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Abstract: Fish spoilage occurs due to production of metabolites during storage, from bacterial action
and chemical reactions, which leads to sensory rejection. Investigating the volatilome profile can
reveal the potential spoilage markers. The evolution of volatile organic molecules during storage
of European seabass (Dicentrarchus labrax) fillets and Atlantic salmon (Salmo salar) slices under
modified atmosphere packaging at 2 ◦C was recorded by solid-phase microextraction combined
with gas chromatography-mass spectrometry. Total volatile basic nitrogen (TVB-N), microbiological,
and sensory changes were also monitored. The shelf life of seabass fillets and salmon slices was
10.5 days. Pseudomonas and H2S-producing bacteria were the dominant microorganisms in both
fish. TVB-N increased from the middle of storage, but never reached concentrations higher than
the regulatory limit of 30–35 mg N/100 g. The volatilome consisted of a number of aldehydes,
ketones, alcohols and esters, common to both fish species. However, different evolution patterns were
observed, indicating the effect of fish substrate on microbial growth and eventually the generation
of volatiles. The compounds 3-hydroxy-2-butanone, 2,3-butanediol, 2,3-butanedione and acetic
acid could be proposed as potential spoilage markers. The identification and quantification of the
volatilities of specific fish species via the development of a database with the fingerprint of fish species
stored under certain storage conditions can help towards rapid spoilage assessment.

Keywords: fish; seafood; modified atmosphere packaging; spoilage; shelf life; volatiles; solid phase
microextraction; gas chromatography-mass spectrometry

1. Introduction

Fish spoilage is a well-documented process resulting from chemical reactions, autolytic degradation
by fish enzymes and microbial metabolic activity. However, in the chilled seafood supply chain, fresh
fish quality is diminished mainly by microbial mediated changes [1,2]. Specific spoilage organisms
(SSOs) is a small part of the initial total microbiota which dominate against others under particular
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storage conditions and produce metabolites responsible for the development of off-flavors and off-odors
in fish products, thus resulting in their sensory rejection [2–4].

Modified atmosphere packaging (MAP) combined with low storage temperatures is an effective
preservation technique to extend the shelf life of fishery products. Gas composition, temperature
and fish species are some of the most important factors that influence dramatically the composition
of spoilage microorganisms and eventually the produced metabolites [5]. Among the numerous
metabolites produced during fish storage, volatile organic compounds (VOCs) have been the focus of
several studies lately, for various reasons. Traditional spoilage indicators such as biogenic amines, total
volatile basic nitrogen (TVB-N) and ATP degradation products exhibit weaknesses. Biogenic amines
are not produced in considerable amounts in non-scombroid fish, while TVB-N increases in fish only
at the late stages of storage, and cannot be used as spoilage/freshness markers [6]. ATP degradation
products, which is a result of autolytic changes, affect sensory attributes only at the beginning of shelf
life and not throughout storage period [7] and definitely does not determine fresh fish shelf life, which
is a result of the accumulation of microbial metabolites [8,9]. A suitable spoilage marker should be
a metabolite produced by the main spoilage microorganisms, exhibit a consistent profile, preferably
increase during storage, and show satisfactory correlation with microbial growth, sensory score and
remaining shelf life. Thus, volatilome and especially microbial metabolites seem to be more promising
for monitoring spoilage from the beginning until the end of shelf life [10].

The method of choice for the analysis of VOCs in such studies is solid phase microextraction-gas
chromatography/mass spectrometry (SPME–GC/MS) due to its simplicity and sensitivity [6–10]. Typical
compounds associated with fish spoilage include aldehydes, ketones, alcohols, acids, amines and
sulphides. Leduc et al. [11] proposed thiophene, 1-nonen-3-ol, hexanal, 1-octen-3-one and dimethyl
trisulfide as markers of seabass quality. Several alcohols (cyclopentanol, Z-2-penten-1-ol, 1-penten-3-ol,
1-octen-3-ol) and aldehydes (hexanal, octanal, E-2-pentenal, E-2-hexenal) were identified as potential
markers for salmon freshness whereas other compounds (acetoin, 3-methylbutanoic acid, acetic
acid) were identified as potential markers for salmon spoilage [12]. 3-Methyl-1-butanol has been
suggested as spoilage marker for ice-stored sea bream [13] and yellowfin tuna [14]. Among aldehydes,
3-methylbutanal and 2-methylbutanal have been reported as products of Carnobacterium species in
seafood and have been found in various chilled stored fish such as sea bream [10,13], cod, whiting and
mackerel [15], where Pseudomonas spp. and H2S producing bacteria predominate.

