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INTRODUCTION

SARS-CoV-2, a novel RNA contaminating coronavirus emerged in Wuhan, China at the end of 2019
(COVID-19). In March 11, 2020 the World Health Organization declared it a pandemic disease. Since
April 14, 2010 the pandemia has been spread to 3,170,474 people and led to 220,324 deaths (1). Findings
from a February report from the Chinese Center for Disease Control and Prevention have shown that of
44,672 cases the overall case-fatality rate (CFR) was 2.3%. CFR was elevated among COVID-19 patients
with comorbidities, such as cardiovascular disease (10.5%) and diabetes (7.3%) (2).

Patients with uncontrolled diabetes may be at extra risk of COVID-19 mortality or
complications of the disease. The pathophysiology remains unknown, although it is of great
interest because of the great prevalence of diabetes; In 2019, 463 million of adults 20–79 years old
were living with diabetes, and by 2045 this number is suggested to rise to 700 million (3).
COVID-19: POSSIBLE MECHANISMS OF INCREASED RISK
COMPLICATIONS IN DIABETIC PATIENTS

The Role of NLRP3 Inflammasome in COVID-19 and Its
Complications
In COVID-19 the immune system may react with an exacerbation of cytokine production known as
a “cytokine storm” which leads to hyperinflammation and secondary hemophagocytic
lymphohistiocytosis (sHLH) or else Macrophage Activation Syndrome (MAS). This is
Abbreviations: ACE-2, angiotensin-converting enzyme-2; ALI, acute lung injury; ARDS, acute respiratory distress syndrome;
IL, interleukin; INF, interferon; MAS, macrophage activation syndrome; NK, natural killer; NLRP3, nucleotide-binding
domain, leucine-rich-containing family, pyrin domain-containing-3; sHLH, secondary hemophagocytic lymphohistiocytosis;
TNF, tumor necrosis factor.
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characterized by fulminant, fatal hypercytokinemia, multiple
organ failure, Acute Respiratory Distress Syndrome (ARDS),
and sepsis (4). NLRP3 inflammasome seems to play an
important role in these complications (5).

Particularly, numerous studies have implicated the NLRP3
inflammasome and IL-1b in mediating inflammation during
lung injury and ARDS (6, 7). In ARDS/ALI, IL-1b is one of
the most biologically active proinflammatory cytokines in the
lungs, while inflammasome hyperactivation participates in both
ARDS and mechanical ventilation acute lung injury. IL-1b levels
are shown to be elevated in plasma and bronchoalveolar fluid of
patients with ARDS (8). In patients with ARDS infected with
MERS-CoV and SARS-CoV, IL-1b, IL-6, and IL-8 levels were
also found high (9, 10) In other respiratory viral infections such
as influenza, IL-1b levels were also elevated in patients with lung
injury, whereas the use of antagonists of IL-1b reduced it, which
indicates an important role of IL-1b in the pathogenesis of
complications in viral infections such as SARS-CoV infections
(11, 12).

The SARS-CoV genome encodes three ion channels proteins:
E, open reading frame 3a (ORF3a), and ORF8a. E and ORF3a
proteins are required for the replication of the virus (13). SARS-
CoV-2 enters the alveolar epithelial cells leading to their injury
and apoptosis. Then the apoptotic pneumocytes release danger-
and pathogen-associated molecular patterns which trigger
inflammasomes of alveolar macrophages. NLRP3 inflammasome
is also triggered by SARS-CoV-2 through other pathways: a)
through the proteins E, 3a, and 8b of SARS-CoV, b) after the
binding of the spike protein of the virus to ACE2 receptors of
pneumonocytes, c) after the activation of the renin–angiotensin–
aldosterone system (RAAS) leading to elevated levels of
angiotensin II, which following the binding to angiotensin I
receptor activates inflammasome, d) through the activation of
the complement cascade by the N proteins of the SARS-CoV-2,
which results in the release of complement fragments (C3a and
C5a anaphylatoxins) which may upregulate inflammasome in
cells (14). NLRP3 inflammasome activation leads to a release of
IL-1b, IL-18, and TNF-a, initiating a cascade of secretion of
proinflammatory cytokines, cell apoptosis, and tissue injury (15).
IL-1b leads to overproduction of INF-1g by NK cells leading
to hemophagocytosis. Cytokine storm may cause dysfunction of
NK and CD cells and may include other proinflammatory
cytokines or chemokines such as IL-17, IL-21, IL-22, IL-6,
TNF-a, chemokine ligand 10 and 2, IL-2R, IL-8, IL-10, which
may also participate in ARDS/ALI and multi-organ failure (4).
NLRP3 activation promotes pyroptosis, a programmed cell death
of immune cells which increases intracellular pathogen clearance.
After pyroptosis, IL-1b and IL-18 are secreted again stimulating
inflammasome. Thus, pyroptosis has a double role for innate
immunity. It protects from infections, and on the other hand, it
may lead to chronic inflammation, too (16).

