06	. 0.04	0.25	± 0.03	0.09	± 0.14
	20.4	+ ± 3.1	24.5	± 5.1	190	± 23	70.2	± 4	0.00	± 0.04	0.12	± 0.01	0.05	± 0.02
Dy Uo	21.0	± 2.2	24.7	± 3.0	109	± 1/	70.2	± 3.4	0.10	± 0.19	0.12	± 0.02	0.04	± 0.04
Fr.	12.0	1.0 ± 1.0	12.0	± 3.5	101	± 10	93.0 11 Q	± 3.9	0.05	± 0.04	0.10	± 0.01	0.05	± 0.02
EI Tm	0.5/	± 0.9	12.7 8.78	± 1.5 ± 0.84	77.5	± 10 ± 5.0	44.0 36.5	± 2.0 ± 1.4	0.14	± 0.11 ± 0.05	0.10	± 0.01 ± 0.01	0.08	± 0.04 ± 0.03
Vb	1/ 0	± 0.57	0.20 10.7	± 0.04 ± 1.2	100	± 3.9	54.7	± 1.4	0.11	± 0.03 ± 0.17	0.00	± 0.01 ± 0.02	0.08	± 0.03 ± 0.08
IU	17.0	± 1.1	8 70	± 0.80	105	± 11 ± 7	J4.7 46.7	± 2.5	0.17	± 0.06	0.14	± 0.02	0.10	± 0.03
Lu Lf	32.2	± 0.7	53 /	± 0.80 ± 1.8	200	± /	0.05	± 0.02	0.14	± 0.00 ± 0.17	0.12	± 0.01	0.15	± 0.03
111 To	35.0	± 2.2	70.5	± 4.0	200	± 13 ± 18	0.03	± 0.02 ± 0.01	0.25	± 0.17	0.14	± 0.02	0.10	± 0.07
14	167	7 ± 2.0	157	± 0.0	6 5 9	± 10 ± 1.05	0.02	± 0.01	0.07	± 0.04 ± 0.14	0.20	± 0.01	0.05	± 0.02 ± 0.05
Ph	h.d.	. ±0.23	hd1	± 0.25	b.33	± 1.55	b.d.l	± 0.05	b.d.1	± 0.14	b.d1	± 0.02	b.d.1	± 0.05
Th	68.4	L _ 35	74.2	± 64	<u>4</u> 90	+ 29	9.05	± 0.35	0.06	+ 0.03	0.95	+ 0.07	0.01	± 0.01
11	0.05	1 + 0.02	0.03	± 0.4	013	± 0.10	0.00	± 0.00	b.d.l	1 0.05	0.00	± 0.07	b.d.l	1 0.01
	0.02	, ± 0.02	0.05	± 0.01	0.15	± 0.10	0.00	± 0.00	D.u.i		0.01	± 0.01	D.u.1	
		<u>Spin</u>	<u>nel</u>						<u>Silicat</u>	e <u>Melt</u>				
	Mel	3-R11	Mel	3-R12	H1-T	ïi2-R3	H1-T	ïi5-R4	H1-T	i5-R5	H2-T	i2-R2	H2-T	ïi2-R3
	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.
Mg	186262	±33494	181809	±31474	7171	± 1349	5695	± 822	4735	± 1125	15407	± 3107	15370	± 2944
Si	1293	± 336	1010	± 304	157158	±20531	140628	± 18404	151388	± 21120	170836	±22512	182917	±23969
Ca	b.d.l		1190	± 339	204571	± 6514	194023	±6185	210641	± 6714	174887	± 5580	182874	± 5835
Sc	13.1	± 2.2	12.4	± 1.7	169	± 9	146	± 8	163	± 11	147	± 8	156	± 9
Ti	369	± 57	333	± 48	12438	± 922	31610	± 2649	29161	± 3938	11937	± 965	12212	± 930
v	0.54	± 0.24	0.58	± 0.23	192	± 11	169	± 10	183	± 15	129	± 8	121	± 7
Cr	34.1	± 10.1	46.5	± 10.5	b.d.l		6.12	± 2.33	b.d.l		b.d.l		12.3	± 2.5
Co	425	± 70	425	± 51	113	± 5	117	± 7	117	± 9	139	± 7	117	± 6
Ni	1014	± 251	1030	± 223	284	± 71	185	± 25	194	± 47	222	± 59	261	± 66
Cu	73.2	± 10.6	26.5	± 3.0	71.1	± 4.2	65.7	± 4.0	48.1	± 3.9	176	± 11	97.5	± 5.8
Zn	23.5	± 5.0	15.7	± 4.0	4.08	± 0.97	4.16	± 1.21	3.40	± 1.14	5.61	± 1.16	5.27	± 1.15
Ga	369	± 60	413	± 49	96.3	± 4.9	99.5	± 4.6	89.5	± 5.4	121	± 6	106	± 5
Ge	b.d.l	0.10	b.d.l		2.44	± 0.66	2.94	± 0.73	2.27	± 0.73	2.48	± 0.78	2.07	± 0.75
KD	0.44	± 0.18	D.d.1		0.40	± 0.08	0.52	± 0.10	0.44	± 0.09	1.23	± 0.13	0.70	± 0.10
Sr	0.72	± 0.38	D.d.1	0.05	188	±δ	1/1	± /	184	± 10	1/8	± /	183	± /
Y	0.10	± 0.06	0.07	± 0.05	103	± 9	142	± /	164	± 12	149	±δ	159	± 9
	D.C.I		0.09	± 0.07	138	± /	118	± ⊃	132	±δ	107	± 0	107	± 0
IND Dh	D.G.I		0.03	± 0.02	0.27	± 5	98.7	± 4.3	108	± 0	100	±⊃	107	± 5
KII Co	52.9 5.41	± 0.4	30.1	± 0.0	0.37 b.d.1	± 0.06	0.33	± 0.05	0.25	± 0.06	D.0.1		0.18 b.d.1	± 0.04
CS Do	D.U.I b.d.1		0.24 b.d.l	± 0.12	D.U.I 11C	. 6	101	± 0.05	115	. 10	D.U.I 114	. 6	120	. 6
Da La	b.d.i		b.d.l		50.2	± 0	670	± 0	55.2	± 10	02.2	± 0	574	± 0
La	0.02	. 0.02	0.04	. 0.02	101	± 2.0	122	± 2.5	112	± 2.0	117	± 5.5	95.2	± 2.5
Dr	0.05	± 0.03	0.04	± 0.02	70.6	エ ユ エ ス つ	95.6	± 4 3	86.0	- 56 - 56	70.5	733 72	62.1	± 2.5
Nd	0.00	± 0.05	0.02	± 0.02	80 A	± 4.0	93.0	エ 4 A	86.1	- 5.0 - 5.8	92.0	د.د <u>۲</u> ۲۵۵ ـ	771	- 30 - 30
Sm	0.16	± 0.05 ± 0.11	0.09	± 0.03	126	± 7.0	132	± ± 6	133	+ 5.5 + 10	174		115	+ 3.5 + 7
Fii	b.10	± 0.11	0.03	± 0.07	106	+ 5	102	+ 5	110	+ 8	99.6	- ' + 4 9	96.5	+ 46
C.d	b d l		b d 1	± 0.05	127	+ 7	124	+ 8	130	<u>+</u> 13	137	+ 8	137	+ 8
Th	0.01	+0.02	0.04	+ 0.02	146	÷ , + 8	134	+ 6	148	+ 11	139	+ 8	144	+ 8
Dv	0.08	± 0.02 ± 0.06	0.06	± 0.02	108	÷ 0 + 7	98 5	± 54	110	+ 10	96.0	+68	101	+ 7
Ho	0.05	+ 0.02	0.02	+ 0.01	151	+ 9	134	+ 7	152	+ 12	130	+ 9	137	+ 8
Er	0.07	± 0.05	0.10	± 0.05	89.8	± 5.9	79.4	± 3.9	89.9	± 6.8	86.0	± 6.2	90.8	± 6.2