Atlantic salmon and European seabass are the two most important aquaculture fish species of the
European Union and their fillets or slices are value-added products with high quality and consumer
preference. Modified atmosphere packaging is a very effective way to retain fish quality for longer
time than conventional refrigeration under aerobic storage. Thus, the main objectives of the present
study were to (i) monitor microbiological changes and determine shelf life of seabass fillets and salmon
slices stored at 2 ◦C under MAP with a commercial gaseous mixture used by Hellenic Aquaculture
Industry, and (ii) investigate the VOCs profile related to the remaining shelf life using SPME–GC/MS,
in order to identify any potential markers of spoilage/freshness.

2. Results and Discussion

2.1. Sensory Acceptance Evaluation and Shelf-Life Determination

The overall sensory acceptance of cooked fish samples was evaluated, and the results are presented
in Figure 1. Initially, the fish acceptance was excellent and remained at those levels for the first 4 days
of storage at 2 ◦C under MAP (p > 0.05). Afterwards, the overall acceptance score diminished linearly
as expressed by the regression equations. A score of 3 for overall impression was judged as the lower
limit of acceptability. The time after that coincided with slight off flavor and off taste development.
The shelf life of both fish products studied was estimated to be no longer than 11 days, where at least
one of the panelists scored the product below 3. The shelf life of fisheries and aquaculture products
depends on various factors such as the applied storage (temperature, atmosphere and packaging,
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e.g., gas concentration, film permeability, and headspace), transportation (storage requirements) and
distribution (storage facilities, temperature) conditions and the composition and population level of
the initial total microbiota (including indigenous and exogenous microbiota).
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Figure 1. Overall acceptance scores of cooked (a) sea bass fillets and (b) salmon slices stored under
modified atmosphere packaging (MAP) at 2 ◦C. Each data point is the mean score of 5 panelists.
The cross-section of the dashed lines represents the point of minimum acceptability.

Thus, shelf life varies between fish species or even among the products (whole, gutted,
fillets) [16,17]. In a recent work by our team [18], it was found that whole gutted seabass had a
shelf life of 13 days, under the same conditions of temperature and atmosphere as herein. According
to Kostaki et al. [19], the shelf life of sea bass fillets was 12 days when stored at 4 ◦C under identical
gaseous composition to ours. In another study, Poli et al. [20] reported that the shelf life of seabass
fillets stored at 2 ◦C under MAP was 8 days. However, they used a different gas atmosphere. Similarly,
variable results have been reported for salmon fillets stored under MAP [21–23].

2.2. Microbiological Changes

After 2 days of storage, the total microbial population of seabass fillets expressed by total viable
count (TVC) was at the level of 4.5 log cfu/g. At the time of sensory rejection, the total microbial
population reached 6.8 log cfu/g (Figure 2a). Initial (day 2) microbial populations of spoilage bacteria
were at the level of 3.3, 4.6, 4.5, 3.4 and 2.3 log cfu/g, for lactic acid bacteria (LAB), Pseudomonas spp., H2S
producing bacteria (presumable Shewanella spp.), Enterobacteriaceae and B. thermosphacta, respectively.
The dominant microorganisms were Pseudomonas spp., reaching at the end of shelf life populations
densities as high as 6.7 log cfu/g (p < 0.05), followed by H2S producing bacteria and LAB with 5.9 log
cfu/g, approximately. B. thermosphacta and Enterobacteriaceae populations were not higher than 4.6 log
cfu/g. These results are in agreement with our previous work [18] conducted under the same conditions
with whole gutted seabass. In all cases, our previous and present study, it was noticed that Pseudomonas
was the most dominant microorganism, possibly due to the use of a high O2 concentration level (10%).
On the other hand, B. thermosphacta and LAB populations usually predominate under reduced O2 and
elevated CO2 of MAP by outcompeting the strictly aerobic Pseudomonas spp. [24]. However, this was
not observed in the present work, probably due to different gas composition. Indeed, the study of
Parlapani et al. [25], using molecular techniques found that Pseudomonas spp. was still a great part of
spoilage microbiota together with Carnobacterium spp. and other LAB in gilt-head seabream fillets
stored in the same packaging conditions.
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Figure 2. Microbiological changes during storage of (a) sea bass fillets and (b) salmon slices at 2 ◦C
under MAP. Total viable count (•), Enterobacteriaceae (�), Brochothrix thermosphacta (N), Pseudomonas spp.
(#), Lactic acid bacteria (∆) and H2S producing bacteria (�). Each data point and the error bars show
the mean ± standard deviation of 4 replicates. The cross-section of dashed lines indicates the point of
sensory rejection (11 days).

Regarding salmon slices, the total microbial load did not exceed 3 log cfu/g after 2 days of storage,
whereas at the end of shelf life reached the level of 5.6 log cfu/g (Figure 2b). In contrast to seabass
fillets, the dominant microorganisms were H2S producing bacteria and LAB that reached a value
of 5.3 log cfu/g, followed by Pseudomonas spp. with 4.9 log cfu/g (p > 0.05). B. thermosphacta and
Enterobacteriaceae counts were significantly lower (p < 0.05) at the sensory rejection point, reaching
the values of 4.1 and 2.8 log cfu/g, respectively. Similar observations have been reported by Powell
and Tamplin [26], who highlighted the importance of LAB in fresh Atlantic salmon stored under MAP.
Using culture-independent methods, they found that the microbial communities were dominated by
Shewanella spp. and Carnobacterium spp., after 15 days of storage. The low spoilage level of 5.8 log
cfu/g might be due to the fact that other mechanisms, such as lipid oxidation of salmon, which is quite
fatty fish compared to seabass, occurred taken into account the 10% of oxygen used in this package.

Between the two fish species, LAB and B. thermosphacta counts were the same (p > 0.05) within
each sampling day. Enterobacteriaceae and Pseudomonas spp. counts were always higher in seabass fillets.
H2S bacteria counts were significantly higher in seabass during the 7 days of storage, but afterwards,
their levels did not differ greatly (p > 0.05) between salmon and sea bass.

2.3. TVB-N Determination

Figure 3 presents the changes of TVB-N during the storage of seabass fillets and salmon slices
under MAP at 2 ◦C. During the first 9 days of storage, the TVB-N values of seabass fillets were similar
(p > 0.05). At the sensory rejection time point, the concentration of TVB-N (20.5 mg N/100 g) increased
significantly (p < 0.05), reaching the value of 26.8 mg N/100 g at the end of storage period.

On the contrary, the TVB-N amount of salmon slices remained practically constant (p > 0.05) for
the first 4 days of storage and then it increased significantly until the end of storage. At the sensory
rejection time point, it reached the value of 22.7 mg N/100 g. The TVB-N values observed were similar
to those reported in the literature for either seabass [27,28] or salmon [29].

At the end of shelf life, TVB-N values never reached the legislated regulatory limit, which is
at 30–35 mg N/100 g, [30]. It has already been shown that this parameter—often used as a spoilage
quality indicator for seafood kept on ice—displays lower values for fish stored in a CO2 atmosphere
and considered spoiled by sensory analysis [17]. Therefore, TVB-N should be considered as a poor
indicator of fish freshness, as also proposed by others [27,28].
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Figure 3. TVB-N changes of sea bass fillets (N) and salmon slices (•) stored under MAP at 2 ◦C.
Each data point and the error bars show the mean ± standard deviation (mg N/100 g) of 4 replicates.
The cross-section of the dashed lines represents the point of sensory rejection (11 days).

2.4. Production of Volatile Compounds During Fish Storage

The analysis by SPME-GC/MS of the salmon slices and seabass fillets at different storage stages
under MAP at 2 ◦C identified 54 volatile compounds (excluding hydrocarbons, terpenoids and
miscellaneous compounds) that were classified by their characteristic functional group (Table 1).

The majority of them were mainly aldehydes (22), followed by alcohols (13), ketones (12), esters
(6), and one acid (acetic acid), which were all found in the two species studied except 2,3-butanediol,
3-hydroxy-2-butanone (acetoin) and ethyl lactate. The first two compounds were detected only in
seabass fillets whereas ethyl lactate was found only in salmon. By comparing the relative concentrations
of the compounds at different stages of storage (day 2, 7, 11, 14), it was possible to identify compounds
whose levels increased, decreased or fluctuated during spoilage. Interestingly, the behavior during
storage was similar within certain classes of compounds but different between fish species, as it will be
further discussed.

Among the numerous aldehydes detected in seabass fillets, the amounts of the higher members of
saturated aldehydes (nonanal, decanal, undecanal), unsaturated aldehydes with 8, 10, 11 carbon atoms
(2-octenal, 2-decenal, 2-undecenal), aromatic aldehydes (benzaldehyde, phenylacetaldehyde) as well as
2,4-decadienal increased by 66% from the middle stages of storage (day 7) until the last sampling point
(day 14). Due to their similar evolution profile, they are referred hereafter as group Ald-1 (Table 1).
A different trend was observed for the rest aldehydes, such as the saturated homologues with 2–8
carbon atoms and the unsaturated ones with 5–7 carbon atoms (group Ald-2). Their levels remained
approximately constant during the first seven days of storage, then reached a maximum at the rejection
point (66% increase) and subsequently, they declined by a factor of 50%.