Table	2 (continued)	

		<u>Spi</u>	nel		Silicate Melt									
	Mel	3-R11	Mel	3-R12	H1-1	Гі2-R3	H1-	Гі5-R4	H1-1	Гі5-R5	H2-7	Гі2-R2	H2-Ti2-R3	
	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.
Tm	0.05	+ 0.03	0.10	+ 0.03	89.2	+ 5.3	78.8	+ 3.7	88.6	+ 6.3	83.6	+ 5.4	89.8	+ 5.5
Yb	0.07	± 0.09	0.14	± 0.11	164	± 9	144	± 8	161	± 14	129	± 8	141	± 8
Lu	0.10	± 0.04	0.06	± 0.03	142	± 8	124	± 6	140		134	± 8	146	± 8
Hf	0.04	± 0.06	0.09	± 0.06	80.5	± 4.6	72.2	± 4.0	80.1	± 7.1	94.1	± 5.7	98.3	± 5.7
Ta	0.01	± 0.03	0.01	± 0.02	114	± 6	103	± 5	113	± 8	114	± 6	118	± 6
W	0.03	± 0.05	b.d.l		6.94	± 0.50	13.6	± 0.8	22.6	± 1.9	5.26	± 0.42	4.48	± 0.37
Pb	b.d.l		0.27	± 0.08	0.08	± 0.03	0.09	± 0.03	b.d.l		0.15	± 0.04	0.09	± 0.03
Th	b.d.l		0.01	± 0.01	84.2	± 4.6	83.6	± 3.8	88.7	± 6.2	83.1	± 4.9	80.4	± 4.5
U	0.01	± 0.01	b.d.l		0.37	± 0.03	0.53	± 0.04	0.42	± 0.04	0.55	± 0.05	0.27	± 0.03

	Silicate Melt												
	H3-1	ïi5-R4	H3-1	ïi5-R5	HB	-R8	Mel	3-R9	Mel	3-R11	Mel	3-R12	
	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	µg/g	S.D.	
Mg	16270	± 2730	13761	± 4025	11830	± 1200	46019	± 5506	46648	± 11969	36571	± 6463	
Si	152332	± 20231	150673	± 20774	152250	± 20475	198640	± 27085	170473	± 23065	187738	± 4966	
Ca	191451	± 6107	205918	± 6551	194399	± 6193	259365	± 8229	224959	± 7156	230146	± 14	
Sc	204	± 12	230	± 16	260	± 13	288	± 15	209	± 13	215	± 21	
	28655	± 2/63	29097	± 3562	141	± 15	16910	± 2233	12990	± 13/3	13316	± 1462	
V	167	± 11	1/9	± 14	193	± 10	328	± 19	249	± 1/	442	± 27	
Cr	5.43	± 2.54	D.Q.I	. 0	D.Q.I	. 0	D.Q.I	. 0	D.Q.I	. 6	D.G.I		
NG	100	± 10	155	± 0	144	± 0	65.0	± 9	726	± 0	87.5	± 2.0	
Cu	69.7	± 32	175	± 07	55 1	± 1/	274	± 15.7	174	± 24.0	64.6	± 13.5	
Cu 7n	5.63	± 4.4 ± 1.35	3 85	± 0.07	3 03	± 3.5	27.4	± 2.3 ± 1.18	3 5 3	± 12 ± 0.83	3 26	± 2.9 ± 0.21	
Ca	137	± 1.55	105	± 0.57	139	± 1.12	141	± 1.10	133	± 0.05	154	± 0.21	
Ga	3 14	± 0 79	2 34	± 0.68	2.26	± 0.76	9.62	± 0.83	6.89	± 0.85	18.8	± 2	
Rh	0.48	± 0.75 ± 0.10	0.36	± 0.00 ± 0.07	0.39	± 0.70 ± 0.07	0.45	± 0.05 ± 0.06	0.03	± 0.05 ± 0.07	0.62	± 0.0	
Sr	179	+ 8	193	± 10.07	211	+ 10	354	+ 19	288	+ 13	391	± 0.02 + 13	
Y	132	+ 7	155	+ 12	160	+ 7	275	+ 14	204	+ 14	285	+ 9	
Zr	125	+ 6	127	+ 10	142	+ 6	206	+ 9	152	+ 10	166	+ 7	
Nb	90.3	+ 4.1	99.1	+ 5.8	110	+ 4	199	+ 8	151	+ 8	247	+ 9	
Rh	0.71	+ 0.11	0.29	+ 0.07	0.16	+ 0.03	0.28	+ 0.04	0.47	+ 0.08	0.90	+ 0.26	
Cs	b.d.l	_	b.d.l		b.d.l		b.d.l		0.05	± 0.03	b.d.l	_	
Ba	97.3	± 6.5	114	± 8	124	± 7	302	± 19	235	± 15	468	± 32	
La	96.0	± 3.9	69.5	± 3.9	117	± 4	191	± 7	147	± 7	238	± 8	
Ce	163	± 7	131	± 7	182	± 7	264	± 10	204	± 10	323	± 12	
Pr	103	± 5	86.1	± 4.6	117	± 4	151	± 6	116	± 6	173	± 6	
Nd	104	± 5	93.2	± 6.7	120	± 5	191	± 9	145	± 9	211	± 7	
Sm	132	± 7	137	± 12	154	± 8	258	± 15	195	± 15	269	± 9	
Eu	99.7	± 5.1	108	± 7	113	± 4	151	± 7	116	± 7	158	± 5	
Gd	120	± 9	133	± 11	141	± 8	233	± 15	175	± 13	237	± 11	
Tb	117	± 6	139	± 11	142	± 6	221	± 11	168	± 12	229	± 7	
Dy	93.7	± 5.9	113	± 12	116	± 5	139	± 7	106	± 10	144	± 6	
Но	126	± 7	152	± 15	158	± 7	245	± 12	185	± 16	254	± 9	
Er	71.1	± 4.0	86.8	± 9.6	91.0	± 4.1	247	± 13	188	± 18	254	± 9	
Tm	69.4	± 3.7	85.6	± 8.3	90.3	± 3.4	238	± 10	178	± 15	245	± 8	
Yb	124	± 8	156	± 14	165	± 7	246	± 11	184	± 15	250	± 10	
Lu	126	± 7	154	± 14	162	± 7	229	± 11	172	± 13	227	± 8	
Ht	81.2	± 5.1	95.1	± 8.5	111	± 4	174	± 8	126	± 10	127	± 10	
la	102	± b	115	± 9	133	± 5	144	± /	109	±δ	152	± 5	
W	20.2	± 1.3	27.0	± 2.6	198	± 8	225	± 11	93.5	± 7.9	146	± 10	
PD	0.11	± 0.04	D.d.l	. 70	0.07	± 0.02	D.d.I	. 0	0.09	± 0.02	0.08	± 0.01	
In	//.9	± 4.0	87.3	± /.6	103	± 4	233	± 9	1//	± 13	296	± 14	
U	0.57	± 0.05	0.45	± 0.05	0.49	± 0.03	11.4	± 0.5	8.18	± 0.70	22.0	± 1.3	

Table 3

Mineral-melt partition coefficients including the available literature data. The 1 σ represents the mean absolute standard error on the average and "n" stands for the number of analyzes that had been incorporated in the calculations for the D-values in the form of "n" of the mineral vs. "n" of the silicate melt.

								Hibonite							
		H1-Ti2-R3			H1-Ti5-R4]	H1-Ti5-R5]	H2-Ti2-R2			H2-Ti2-R3	
	D-Value	σ	n												
Mg	1.86	± 0.21	5/6	2.68	± 0.22	6/6	2.98	± 0.40	6/6	0.92	± 0.11	6/6	1.12	± 0.12	6/6
Si	0.045	± 0.004	5/6	0.027	± 0.003	5/6	0.031	± 0.003	6/6	0.033	± 0.003	6/6	0.051	± 0.004	6/6
Ca	0.29	± 0.01	5/6	0.31	± 0.01	6/6	0.28	± 0.01	6/6	0.34	± 0.01	6/6	0.32	± 0.01	6/6
Sc	0.18	± 0.01	5/6	0.19	± 0.01	6/6	0.17	± 0.01	6/6	0.20	± 0.01	6/6	0.18	± 0.01	6/6
Ti	0.91	± 0.06	5/6	0.68	± 0.03	6/6	0.67	± 0.05	6/6	1.08	± 0.07	6/6	1.21	± 0.05	6/6
v	0.033	+ 0.002	5/6	0.020	+ 0.001	6/6	0.019	+0.001	6/6	0.044	+0.002	6/6	0.049	+ 0.002	6/6
Cr	_		3/0	5.24	+ 2.30	2/1	_		1/0	_		3/0	2.26	+ 0.58	3/1
Со	1.63	+0.05	5/6	2.40	+ 0.08	6/6	2.30	+0.10	6/6	0.88	+0.03	6/6	1.13	+ 0.03	6/6
Ni	1.15	+ 0.18	5/6	1.91	+ 0.16	6/6	1.65	+ 0.23	6/6	0.62	+ 0.11	6/6	0.77	+ 0.12	6/6
Cu	0.16	+ 0.01	5/6	0.18	+ 0.01	6/6	0.18	+ 0.01	6/6	0.069	+ 0.003	6/6	0.12	+ 0.01	6/6
Zn	3.37	+0.55	4/5	3.53	+ 0.63	6/6	4.32	+ 1.07	2/5	2.21	+ 0.37	4/6	2.44	+ 0.35	5/6
Ga	2.56	+0.08	5/6	1.81	+0.05	6/6	1.95	+0.07	6/6	1.66	+0.05	6/6	2.44	+0.07	6/6
Ge	2.99	+0.74	3/3	2.80	+0.56	4/6	3.08	+ 0.83	3/4	3.76	+0.84	5/3	3.89	+0.92	6/3
Rb	_		0/6	_		0/6	_		0/6	_		0/6	_		0/6
Sr	0.49	+ 0.01	5/6	0.55	+0.01	6/6	0.52	+0.02	5/6	0.52	+0.01	6/6	0.51	+0.01	6/6
Y	0.23	+ 0.01	5/6	0.17	+ 0.01	6/6	0.16	+ 0.01	6/6	0.36	+ 0.01	6/6	0.31	+0.01	6/6
Zr	0.20	+ 0.01	5/6	0.19	+ 0.01	6/6	0.16	+ 0.01	6/6	0.28	+ 0.01	6/6	0.25	+ 0.01	6/6
Nb	0.087	+ 0.003	5/6	0.083	+ 0.003	6/6	0.075	+ 0.003	6/6	0.20	+0.01	6/6	0.19	+0.01	6/6
Rh	19.4	+ 1.5	5/6	13.6	+ 1.1	6/6	19.8	+2.5	6/6	_		0/6	34.6	+ 3.5	6/6
Cs	_		0/0	4.02	+ 2.39	1/1	_		1/0	_		0/1	_		1/0
Ba	0.031	+0.003	4/6	0.027	+0.003	6/6	0.029	+0.003	5/6	0.025	+0.004	4/6	0.026	+0.003	6/6
La	7.52	+ 0.19	5/6	4.29	+0.09	6/6	5.17	+ 0.15	6/6	7.07	+0.17	6/6	8.44	+0.20	6/6
Ce	4.49	+ 0.11	5/6	2.89	+ 0.07	6/6	3.05	+ 0.10	6/6	5.18	+ 0.13	6/6	5.82	+ 0.14	6/6
Pr	4.68	+ 0.12	5/6	2.94	+0.08	6/6	3.23	+ 0.12	6/6	5.29	+ 0.13	6/6	5.69	+0.14	6/6
Nd	3.97	+ 0.12	5/6	2.52	+0.07	6/6	2.69	+ 0.10	6/6	4.60	+0.14	6/6	4.75	+0.14	6/6
Sm	1.96	+0.07	5/6	1.36	+0.04	6/6	1.34	+0.06	6/6	2.56	+0.09	6/6	2.43	+0.08	6/6
Eu	1.35	+0.04	5/6	0.95	+0.03	6/6	0.93	+0.04	6/6	1.83	+0.05	6/6	1.66	+0.05	6/6
Gd	1.11	+0.04	5/6	0.84	+0.03	6/6	0.81	+0.05	6/6	1.58	+0.05	6/6	1.36	+0.04	6/6
Tb	0.65	+0.02	5/6	0.50	+0.01	6/6	0.48	+0.02	6/6	1.00	+0.03	6/6	0.83	+0.03	6/6
Dv	0.43	+0.02	5/6	0.32	+0.01	6/6	0.31	+0.02	6/6	0.67	+0.03	6/6	0.55	+0.02	6/6
Ho	0.28	+0.01	5/6	0.21	+0.01	6/6	0.20	+0.01	6/6	0.45	+0.02	6/6	0.38	+0.01	6/6
Er	0.18	+0.01	5/6	0.15	+0.01	6/6	0.13	+0.01	6/6	0.30	+0.01	6/6	0.25	+0.01	6/6
Tm	0.11	+0.00	5/6	0.075	+0.002	6/6	0.077	+0.003	6/6	0.19	+0.01	6/6	0.15	+0.01	6/6
Yb	0.069	+0.003	5/6	0.052	+0.002	6/6	0.050	+0.003	6/6	0.12	+ 0.01	6/6	0.098	+0.004	6/6
Lu	0.053	+0.002	5/6	0.036	+0.001	6/6	0.035	+0.002	6/6	0.088	+ 0.003	6/6	0.072	+ 0.003	6/6