These two patterns of volatiles’ evolution during storage of seabass fillets under MAP at 2 ◦C were
also observed for other classes of chemical compounds, such as ketones (group Ket-1 and Ket-2), alcohols
(Alc-1 and Alc-2) and esters (Est-1 and Est-2). The Ket-1 group comprised mainly of compounds with
the carbonyl group at the 2-position (2-butanone, 2-heptanone, 6-methyl-5-hepten-2-one, 2-nonanone),
except from 2-pentanone, which revealed a profile similar to that of C5 and C8-diones (2,3-pentanedione,
2,3-octanedione) and 3,5-octadien-3-one isomers (group Ket-2). The majority of alcohols (group Alc-2)
exhibited a pattern similar to Ald-2 group. Among them, 1-penten-3-ol, 1-octen-3-ol, hexanol and
octa-1,5-dien-3-ol were found in greater amounts. On the other hand, 2-ethyl-1-hexanol and dodecanol
were the only members of group Alc-1. Although esters were detected at very low levels, it is
noteworthy that all ethyl esters of short chain fatty acids (C4-C10) exhibited the same profile (group
Est-2). An exemption was ethyl acetate (Est-1), whose relative concentration increased by 90% from
day 7 to day 14.
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Table 1. Relative concentrations a of volatile compounds in sea bass fillets and salmon slices during storage under MAP at 2 ◦C.

Compound Sea Bass Fillets Salmon Slices

D2 D7 D11 D14 Group b D2 D7 D11 D14 Group Identification c RI d m/z e

Aldehydes
Acetaldehyde 12.0 11.5 43.0 nd f Ald-2 128 62.5 77.8 61.5 MS, RI, ref 459 29
3-Methylbutanal nd nd 3.1 nd Ald-2 5.2 9.3 5.1 6.9 MS, RI, ref 647 58
2-Methylbutanal nd nd 2.9 nd Ald-2 4.7 4.9 4.0 3.1 MS, RI, ref 657 57
Pentanal 10.4 9.3 33.1 12.0 Ald-2 21.9 24.4 9.0 23.1 Ald-1 MS, RI 697 58
Hexanal 132 152 357 164 Ald-2 251 157 120 159 Ald-1 MS, RI, ref 802 56
Heptanal 19.6 29.3 45.9 42.9 Ald-2 53.9 33.7 31.4 36.1 Ald-1 MS, RI 902 70
Octanal 31.6 19.5 46.3 43.2 Ald-2 28.7 20.5 18.5 23.1 Ald-1 MS, RI, ref 1003 43
Nonanal 124 115 160 214 Ald-1 216 198 145 150 Ald-1 MS, RI 1105 57
Decanal 35.6 14.0 42.7 61.1 Ald-1 31.9 26.6 24.4 29.5 Ald-1 MS, RI, ref 1206 57
Undecanal 4.5 3.7 8.6 12.1 Ald-1 5.8 7.6 4.2 5.3 MS, RI 1308 57
(E)-2-Pentenal 6.8 3.9 25.4 13.9 Ald-2 10.7 15.9 3.9 7.4 Ald-1 MS, RI 748 55
(E)-2-Hexenal 3.4 1.4 13.8 9.4 Ald-2 5.5 12.4 2.8 5.8 Ald-1 MS, RI 853 83
4-Heptenal 12.5 6.9 51.4 20.7 Ald-2 8.8 14.6 4.0 33.1 Ald-1 MS, RI 901 84
2-Heptenal 4.2 2.7 10.3 8.6 Ald-2 8.3 6.4 4.6 4.5 Ald-2 MS, RI 954 83
(E)-2-Octenal 8.6 5.5 12.0 20.0 Ald-1 12.5 8.6 7.6 6.0 Ald-2 MS, RI 1060 70
(E)-2-Decenal 10.5 7.0 12.6 28.6 Ald-1 15.8 14.0 11.8 9.9 Ald-2 MS, RI 1262 55
(E)-2-Undecenal 10.6 7.0 14.0 29.7 Ald-1 15.2 14.2 10.5 9.3 Ald-2 MS, RI 1365 70
2,4-Heptadienal (isomer) 17.7 11.6 81.6 33.8 Ald-2 28.5 40.6 5.4 21.5 MS 998 81
(E,E)-2,4-Heptadienal 23.4 15.0 94.2 53.9 Ald-2 27.9 28.8 13.4 28.0 MS, RI 1011 81
2,4-Decadienal 8.7 5.6 15.5 24.8 Ald-1 11.7 8.3 6.9 6.7 Ald-2 MS, RI 1315 81
Phenylacetaldehyde 8.9 5.4 18.1 41.0 Ald-1 13.4 26.7 13.4 17.9 MS, RI 1043 91
Benzaldehyde 46.2 25.4 75.6 127.6 Ald-1 47.0 49.4 31.5 53.5 MS, RI, ref 955 106
Ketones
2,3-Butanedione 1.0 0.6 5.7 69.2 Ket-3 5.6 5.0 6.8 5.0 MS, RI, ref 594 86
2-Butanone 12.0 7.6 26.1 28.7 Ket-1 19.8 17.1 21.1 32.7 Ket-1 MS, RI 601 72
2-Pentanone 28.3 17.0 35.3 29.0 Ket-2 24.8 16.5 22.5 66.7 Ket-1 MS, RI 686 43
2,3-Pentanedione 20.5 17.1 65.6 38.0 Ket-2 63.9 78.6 34.4 50.7 MS, RI, ref 696 100
3-Hydroxy-2-butanone nd nd 4.8 258 Ket-3 nd nd nd nd MS, RI, ref 715 45
2-Heptanone 9.9 5.4 20.3 25.7 Ket-1 5.2 4.8 8.0 13.2 Ket-1 MS, RI 888 43
2,3-Octanedione 28.7 44.9 107 47.0 Ket-2 17.2 15.6 14.8 42.7 Ket-1 MS, RI 987 43
6-Methyl-5-hepten-2-one 9.5 7.4 12.5 15.8 Ket-1 7.8 8.7 7.4 5.4 MS, RI 989 108
(E,E)-3,5-Octadien-2-one 42.3 36.9 216 106 Ket-2 28.2 37.7 7.5 50.6 Ket-1 MS, RI 1072 95
2-Nonanone 10.8 4.9 18.9 30.3 Ket-1 3.3 4.9 5.1 15.4 Ket-1 MS, RI 1094 58
3,5-Octadien-2-one (isomer) 8.4 7.4 49.7 26.1 Ket-2 nd nd 4.1 19.7 Ket-1 MS, RI 1094 95
Acetophenone 24.8 17.2 32.9 71.4 Ket-1 13.9 19.1 10.7 17.1 MS, RI, ref 1065 105
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Table 1. Cont.