D. Loroch et al. / Data in Brief 21 (2018) 2447-2463

2453

								Hibonite							
		H1-Ti2-R3			H1-Ti5-R4]	H1-Ti5-R5]	H2-Ti2-R2			H2-Ti2-R3	
	D-Value	σ	n												
Hf	0.49	± 0.02	5/6	0.47	± 0.02	6/6	0.42	± 0.02	6/6	0.66	± 0.02	6/6	0.57	± 0.02	6/6
Ta	0.35	± 0.01	5/6	0.35	± 0.01	6/6	0.33	± 0.01	6/6	0.74	± 0.02	6/6	0.70	± 0.02	6/6
W	0.012	± 0.004	5/6	0.007	± 0.003	4/6	0.009	± 0.002	4/6	0.053	± 0.013	4/6	0.042	± 0.008	6/6
Pb	-		0/4	-		0/3	-		1/0	-		0/6	-		0/2
Th	1.56	± 0.05	5/6	0.86	± 0.02	6/6	0.81	± 0.03	6/6	2.30	± 0.08	6/6	2.01	± 0.07	6/6
U	-		0/6	0.021	±0.015	1/6	-		0/6	0.038	±0.010	3/6	0.047	±0.018	3/6
		ł	2		ł			Hibonite			·				
		H2-Ti5-R4			H2-Ti5-R5]	H3-Ti5-R4]	H3-Ti5-R5		!	Ø Hibonite	
	D-Value	σ	n	D-Value	σ										
Mg	1.47	± 0.13	6/6	1.63	± 0.26	6/6	1.04	± 0.10	6/6	1.52	± 0.25	6/6	1.69	± 0.57	
Si	0.032	± 0.003	6/6	0.028	± 0.002	6/6	0.11	± 0.01	6/6	0.050	± 0.004	6/6	0.045	± 0.011	
Ca	0.35	± 0.01	6/6	0.33	± 0.01	6/6	0.31	± 0.01	6/6	0.29	± 0.01	6/6	0.31	± 0.02	
Sc	0.17	± 0.01	6/6	0.17	± 0.01	6/6	0.22	± 0.01	6/6	0.23	± 0.01	6/6	0.19	± 0.02	
Ti	0.87	± 0.04	6/6	0.91	± 0.06	6/6	0.74	± 0.04	6/6	1.01	± 0.07	6/6	0.90	± 0.15	
V	0.039	± 0.002	6/6	0.028	± 0.002	6/6	0.098	± 0.004	6/6	0.040	± 0.002	6/6	0.041	± 0.006	
Cr	-		1/0	-		1/0	4.59	± 2.21	5/1	-		4/0	4.03	± 2.82	
Co	1.46	± 0.05	6/6	1.61	± 0.05	6/6	0.90	± 0.03	6/6	1.45	± 0.05	6/6	1.53	± 0.14	
Ni	1.26	\pm 0.11	6/6	1.33	± 0.27	6/6	0.73	± 0.07	6/6	1.15	± 0.25	6/6	1.18	± 0.51	
Cu	0.13	\pm 0.01	6/6	0.14	± 0.01	6/6	0.15	± 0.01	6/6	0.12	± 0.01	6/6	0.14	± 0.02	
Zn	3.73	\pm 1.01	2/5	2.68	± 0.41	5/6	1.49	± 0.26	5/6	2.27	± 0.45	5/5	2.89	\pm 1.51	
Ga	2.18	± 0.06	6/6	2.21	± 0.09	6/6	1.72	± 0.05	6/6	2.33	± 0.09	6/6	2.10	± 0.19	
Ge	3.57	± 0.61	4/6	4.56	\pm 1.00	3/4	2.00	± 0.36	4/5	3.82	± 0.78	3/5	3.39	± 2.02	
Rb	0.86	± 0.29	1/6	0.81	± 0.25	1/6	-		0/6	-		0/6	0.83	± 0.38	
Sr	0.57	± 0.02	6/6	0.56	± 0.02	6/6	0.48	± 0.01	6/6	0.55	± 0.02	6/6	0.53	± 0.04	
Y	0.23	± 0.01	6/6	0.19	± 0.01	6/6	0.22	± 0.01	6/6	0.17	± 0.01	6/6	0.23	± 0.02	
Zr	0.18	± 0.01	6/6	0.19	± 0.01	6/6	0.18	± 0.01	6/6	0.27	± 0.01	6/6	0.21	± 0.02	
Nb	0.11	± 0.00	6/6	0.10	± 0.00	6/6	0.14	± 0.00	6/6	0.22	± 0.01	6/6	0.13	± 0.01	
Rh	29.2	± 2.7	6/6	21.2	± 2.2	6/6	8.93	± 0.73	6/6	30.0	\pm 3.4	6/6	22.1	\pm 5.5	
Cs	-		0/0	-		0/0	-		0/0	-		0/0	4.02	± 2.39	
Ва	0.028	± 0.003	5/6	0.028	± 0.003	6/6	0.095	± 0.005	6/6	0.043	±0.004	5/6	0.037	± 0.012	
La	5.76	\pm 0.13	6/6	6.91	± 0.21	6/6	3.33	± 0.08	6/6	4.83	± 0.16	6/6	5.92	± 0.43	
Ce	4.16	\pm 0.10	6/6	4.47	± 0.13	6/6	2.20	± 0.06	6/6	2.90	±0.09	6/6	3.91	± 0.29	
Pr	4.08	\pm 0.11	6/6	4.49	± 0.13	6/6	2.37	± 0.07	6/6	3.12	± 0.10	6/6	3.99	± 0.31	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nd	3.42	± 0.10	6/6	3.70	± 0.14	6/6	2.06	± 0.06	6/6	2.54	± 0.11	6/6	3.36	± 0.31
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sm	1.86	± 0.06	6/6	1.82	± 0.09	6/6	1.20	± 0.04	6/6	1.32	± 0.07	6/6	1.76	± 0.19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Eu	1.33	± 0.04	6/6	1.24	± 0.05	6/6	0.87	± 0.03	6/6	0.93	± 0.04	6/6	1.23	± 0.11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gd	1.10	± 0.04	6/6	1.03	± 0.05	6/6	0.73	± 0.03	6/6	0.78	± 0.04	6/6	1.04	± 0.12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tb	0.67	± 0.02	6/6	0.60	± 0.03	6/6	0.48	± 0.02	6/6	0.46	± 0.02	6/6	0.63	± 0.06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dy	0.44	± 0.02	6/6	0.37	± 0.02	6/6	0.34	± 0.01	6/6	0.31	± 0.02	6/6	0.42	± 0.05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ho	0.30	± 0.01	6/6	0.24	± 0.01	6/6	0.25	± 0.01	6/6	0.22	± 0.01	6/6	0.28	± 0.03
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Er	0.18	± 0.01	6/6	0.16	± 0.01	6/6	0.19	± 0.01	6/6	0.15	± 0.01	6/6	0.19	± 0.02
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tm	0.11	± 0.00	6/6	0.089	± 0.005	6/6	0.14	± 0.00	6/6	0.097	± 0.006	6/6	0.11	± 0.01
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Yb	0.070	± 0.003	6/6	0.058	± 0.003	6/6	0.11	± 0.00	6/6	0.069	± 0.004	6/6	0.077	\pm 0.011
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Lu	0.048	± 0.002	6/6	0.040	± 0.002	6/6	0.098	± 0.003	6/6	0.056	± 0.003	6/6	0.058	± 0.007
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hf	0.46	± 0.02	6/6	0.46	± 0.02	6/6	0.40	± 0.02	6/6	0.56	± 0.03	6/6	0.50	± 0.06
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Та	0.43	± 0.01	6/6	0.46	± 0.02	6/6	0.35	± 0.01	6/6	0.61	± 0.03	6/6	0.48	± 0.05
Pb - $0/1$ - $0/3$ - $0/1$ - $0/0$ - Th 1.38 ± 0.04 $6/6$ 1.29 ± 0.06 $6/6$ 0.88 ± 0.03 $6/6$ 0.85 ± 0.04 $6/6$ 1.33 ± 0.14 II 0.027 ± 0.013 $3/6$ 0.018 ± 0.013 $2/6$ 0.092 ± 0.015 $4/6$ 0.066 ± 0.018 $3/6$ 0.044 ± 0.055	W	0.017	± 0.007	3/6	0.035	± 0.007	4/6	0.080	± 0.005	6/6	0.058	± 0.005	6/6	0.035	± 0.026
Th 1.38 ± 0.04 6/6 1.29 ± 0.06 6/6 0.88 ± 0.03 6/6 0.85 ± 0.04 6/6 1.33 ± 0.14	Pb	-		0/1	-		0/3	-		0/1	-		0/0	-	
11 0.027 + 0.013 3/6 0.018 + 0.013 2/6 0.092 + 0.015 4/6 0.066 + 0.018 3/6 0.044 + 0.055	Th	1.38	± 0.04	6/6	1.29	± 0.06	6/6	0.88	± 0.03	6/6	0.85	± 0.04	6/6	1.33	± 0.14
	U	0.027	±0.013	3/6	0.018	± 0.013	2/6	0.092	±0.015	4/6	0.066	±0.018	3/6	0.044	± 0.055