Compound Sea Bass Fillets Salmon Slices

D2 D7 D11 D14 Group b D2 D7 D11 D14 Group Identification c RI d m/z e

Alcohols
Ethanol 478 111 1336 567 Alc-2 1294 482 1151 505 MS, RI, ref 477 45
Propanol 12.4 10.8 54.1 8.4 Alc-2 14.8 62.4 28.7 9.7 Alc-3 MS, RI, ref 555 31
3-Methyl-1-butanol nd nd 1.8 nd Alc-2 nd nd 6.3 nd Alc-2 MS, RI, ref 725 55
Pentanol 9.5 8.5 30.1 23.4 Alc-2 11.8 11.3 13.0 11.4 MS, RI, ref 759 42
Hexanol 21.7 24.8 88.9 48.6 Alc-2 7.7 10.0 34.4 8.4 Alc-2 MS, RI, ref 870 56
Heptanol 6.3 5.8 22.0 15.3 Alc-2 7.9 4.9 6.8 6.1 MS, RI, ref 973 70
2-Ethyl-1-hexanol 40.2 7.7 49.4 81.8 Alc-1 15.7 14.2 19.4 45.4 Alc-1 MS, RI, ref 1030 57
Dodecanol 4.9 3.7 7.2 11.9 Alc-1 13.7 23.5 10.8 4.9 Alc-3 MS, RI 1476 55
1-Penten-3-ol 145 148 746 600 Alc-2 552 548 474 1468 Alc-1 MS, RI, ref 675 57
(Z)-2-Penten-1-ol 29.3 27.5 160 148 Alc-2 70.0 108 32.7 108 MS, RI 766 57
1-Octen-3-ol 52.1 53.3 374 196 Alc-2 23.7 37.0 33.7 212 Alc-1 MS, RI, ref 980 57
2,3-Butanediol nd nd nd 550 Alc-3 nd nd nd nd MS, RI 794 45
(5Z)-Octa-1,5-dien-3-ol 106 88.9 551 389 Alc-2 93.1 124 83.4 821 Alc-1 MS, RI 975 57
Esters
Ethyl acetate 3.4 4.1 24.3 42.1 Est-1 13.2 7.3 17.0 5.4 MS, RI, ref 613 61
Ethyl butanoate nd nd 4.5 nd Est-2 17.4 5.0 15.6 6.9 MS, RI, ref 805 88
Ethyl lactate nd nd nd nd 27.0 5.6 21.2 4.7 MS, RI, ref 815 45
Ethyl hexanoate 1.8 0.8 19.4 3.0 Est-2 7.3 7.2 12.8 6.8 Est-1 MS, RI, ref 1001 88
Ethyl octanoate 1.1 nd 7.2 3.3 Est-2 nd nd 3.1 2.4 Est-1 MS, RI, ref 1198 88
Ethyl decanoate nd nd 1.8 nd Est-2 nd nd 1.3 0.8 Est-1 MS, RI, ref 1396 88
Acids
Acetic acid 13.5 22.3 266 2507 35.4 470 32.2 17.4 MS, RI, ref 624 60

a Each value is the mean of duplicate measurements of pooled samples. Expressed as the ratio of each compound peak area to that of internal standard multiplied by its concentration
(1000 µg/L). b Within each fish species, compounds belonging to the same group presented similar evolution pattern during storage. c Experimental retention indices on HP-5MS column.
d Identification confirmed by MS, mass spectra; RI, retention indices provided with NIST14 mass spectral library; ref, identified by comparison to authentic compound. Unless confirmed
by comparison to authentic standards, compounds are considered as tentatively identified. e Mass fragment used in peak area calculation. f Not detected.
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Since the focus of the present study was to find volatiles suitable as spoilage markers, the
relationships of the aforementioned evolution profiles with the remaining shelf life were depicted
schematically (Figure 4a,b).
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As it can be seen, when the fish was considered fresh (remaining shelf life over 7 days), the amounts
of aldehydes, ketones, alcohols and esters groups remained relatively low. However, at the rejection
point (0 days of remaining shelf life), their respective amounts increased substantially. The most
remarkable evolution patterns were observed for 2,3-butanedione, 3-hydroxy-2-butanone (group Ket-3)
and acetic acid (Table 1, Figure 4c,d). Their amounts were negligible initially, when the fish remaining
shelf life was over 5 days. Their relative concentration started to increased and subsequently reached
a maximum at the end of shelf life (0 remaining days), corresponding to an almost 100% increase.
2,3-Butanediol was the only compound that was not detected until day 11, which is the end of shelf life,
but reached a high concentration at the end of storage. The formation of the aforementioned compounds
has been associated with microbial activity occurring during storage. 2,3-Butanedione is reduced to
acetoin, which is in turn reduced to 2,3-butanediol through enzymatic mediated reaction [31]. Acetoin
formation in seafood has been associated mainly with LAB [32] and in some cases to Photobacterium
phosphoreum [33] and Shewanella baltica [34], whereas in meat has been reported for Pseudomonas spp. [35].
The production of acetic acid has been associated with the metabolic activity of B. thermosphacta, some
heterofermentative LAB and Shewanella spp. [34,36–38]. In a previous study [39], these compounds
were attributed exclusively to microbial activity, as they were detected only in inoculated sterile fish
juice. According to our results, these four compounds (diacetyl, acetoin, 2,3-butanediol, acetic acid)
may be suggested as spoilage markers of seabass stored under MAP.
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As with seabass, aldehydes dominated the volatile fraction of salmon slices stored under MAP at
2 ◦C. The most abundant compounds were hexanal and nonanal followed by acetaldehyde (Table 1).
Among aldehydes, two groups having different evolution patterns can be distinguished. The first
group (Ald-1) includes the saturated homologues with 5–10 carbon atoms (pentanal to decanal) and
three unsaturated members, namely 2-pentenal, 2-hexenal and 4-heptenal. Their amounts decreased
from day 2 to day 11 and afterwards they increased or remained constant. This was more pronounced
with the unsaturated members, whose relative amounts were found 50–60% lower at day 11. On the
contrary, the Ald-2 group, which comprised of 2-alkenals with 7–11 carbon atoms (2-heptenal, 2-octenal,
2-decenal, 2-undecenal) as well as 2,4-decadienal, followed an almost linear declining trend throughout
storage. This is depicted clearly in Figure 5a,b relatively to the remaining shelf life. This linear trend
can be exploited as a potential freshness index for salmon stored under MAP.Molecules 2020, 25, x 3 of 16 
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MAP at 2 ◦C. (a) Group Ald-1 and Alc-1; (b) Group Ald-2 and Ket-1; (c) Group Est-2 and Alc-2;
(d) Group Alc-3 and Acetic acid. The compounds included in each group are described in Table 1.

Among the detected ketones, the 2-alkanones (2-butanone, 2-pentanone, 2-heptanone, 2-nonanone)
as well as 2,3-octanedione and the two 3,5-octadien-2-one isomers presented a distinct evolution
pattern (Ket-1 group, Table 1). Their levels remained constant or decreased slightly during the first
11 days of storage. After the sensory rejection point (0 days of remaining shelf life), the relative
amount of Ket-1 group increased by 150%, (Figure 5b). This characteristic profile was also observed
for Alc-1 group, which comprised mainly of 1-octen-3-ol, (5Z)-octa-1,5-dien-3-ol and 1-penten-3-ol
(Figure 5a). The latter one was the main alcohol produced during spoilage besides ethanol, whose
amount fluctuated. Hexanol, 3-methyl-1-butanol (Alc-2 group) and ethyl esters of C6-C10 fatty acids
(Est-1 group) followed a pattern (Figure 5c) similar to that in seabass (Figure 4b). The levels of acetic
acid and group Alc-2 (propanol and dodecanol) presented a maximum before the rejection point
(0 days of remaining shelf life), and then they declined rapidly (Figure 5d). However, the observed
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profile of acetic acid in salmon was different from the respective one in seabass. Furthermore, it is in
contrast to other researchers who suggested acetic acid as a spoilage marker in fresh king salmon [12]
and salmon fillets [29].