	Hibonite							Me	lilite				
	Kennedy e	et al. 1994		H1-Ti2-R3			H3-R8		ØN	Ielilite	Beckett &	Stolper 1994	
	D-Value	σ	D-Value	σ	n	D-Value	σ	n	D-Value	σ	D-Value	σ	
Mg	0.50		7.78	± 1.20	2/6	0.21	± 0.01	6/5	3.99	± 0.66	-		
Si	0.028		0.70	± 0.08	2/6	0.68	± 0.06	6/5	0.69	± 0.09	-		
Ca	0.30		1.42	± 0.05	2/6	1.50	± 0.03	6/5	1.46	± 0.05	-		
Sc	0.46		1.12	± 0.07	2/6	0.012	± 0.001	6/5	0.57	± 0.04	0.016	± 0.007	
Ti	1.29		4.60	± 0.29	2/6	0.027	\pm 0.010	1/5	2.32	± 0.84	-		
v	-		0.57	± 0.04	2/6	0.002	± 0.000	6/5	0.28	± 0.03	-		
Cr	-		-		0/0	-		0/0	-		-		
Со	-		6.07	± 0.27	2/6	0.13	± 0.00	6/5	3.10	± 0.17	-		
Ni	-		4.25	± 0.98	2/6	0.17	± 0.03	4/5	2.21	± 0.65	-		
Cu	-		1.32	± 0.10	2/6	0.044	± 0.003	6/5	0.68	± 0.07	-		
Zn	-		17.9	± 6.5	1/5	0.48	± 0.18	2/5	9.18	± 4.81	-		
Ga	-		8.47	± 0.39	2/6	0.81	± 0.03	6/5	4.64	± 0.26	-		
Ge	0.78		-		0/3	1.21	± 0.27	4/5	1.21	± 0.27	-		
Rb	-		-		0/6	0.36	± 0.16	1/5	0.36	± 0.16	-		
Sr	0.62		2.24	± 0.09	2/6	0.52	± 0.01	6/5	1.38	± 0.07	-		
Y	-		1.17	± 0.06	2/6	0.58	± 0.02	6/5	0.87	± 0.05	-		
Zr	0.35		1.22	± 0.07	2/6	-		0/5	1.22	± 0.07	-		
Nb	0.27		1.06	± 0.05	2/6	0.0003	± 0.0001	2/5	0.53	± 0.18	-		
Rh	-		123	± 13	2/6	0.32	± 0.08	3/5	123	± 31	-		
Cs	-		-		1/0	-		1/0	-		-		
Ba	0.030		0.53	± 0.06	2/6	0.009	± 0.001	6/5	0.27	± 0.04	0.059	± 0.012	

2455

	Hibonite							Me	lilite ¹						
	Kennedy e	t al. 1994		H1-Ti2-R3			H3-R8		ØN	lelilite		Beckett &	Stolper 1994		
	D-Value	σ	D-Value	σ	n	D-Value	σ	n	D-Value	σ	-	D-Value	σ	-	
La	5.50		23.4	± 0.8	2/6	0.44	± 0.01	6/5	11.9	± 0.5		0.16	± 0.04		
Ce	4.50		15.1	± 0.5	2/6	0.41	± 0.01	6/5	7.74	± 0.33		0.12	± 0.04		
Pr	3.80		15.8	± 0.6	2/6	0.66	± 0.01	6/5	8.23	± 0.35		-			
Nd	3.20		13.5	± 0.6	2/6	0.76	± 0.02	6/5	7.11	± 0.38		-			
Sm	1.65		7.39	± 0.38	2/6	0.84	± 0.02	6/5	4.11	± 0.25		-			
Eu	1.25		5.23	± 0.22	2/6	0.82	± 0.02	6/5	3.03	± 0.15		-			
Gd	1.03		4.12	± 0.23	2/6	0.88	± 0.03	6/5	2.50	± 0.16		-			
Tb	0.62		2.69	± 0.12	2/6	0.75	± 0.02	6/5	1.72	± 0.09		-			
Dy	0.36		1.75	± 0.12	2/6 0.67 ± 0.02 6/5 1.2		1.21	± 0.09		-					
Но	0.25 0.22		1.47	± 0.08	2/6	0.60	± 0.02	6/5	1.03	±0.06		-			
Er			0.22 1.12 ± 0.08 $2/6$ 0.12		0.49	± 0.01	6/5	0.81	± 0.06		-				
Tm	0.13		0.87	± 0.05	2/6	0.40	± 0.01	6/5	0.64	± 0.04		0.078	± 0.027		
Yb	0.21		0.67	± 0.05	2/6	0.33	± 0.01	6/5	0.50	± 0.04		-			
Lu	0.075		0.71	± 0.04	2/6	0.29	± 0.01	6/5	0.50	± 0.03		-			
Hf	0.73		2.49	± 0.14	2/6	0.0004	± 0.0001	3/5	1.24	± 0.38		-			
Ta	_		2.74	+0.13	2/6	0.0002	+0.0000	4/5	1.37	+0.28		-			
W	_		0.95	+0.20	2/6	0.0002	+0.0001	3/5	0.47	+0.24		-			
Pb	-		-	_	0/4	-	_	0/3	-	_		-			
Th	0.93		5.82	+0.28	2/6	0.088	+0.002	6/5	2.95	+ 0.16		_			
U	0.080		0.34	± 0.20	2/6	0.004	± 0.004	1/5	0.17	± 0.20		-			
			Melilite ¹						Spinel ²						
	Kuehner et	t al. 1989	Lundstron	n et al. 2006			H2-R8			H3-R8			Mel3-R9		
	D-Value	σ	D-Value	σ		D-Value	σ	n	D-Value	σ	n	D-Value	σ	n	
Mg	-		-			11.6	± 2.7	4/7	10.6	± 0.6	6/5	3.83	± 0.24	8/5	
Si	-		-			-		0/7	0.028	± 0.004	1/5	-		0/5	
Ca	-		-			0.008	± 0.002	2/7	0.010	± 0.002	2/5	0.004	± 0.001	3/5	
Sc	-		-			0.066	± 0.010	4/7	0.13	± 0.00	6/5	0.058	± 0.002	8/5	
Ti	-		-			-		0/7	0.12	± 0.01	0/5	0.022	± 0.001	8/5	
V	-		-			0.005	± 0.002	1/7	0.025	±0.002	1/5	0.002	± 0.001	2/5	
Cr	-		-			-		0/0	-		1/0	-		8/0	
Со	-		-			12.3	\pm 1.9	4/7	9.82	± 0.37	6/5	3.07	± 0.14	8/5	
Ni	-		-			34.0	± 11.3	4/7	36.4	± 3.4	6/5	16.9	± 2.0	8/5	
Cu	-		-			1.81	± 0.35	4/7	1.33	±0.06	6/5	0.29	± 0.02	8/5	