A notable difference between the examined fish species was the absence of acetoin and
2,3-butanediol in the salmon samples. This is contradictory to the results reported by Wierda et al. [12]
albeit the storage conditions were different from ours. Furthermore, a small amount of ethyl lactate
was detected only in salmon, but its levels fluctuated during storage (Table 1).

Most of the VOCs detected in this study have also been reported for other fish and seafood by other
researchers as well [11,13–15,32,40,41]. It is generally known that most of the saturated or unsaturated
aldehydes, alcohols and carbonyls in fish flesh come from the autoxidation of the polyunsaturated
fatty acids resulting in the formation of hydroperoxides. Although, autoxidation of fatty acids can be
initiated by a catalyst such as light or oxygen or by enzymes coming from the fish flesh, it can be also
initiated by the enzymes of the microorganisms present in fish [42]. Thus, we can infer that the different
evolution patterns observed between the two fish species could be attributed both to their characteristic
microbiota growth as discussed earlier and the lipid composition of each fish. It is known that different
fish species from different geographical areas are spoiled by different SSOs, even if the fish are stored
under identical conditions (temperature and atmosphere), which means that different metabolites
might be produced (9). This can explain the difference on VOCs profile between the two different
fish. Various alcohols, aldehydes and esters, such as 3-methyl-1-butanol, 3- and 2-methylbutanal and
ethyl esters of short chain fatty acids (C4-C10) have been suggested as potential spoilage indicators
in fish and meat products [10,13,32,39,43–45]. However, our results from both fish species studied,
indicate that they were produced (if any) at very low levels during storage. Thus, their usefulness as
biomarkers may be limited under MAP in combination with low temperatures.

3. Materials and Methods

3.1. Fish Provision, Handling and Storage

Seabass fillets and salmon slices were obtained directly from a Greek fish processing plant (Selonda
Aquaculture SA, Magoula, Attica, Greece). Seabass was farmed in the geographical area designated
as FAO 37, 3.1 (Aegean Sea, Greece), while salmon was farmed in the European Union (Norway)
and was imported to Greece. The products were packed under MAP in polysterene trays (Sirap
Gema S.p.A., Verolanuova, Italy) covered with a MAP film (BDF 8050F, Cryovac-Sealed Air Ltd.,
Athens, Greece). Each tray contained either two seabass fillets (approximately 120 g each fillet) or one
salmon slice (approximately 200 g). The concentrations of gases were CO2: 60%, O2: 10%, N2: 30% as
recommended by the Hellenic seafood industry for this type of products. The products were delivered
to the laboratory within 5 h after packaging (day 0) in insulated boxes with ice flakes. Subsequently, the
products were stored in incubators (Panasonic MIR-254 cooled incubator, PHC Europe B.V., Etten-Leur,
The Netherlands) operating at 2 ◦C. The two batches (lots) of each product were provided with 15 days
difference in June 2016. The sampling started the day after receiving the products (day 1). At each
sampling point, a suitable quantity of product (sample) was taken from 2 different packages for each
batch (lot) of product (2 replicate samples per batch) and analyzed as described below. Thus, four
replicate determinations were accomplished at each sampling point (n = 4 = 1 sample/package × 2
packages/batch × 2 batches), except for volatiles, where the samples were pooled as described in VOCs
analyses section.

3.2. Sensory Acceptance Evaluation

The attributes of cooked fish (flavor and taste) were evaluated by five trained members of
our Department (Dept. Ichthyology & Aquatic Environment, University of Thessaly, Greece).
Approximately 20 g of fish flesh were removed, wrapped in aluminum foil and cooked in an
oven preheated at 180 ◦C for 20 min. After that, the cooked samples were left to cool and evaluated.
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The panel was asked to evaluate overall impression and acceptability. Rating was assigned on a 1–5
descriptive hedonic scale (5 = like extremely, 4 = like, 3 = neutral, 2 = dislike and 1 = dislike extremely).
A score of 3 was considered as the score for minimum acceptability, hence the time point corresponded
to a score below 3 was set as end of shelf life. Only cooked samples were chosen to be evaluated
since the aim of the sensory acceptance evaluation was to determine the shelf life of fish products and
correlated with the production of various potential freshness/spoilage markers and for this reason an
in-depth analysis of sensory descriptors changes of raw samples was not performed.

3.3. Microbiological Analysis

A sample of 25 g fish product (representing 1 replicate as described in Section 3.1) was
placed into a stomacher bag containing 225 mL sterile MRD (Maximum Recovery Diluent, 8.5 g/L
NaCl, 1.0 g/L bacteriological peptone) and homogenized for 1 min using a Stomacher (Bug Mixer,
Interscience, London, UK). Then, 0.1 mL of 10-fold serial dilutions in MRD were used for the spread
plate technique for the enumeration of the following microorganisms: (a) Pseudomonas spp. on
cetrimide-fucidin-cephaloridine agar (CFC, LAB M, Lancashire, UK), and (b) Brochothrix thermosphacta
on streptomycin sulphate, thallus acetate, cycloheximide (actidione) agar (STAA, Biolife Italiana srl,
Milano, Italy), after incubation at 25 ◦C for 48 h. Additionally, 1 mL of the serial dilution were used
for the pour plate with overlay technique for the enumeration of (a) the Total viable counts (TVC) on
Iron Agar (IA, prepared according to Gram et al. 1987, by mixing ingredients obtained from LAB M,
Lancashire, UK), and H2S producing bacteria (presumable Shewanella spp.) on IA by counting only
the black colonies, after incubation at 25 ◦C for 72 h, (b) Enterobacteriaceae on Violet Red Bile Glucose
agar (VRBGA, LAB M, Lancashire, UK), after incubation at 37 ◦C for 24 h and (c) Lactic Acid Bacteria
(LAB, LAB M, Lancashire, UK) on De Man, Rogosa, Sharpe agar (MRS, LAB M, Lancashire, UK) after
incubation at 25 ◦C for 72 h. All plates were incubated aerobically. The results were expressed as mean
log cfu/g ± standard deviation of 4 replicate samples (2 replicates per batch of fish product).

3.4. Determination of TVB-N

A sample of 10 g fish product (representing 1 replicate as described in Section 3.1) was homogenized
in trichloroacetic acid solution (TCA 60 g/L), filtered through Whatman No.1 paper in a 100 mL
volumetric flask and made up to volume with TCA solution. An aliquot of 50 mL extract was analyzed
for TVB-N using the steam-distillation procedure [46]. Each extract was analyzed twice, and the mean
value was used for further calculations. The results were expressed as mean mg N/100 g ± standard
deviation of 4 replicate samples (2 replicates per batch of fish product). All chemical reagents were
supplied by Sigma-Aldrich (Steinheim, Germany).

3.5. VOCs Determination by Headspace SPME-GC/MS

At each sampling point, a total amount of 50 g fish product was obtained from 4 different
packages (2 packages from each batch) and pooled. Then, 5 g of the pooled fish sample, 5 mL
of 30% NaCl solution and 100 µL of internal standard (4-methyl-1-pentanol, in-vial concentration
1000 µg/L) were transferred into a 20 mL glass vial and homogenized with a glass rod for 1 min.
The vial was hermetically closed with a Mininert valve (Sigma Aldrich, St. Louis, MO, USA) and
headspace SPME-GC/MS analysis was performed according to Parlapani et al. [18]. Identification of the
compounds was performed by comparing: (i) the retention indices (RI) based on an homologous series
of even numbered n-alkanes (C8–C24, Polyscience, Niles, IL, USA) with those of authentic compounds
and by comparison with literature data, and (ii) MS data with those of reference compounds and
by MS data obtained from NIST 14 (NIST/EPA/NIH Mass Spectral Library with Search Program,
software version 2.0d, Gaithersburg, MD, U.S.) and WILEY 7 libraries. AMDIS software (version 2.62,
http://chemdata.nist.gov/mass-spc/amdis/, Gaithersburg, MD, U.S.) was used for the deconvolution
of mass spectra and identification of target components. The volatile compounds were quantified
by dividing the peak area of the compound of interest by the peak area of internal standard (IS) and

http://chemdata.nist.gov/mass-spc/amdis/
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multiplying this ratio by the concentration of the IS (expressed as µg/L). The peak areas were measured
by selecting single ions (Table 1). Each pooled fish sample was extracted and analysed twice and the
mean values were used. All authentic compounds used were of analytical grade and purchased from
Sigma Aldrich (Steinheim, Germany).

3.6. Statistical Analysis

The t-test of means or Analysis of Variance followed by Tukey′s significant difference test, using
STATISTICA 6.0 (Stat Soft Inc., Tulsa, OK, U.S.), were used to compare the means in viable counts,
TVB-N and overall sensory acceptance score. A probability level of p ≤ 0.05 was considered statistically
significant. Statistical analysis of VOCs was not performed, for the reason that the measurements were
conducted in duplicates from a pooled sample, since the aim of the study was to monitor the profile of
VOCs evolution during storage and distribution and reveal any potential spoilage marker.

4. Conclusions

The same storage conditions, MAP and temperature, affected the growth of microbial populations
in a completely different way between seabass and salmon, thus affecting the evolution of fish volatiles.
This reflects the difficulty of defining common markers of fish spoilage or freshness among fish species.
It is known that different spoilage microorganisms are grown on fish from different geographical areas,
even if these fish are stored under the same conditions, hence different microbial origin VOCs are
produced. Therefore, in seeking potential spoilage markers using the volatilome, the research should
be focused on the following directions: a) identification and quantification of species specific volatile
markers under specified storage conditions or b) exploration of the overall trend of volatilome through
multivariate data analysis and development of a large database with the volatile fingerprint of each
fish species produced in certain storage conditions.
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