Zn	-		-		20.9	\pm 7.9	4/6	12.2	± 2.4	6/5	3.60	± 0.90	8/5
Ga	-		-		2.77	± 0.40	4/7	1.85	± 0.06	6/5	2.65	± 0.09	8/5
Ge	-		-		2.41	± 1.20	1/2	-		0/5	0.52	± 0.23	1/5
Rb	-		0.013	± 0.002	1.20	± 0.52	1/7	-		0/5	0.61	± 0.33	1/5
Sr	0.93	± 0.00	0.68	± 0.02	-		0/7	0.024	± 0.002	1/5	-		0/5
Y	0.22	± 0.00	-		-		0/7	0.029	± 0.001	1/5	0.0007	± 0.0002	3/5
Zr	0.002	± 0.000	0.004	± 0.002	-		0/7	0.042	± 0.012	1/5	-		0/5
Nb	-		0.003	± 0.001	0.0009	± 0.0003	2/7	0.011	± 0.001	2/5	0.0001	± 0.0001	1/5
Rh	-		-		-		0/0	59.1	± 5.4	6/5	52.1	± 3.8	8/5
Cs	-		0.003	± 0.001	-		0/1	-		0/0	-		0/0
Ba	-		0.018	± 0.001	0.010	± 0.005	1/7	0.029	± 0.001	1/5	0.003	± 0.001	1/5
La	0.35	± 0.00	0.056	± 0.006	-		0/7	0.0009	±0.0000	3/5	-		0/5
Ce	-		0.053	± 0.002	0.0001	± 0.0003	1/7	0.001	± 0.000	3/5	0.0001	± 0.0001	1/5
Pr	-		-		-		0/7	0.0007	±0.0000	4/5	0.0002	± 0.0001	1/5
Nd	-		0.066	± 0.013	0.0008	± 0.0013	1/7	0.001	± 0.000	4/5	0.0007	± 0.0003	2/5
Sm	0.38	± 0.00	0.072	± 0.003	0.002	± 0.001	0/7	0.002	± 0.000	2/5	0.0002	± 0.0003	1/5
Eu	-		0.067	± 0.005	-		0/7	0.0006	±0.0000	4/5	0.0002	± 0.0002	1/5
Gd	-		-		-		0/7	0.002	± 0.000	2/5	0.0004	± 0.0004	2/5
Tb	-		-		0.0003	± 0.0001	2/7	0.0009	±0.0000	4/5	0.0001	± 0.0000	5/5
Dy	-		-		0.0006	\pm 0.0011	1/7	0.0010	± 0.0001	3/5	0.0003	± 0.0002	3/5
Ho	-		-		0.0002	\pm 0.0002	1/7	0.0006	±0.0000	6/5	0.0002	± 0.0000	6/5
Er	-		0.037	± 0.005	0.001	± 0.001	1/7	0.001	± 0.000	4/5	0.0003	± 0.0001	7/5
Tm	-		-		0.0008	± 0.0004	1/7	0.0007	±0.0000	6/5	0.0003	± 0.0000	8/5
Yb	0.13	± 0.00	0.019	± 0.011	0.0008	± 0.0006	2/7	0.0008	± 0.0001	4/5	0.0007	± 0.0001	6/5
Lu	-		-		0.0006	± 0.0001	4/7	0.0008	±0.0000	6/5	0.0006	± 0.0001	8/5
Hf	-		0.001	± 0.001	0.002	± 0.001	2/7	0.001	± 0.000	5/5	0.0009	± 0.0002	6/5
Та	-		0.003	± 0.001	0.0005	± 0.0003	1/7	0.002	± 0.000	2/5	0.0002	± 0.0001	2/5
W	-		-		0.002	± 0.001	1/7	0.002	± 0.000	2/5	0.0003	± 0.0001	4/5
Pb	-		0.33	± 0.21	-		0/0	-		0/3	-		0/0
Th	-		0.002	±0.002	0.0004	±0.0002	1/7	0.009	±0.000	4/5	0.0001	±0.0000	2/5
U	-		0.002	±0.002	-		0/7	0.029	±0.029	1/5	-		0/5

Spinel²

	Me	3-R11-Spinel	l	Me	el3-R12-Spinel	1	ØS	pinel	Lundstrom et al. 2006		
	D-Value	σ	n	D-Value	σ	n	D-Value	σ	n	D-Value	σ
Mg	3.99	± 0.51	6/6	4.97	± 0.71	6/12	7.00	± 2.20		_	
Si	0.008	± 0.002	1/6	0.005	± 0.001	2/12	0.014	± 0.005		-	
Ca	-		0/6	0.005	± 0.001	2/12	0.007	± 0.003		-	
Sc	0.063	± 0.005	6/6	0.058	± 0.005	6/12	0.075	± 0.015		-	
Ti	0.028	± 0.002	6/6	0.025	± 0.002	6/12	0.048	± 0.009		-	
V	0.002	± 0.001	1/6	0.001	± 0.001	1/12	0.007	± 0.006		-	
Cr	-		6/0	-		6/0	-			-	

						Spinel ²					
	Me	3-R11-Spinel		Ме	el3-R12-Spinel		ØS	pinel		Lundstron	n et al. 2006
	D-Value	σ	n	D-Value	σ	n	D-Value	σ	n	D-Value	σ
Со	3.70	+ 0.26	6/6	4.85	+ 0.26	6/12	6.74	+ 1.26		_	
Ni	13.8	± 2.3	6/6	12.6	\pm^{-} 1.4	6/8	22.7	± 9.5		-	
Cu	0.42	± 0.03	6/6	0.41	± 0.02	6/12	0.85	± 0.19		-	
Zn	6.65	± 0.91	6/5	4.80	± 0.51	6/9	9.65	± 5.04		-	
Ga	2.77	± 0.20	6/6	2.69	± 0.13	6/12	2.55	± 0.45		-	
Ge	-		0/6	-		0/12	1.47	± 0.97		-	
Rb	1.01	± 0.42	1/5	-		0/11	0.94	± 0.76		-	
Sr	0.002	± 0.001	1/6	-		0/12	0.013	± 0.007		-	
Y	0.0005	± 0.0003	1/6	0.0002	±0.0001	2/12	0.008	±0.007		-	
Zr	-		0/6	0.0006	± 0.0003	3/12	0.022	± 0.003		0.001	± 0.000
Nb	-		0/6	0.0001	± 0.0001	2/12	0.003	± 0.004		0.00004	\pm 0.00001
Rh	69.3	± 7.4	6/6	39.9	± 11.8	6/11	55.1	± 18.5		-	
Cs	-		0/1	-		1/0	-			-	
Ba	-		0/6	-		0/11	0.014	± 0.009		-	
La	-		0/6	-		0/12	0.0009	± 0.0000		0.000003	\pm 0.000004
Ce	0.0002	± 0.0001	2/6	0.0001	± 0.0001	2/12	0.0003	± 0.0008		-	
Pr	0.0005	± 0.0001	3/6	0.0001	± 0.0001	1/12	0.0004	± 0.0005		-	
Nd	0.0007	± 0.0006	1/6	0.0004	±0.0003	2/12	0.0007	±0.0015		0.00003	±0.00004
Sm	0.0008	±0.0004	2/6	0.0003	±0.0001	4/12	0.001	±0.002		-	
Eu	-		0/6	0.0003	±0.0002	2/12	0.0003	±0.0005		-	
Gd	-		0/6	-		0/12	0.001	±0.001		-	
Tb	0.0000	± 0.0001	1/6	0.0002	±0.0000	4/12	0.0003	±0.0006		-	
Dy	0.0007	± 0.0006	1/6	0.0004	±0.0002	3/12	0.0006	±0.0013		-	
Но	0.0003	\pm 0.0001	4/6	0.0001	±0.0000	5/12	0.0003	±0.0002		-	
Er	0.0004	\pm 0.0001	5/6	0.0004	±0.0001	3/12	0.0006	±0.0006		0.0003	± 0.0001
Tm	0.0003	\pm 0.0001	3/6	0.0004	±0.0001	3/12	0.0005	±0.0003		-	
Yb	0.0004	± 0.0005	1/6	0.0005	±0.0002	3/12	0.0006	±0.0010		-	
Lu	0.0006	\pm 0.0001	6/6	0.0002	±0.0000	6/12	0.0006	±0.0002		-	
Hf	0.0003	±0.0004	2/6	0.0007	±0.0003	4/12	0.001	±0.001		0.001	±0.000
Та	0.0001	± 0.0003	1/6	0.0001	±0.0001	3/12	0.0005	±0.0019		0.0001	±0.0001
W	0.0003	± 0.0005	1/6	-		0/12	0.0010	±0.0020		-	
Pb	-		0/2	3.47	\pm 1.11	1/4	3.47	\pm 1.11		-	
Th	-		0/6	0.0000	±0.0000	1/12	0.002	±0.003		0.0006	±0.0000
U	0.001	± 0.001	1/6	-		0/12	0.015	± 0.021		0.0003	±0.0002

¹ The D-values for melilite are directly influenced by the initial Ti concentration within the starting mixture. As far as two samples are appropriate enough to show, it could be that a higher Ti concentration is enhancing the incorporation possibilities for several elements.

² The D-values for spinel are influenced by the very different starting compositions in respect to the aluminum and magnesium content between the starting mixtures H2, H3 and Mel3 (cf. Table 5)

Table 4	1
---------	---

Mineral-mineral partition coefficients with corresponding 1σ error as the mean absolute standard error of the average.

	Hibonit	e/Melilite	Hibonit	e/Spinel	Melilite/Spinel			
	D-Value	σ	D-Value	σ	D-Value	σ		
Mg	0.42	± 0.16	0.24	± 0.11	0.57	± 0.20		
Si	0.066	± 0.018	3.37	\pm 1.47	51.3 ⁻ 20.2			
Ca	0.21	± 0.01	46.6	± 21.5	217 ± 100			
Sc	0.34 ± 0.04		2.54	± 0.58	7.56	± 1.62		
Ti	0.39	± 0.15	18.8	± 4.7	48.6	± 20.0		
V	0.14	± 0.03	5.91	± 4.98	41.0	± 34.3		
Cr	-		-		-			
Со	0.49	± 0.05	0.23	± 0.05	0.46	± 0.09		
Ni	0.53	± 0.28	0.052	± 0.031	0.097	± 0.050		
Cu	0.20	± 0.04	0.16	± 0.04	0.80	± 0.20		
Zn	0.32	± 0.23	0.30	± 0.22	0.95	± 0.70		
Ga	0.45	± 0.05	0.82	± 0.16	1.82	± 0.34		
Ge	2.81	+ 1.79	2.31	± 2.06	0.82	± 0.58		
Rb	2.31	+ 1.48	0.89	± 0.83	0.39	± 0.36		
Sr	0.38	+ 0.03	40.1	+ 21.6	105	+ 56		
Y	0.26	± 0.03	29.9	± 26.1	116			
Zr	0.17 + 0.02		9.79	+ 1.63	56.6	+ 8.1		
Nb	0.25	0.25 ± 0.02		_	_	—		
Rh	0.18	+ 0.06	0.40	+ 0.17	2.23	+0.94		
Cs	_		_		_			
Ba	0.14	+0.05	2.60	+ 1.85	19.2	+ 12.6		
La	0.50	+0.04	6420	+ 522	12,915	+ 706		
Ce	0.50	+0.04	_		_			
Pr	0.48	+0.04	-		-			
Nd	0.47	+0.05	-		-			
Sm	0.43	+0.05	-		-			
Eu	0.41	+0.04	_		_			
Gd	0.42	+0.05	-		-			
Tb	0.37	+0.04	-		-			
Dv	0.34	+ 0.05	-		-			
Ho	0.27	+0.04	997	+848	3651	+3086		
Er	0.23	+0.04	287	+ 273	1247	+ 1178		
Tm	0.18	+0.02	222	+ 135	1238	+740		
Yb	015	+0.02	-	100	-	± / 10		
Lu	012	+0.02	103	+ 37	876	+ 303		
Hf	0.40	+0.01	-	<u> </u>	-	<u>-</u> 565		
Ta	0.35	+0.08	_		-			
W	0.073	+0.066	_		-			
Ph	-	_ 0.000	_		_			
Th	0.45	+0.05	_		_			
II	0.45	± 0.05	_		_			
U	-		-		-			

2. Experimental design, materials, and methods

2.1. Starting materials

The starting materials compositions are given in Table 5. Starting materials H1 and H2 are based on the starting materials Hib-1 and Hib-6 of Beckett and Stolper [1], our H3 is based on the HB-1 starting material of Kennedy et al. [2]; our starting materials Mel1, Mel2 and Mel3 are similar to the starting materials used by Kuehner et al. ([3], AK40), Beckett and Stolper ([1], AK80) and Lundstrom et al. (CAI-Glass, [4]). In total six different starting material mixtures were prepared from high purity oxides and carbonates. The resulting mixtures were homogenized in an agate mortar under acetone and were subsequently fused in a large Pt-crucible at 1500 °C for at least 3 h in a Linn VMK (Linn Gmbh, Eschenfelden, Germany) high temperature box furnace. The resulting silicate glasses

Material	SiO ₂ [wt%]	MgO [wt%]	Al ₂ O ₃ [wt%]	CaO [wt%]	TiO ₂ [wt%]	MnCO ₃ [wt%]	GeO ₂ [wt%]	K ₂ CO ₃ [wt%]
H1	28.2	0.86	42.9	27.3	-	0.17	0.42	0.15
H1-Ti2	27.7	0.84	42.0	26.8	1.99	0.17	0.41	0.15
H1-Ti5	26.8	0.82	40.7	25.9	4.99	0.16	0.40	0.14
H2	31.9	1.89	41.3	25.1	-	0.17	0.30	0.25
H2-Ti2	31.3	1.85	40.5	24.6	1.95	0.17	0.29	0.25
H2-Ti5	30.4	1.80	39.2	23.9	4.90	0.16	0.29	0.24
H3	29.5	2.11	39.7	27.8	-	0.25	0.40	0.30
H3-Ti2	28.8	2.06	38.8	27.1	2.23	0.24	0.39	0.29
H3-Ti5	28.0	2.01	37.8	26.4	4.87	0.24	0.38	0.29
Mel1	29.9	6.30	21.9	40.8	-	0.54	0.24	0.35
Mel2	39.6	11.3	7.52	40.1	-	0.72	0.46	0.35
Mel3	32.9	8.88	26.4	29.1	1.62	0.33	0.47	0.29

Table 5Compositions of the starting materials.

were reground using the same agate mortar with acetone and the resulting powders were doped with $200 \mu g/g$ each of Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Rh, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Pb, Th and U, using ICP-MS standard solutions (1000 $\mu g/ml$, Alfa Aesar, Germany). However, Ti was added to the hibonite starting mixtures (H1-Ti2, H1-Ti5, H2-Ti2, H2-Ti5 and H3-Ti2, H3-Ti5) using high purity TiO₂ (Alfa Aesar, Germany).

2.2. Experimental techniques

Experiments were conducted in a vertical tube furnaces (Gero GmbH, Neuhausen, Germany) at atmospheric pressure. We used the so-called "wire-loop technique" [5-7] where small amounts of starting material powder are mixed with an organic glue (UHU Gmbh, Flinke Flasche, Germany) and suspended on a 0.1 mm thick Pt wire. The loops are about 3 mm in diameter each. Using a homemade platinum wire "chandelier", several samples could be run simultaneously. The samples were placed in the hot zone of the furnace at 800 °C. The temperature paths were designed so that the samples were first heated to temperatures well above the liquidus (i.e. 1550 °C, T_{max} in Table 6), the run was left at 1550 °C (T_{max} in Table 6) for at least 8–10 h, and then slowly cooled down to the final run temperature (T_{quench}) to equilibrate crystals with melts. Most experimental runs were performed with a single cooling ramp, whereas some experiments (H1-Ti5-R5, H2-Ti5-R5, H3-Ti5-R5, H2-R8, H3-R8, Mel3-R9; Table 6) were run with a more complex multi step cooling and heating cycle close to the liquidus temperature. In these runs the experiment was first heated to 1550 °C, then cooled to 1350 °C, left for 10–40 h, then heated with 50 °C/h to 1437 or 1450 °C (c.f. Table 6), left for a few hours, and then cooled to the final run temperature (T_{quench}). This technique was employed by Kennedy et al. [2] to facilitate crystal growth. However, we found no significant difference between runs with a single cooling ramp compared to the complex heating/cooling experiments. Table 6 shows that the total run time of the experiments was between 100 and 300 h. The experiments were quenched in air by rapidly removing them from the furnace. Details of all experimental parameters are given in Table 6.

The samples were mounted in epoxy resin, polished, and pre-examined using optical microscopy and a JEOL JSM-6610 LV SEM scanning electron microscope equipped with EDX system at the University of Münster. Samples that contained hibonite, melilite or spinel large enough for further chemical characterization were subsequently analyzed for major and trace elements.

2.3. Analytical techniques

Major elements analyses were performed with a JXA-8530F Hyperprobe field emission electron beam microprobe analyzer (EMPA) at the University of Münster. Operating at 15 kV acceleration voltage, a beam diameter of 3 µm and 5 nA beam current for the silicate melts and 15 nA for the

Table 6

Experimental run conditions. All samples were inserted into the furnace at 800 °C and heated to T_{max} with the rate of 100 °C/h. For experiments with complex heating cycles the intermediate steps are given as well. The total duration of the experiments also includes the time for reaching T_{max} and the time at T_{quench} .

Sample	Starting Mix	Run	Heatin	g cycles										
			<i>T</i> _{max} [°C]	Time [h]	Cooling rate [°C/h]	<i>T</i> ₁ [°C]	Time [h]	Heating rate [°C/h]	<i>T</i> ₂ [°C]	Time [h]	Cooling rate [°C/h]	T _{quench} [°C]	Total Time [h]	Phases
H2-Ti2-R2	H2	R2	1550	8	-	-	-	-	-	-	5	1450	117.0	hib, gl
H1-Ti2-R3	H1	R3	1550	8	-	-	-	-	-	-	1	1350	333.5	hib, mel, gl
H2-Ti2-R3	H2	R3	1550	8	-	-	-	-	-	-	1	1350	333.5	hib, gl
H1-Ti5-R4	H1	R4	1550	8	-	-	-	-	-	-	5	1450	139.5	hib, gl
H2-Ti5-R4	H2	R4	1550	8	-	-	-	-	-	-	5	1450	139.5	hib, gl
H3-Ti5-R4	H3	R4	1550	8	-	-	-	-	-	-	5	1450	139.5	hib, gl
H1-Ti5-R5	H1	R5	1550	8	5	1350	40	50	1437	24	2	1350	305.7	hib, gl
H2-Ti5-R5	H2	R5	1550	8	5	1350	40	50	1437	24	2	1350	305.7	hib, gl
H3-Ti5-R5	H3	R5	1550	8	5	1350	40	50	1437	24	2	1350	305.7	hib, gl
H2-R8	H2	R8	1550	10	5	1350	10	50	1450	10	2	1350	140.0	an, sp, gl
H3-R8	H3	R8	1550	10	5	1350	10	50	1450	10	2	1350	140.0	mel, sp, gl
Mel3-R9	Mel3	R9	1550	10	5	1350	10	50	1450	10	2	1200	142.5	mel, sp, gl
Mel3-R11	Mel3	R11	1550	8	-	-	-	-	-	-	3	1200	193.0	sp, gl
Mel3-R12	Mel3	R12	1550	8	-	-	-	-	-	-	3	1000	211.0	sp, gl

an = anorthite, gl = glass, hib = hibonite, mel = melilite, sp = spinel

minerals. We used a five WDX detector setup with two TAP crystals (Mg, Al), two PET (Ca, Si) and one LiF crystal (Ti). Natural and synthetic materials that were used for standardization are: jadeite (Na₂O), kyanite (Al₂O₃), sanidine (K₂O), Cr-diopside (Cr₂O₃), diopside (CaO), San Carlos olivine (MgO), fayalite (FeO), hypersthene (SiO₂), rhodonite (MnO) and rutile (TiO₂). A number of secondary standards (chromite, olivine, cr-diopside) were measured as unknowns to monitor external precision and accuracy.

Trace elements were measured by with a ThermoFisher Element II sector field ICP-MS coupled to a Photon Machines AnalyteG2 ArF Excimer laser at the University of Münster, operating with a 4 J/cm² laser fluency and a repetition rate of 5 Hz. A HelEx 2-volume sample cell was used which holds up to 8 one-inch diameter mounts, 6 thin sections and additional reference materials. Prior to sample analyses, the system was tuned with the NIST SRM 612 for high sensitivity, stability, and low oxide rates (232 Th 16 O/ 232 Th < 0.2%). Spot sizes for analysis were between 35 and 50 µm in diameter, while the 50 µm where mainly used for the silicate glasses. Total measurement time was 75 s with 40 s ablation time on the sample and 20 s on the background, the wash out delay was 15 s.

The NIST 612 standard glass [8] was used as an external standard and the BIR-1G [8] and BCR-2G [8] were analyzed as unknowns over the course of this study to monitor precision and accuracy. Twelve sample measurements were bracketed by three measurements of the NIST 612 glasses. For the hibonite and melilite crystals, ⁴³Ca was used as an internal standard, for spinel ²⁶Mg and for the silicate melts ²⁹Si was used internal standard element.

Acknowledgments

Our thanks go to B. Schmitte and M. Trogisch for sample preparation and support during EMPA and LA-ICP-MS measurements. Moreover, we would also like to thank members of the mechanical workshops at Münster University (M. Feldhaus, J. Kemmann, P. Weitkamp, H. Heying) for their sterling efforts in the labs. This work was supported by the Deutsche Forschungsgemeinschaft (SFB-TRR170). This is TRR 170 Publication no. 52.

Transparency document. Supplementary material

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.10.100.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at https://doi. org/10.1016/j.dib.2018.10.100.

References

- J.R. Beckett, E. Stolper, Stability of hibonite, melilite and other aluminous phases in silicate melts: implications for the origin of hibonite-bearing inclusions from carbonaceous chondrites, Meteoritics 29 (1994) 41–65.
- [2] A.K. Kennedy, G.E. Lofgren, G.J. Wasserburg, Trace-element partition-coefficients for perovskite and hibonite in meteorite compositions, Chem. Geol. 117 (1994) 379–390.
- [3] S.M. Kuehner, J.R. Laughlin, L. Grossman, M.L. Johnson, D.S. Burnett, Determination of trace-element mineral liquid partition-coefficients in melilite and diopside by ion and electron-microprobe techniques, Geochim. Cosmochim. Acta 53 (1989) 3115–3130.
- [4] C.C. Lundstrom, A.L. Sutton, M. Chaussidon, W.F. McDonough, R. Ash, Trace element partitioning between type BCAI melts and melilite and spinel: implications for trace element distribution during CAI formation, Geochim. Cosmochim. Acta 70 (2006) 3421–3435.
- [5] A. Borisov, H. Palme, B. Spettel, Solubility of Pd insilicate melts: implications for core formation in the Earth, Geochim. Cosmochim. Acta 58 (1994) 705–716.

- [6] C.H. Wijbrans, S. Klemme, J. Berndt, C. Vollmer, Experimental determination of trace element partition coefficients between
- [7] C. Beyer, J. Berndt, S. Tappe, S. Klemme, Trace element partitioning between perovskite and kimberlite to carbonatite melt: new experimental constraints, Chem. Geol. 353 (2013) 132–139.
- [8] K. Jochum, U. Nohl, K. Herwig, E. Lammel, B. Stoll, A.W. Hoffman, GeoReM: a new geochemical database for reference materials and isotopic standards, Geostand. Geoanal. Res. 29 (2007) 333-338.