In sHLH/MAS, immunomodulation may be beneficial.
Tocilizumab (IL-6 receptor blockage, licensed for cytokine release
syndrome) has already been approved for COVID-19 pneumonia
in China (17), while Anakinra (IL-1b blockage) has shown
surveillance benefit in patients with hyperinflammation (18).
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Pre-Existing Overactivation of NLRP3
Inflammasome in Diabetes and Its Role in
COVID-19 Complications
Diabetes is shown to be among the most frequently reported
comorbidities in patients with COVID-19 (1, 2, 19, 20).
However, the prevalence of diabetes among these patients is
shown to be 8–10%, as in the general population, which would
suggest that diabetes is not a risk factor for contracting COVID-
19 (21, 22), but it is associated with increased mortality and
severity of disease in COVID-19 pneumonia (23). This implies
that diabetic patients are at higher risk of a cytokine storm,
metabolic and immune derangement.

Chronic hyperglycemia deranges immune function and
increases the risk for bad outcomes due to various infections
such as pneumococcal pneumonia, SARS, MERS, and H1N1
(24). Obesity and type 2 diabetes have also been considered an
independent risk factor for sepsis and high mortality (25) and
can lead to severe pneumonia, hepatic injury, hypercoagulation
and hyperinflammation during COVID-19 infection (26, 27). A
possible mechanism may be that in T2DM NLRP3
inflammasome action is upregulated leading diabetes to be a
state of low-grade inflammation. Hyperglycemia is also strongly
associated with an increased mortality in COVID-19 pneumonia
even in patients without diabetes (28).

Glyco-lipotoxicity and oxidative stress increase products of
the intermediate metabolism such as urate, cholesterol crystals,
extracellular ATP, certain fatty acids (e.g. ceramides) and islet
amyloid peptides, resulting to hyperactivation of inflammasome
and caspase-1 which in turn, increases the release of IL-1b and
IL-18 (29). NLRP3 inflammasome hyperactivation in diabetes,
pyroptosis, and low-grade inflammation lead to a delay of INF-g
response and lower CD4+ and CD8+ cell numbers (30, 31). CD4+
and CD8+ decrease is associated with poor prognosis, whereas
recovery of lymphocyte count coincides with clinical improvement
(32, 33). Indeed, according to mouse model experiments, in the
absence of CD4+ there was much more severe interstitial
pneumonitis, whereas the depletion of both CD4+ and CD8+
led to an increase of neutrophils and macrophages in the lesions
(34). The delay of INF-g response and inflammatory monocytes
and macrophage accumulation are the main causes of lethal
pneumonia as it has been proved in a mouse model of SARS-
CoV infection (35).

In addition, this state of low-grade inflammation in COVID-19
diabetic patients may lead to an increase of the percentage of
proinflammatory memory B cells and a decrease of anti-
inflammatory B-cells, resulting in an early maturation of the
antibody response. In that way, Secchi M et al. have indicated that
SARS-CoV-2 antigens, such as the SARS-CoV-2 spike Receptor
Binding Domain, lead to a rapid development of humoral response
and superimposable antibody response compared to non-diabetic
patients independently of glucose levels (28, 36).

Chronic NLRP3 inflammasome overactivity leads also to lung
injury and fibrosis, cardiomyopathy, and other damage (37, 38)
which may make diabetic patients vulnerable to bad outcomes
after an infection. Weinand B. et al. found that alveolar epithelial
and endothelial capillary basal laminae were significantly thicker
November 2020 | Volume 11 | Article 557235
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in samples from diabetic patients. This insult to the integrity of
alveolo-capillary membrane of the lung affects the alveolar gas
exchange and pulmonary function in diabetic patients (39).

Endothelial to mesenchymal transition (EndMT) may
contribute to interstitial organ fibrosis, including pulmonary
fibrosis in COVID-19 (40). Endothelial cells undergoing EndMT
change their morphology and increase their mesenchymal proteins.
This results in the breakdown of the underlying basement
membrane and cell migration (41). Mechanical ventilation
resulting in NLRP3 inflammasome activation facilitates EndMT.
Indeed, in vitro studies have shown that pulmonary fibrosis and
EndMT were ameliorated in NLRP3-deficient mice (42).

Furthermore, downstream activation of toll-like receptor
signal regulators such as IRAK4 (interleukin-1 receptor
associated kinase 4) leading to TRAF6 (tumor necrosis factor
receptor-associated factor 6)-nuclear factor-kB activation can
alter monocyte migration and accelerate myocarditis, too (43).

Since it is suggested that the main role of NLRP3 inflammasome
in the pathogenesis of SARS-CoV-2 complications is its
overactivation contributing to cytokine storm and pyroptosis (14);
overactivation of inflammasome in diabetes too may also suggest a
reason for the susceptibility of diabetic patients to complications
and lung injury with COVID-19 infection. A common therapeutic
approach to SARS-CoV-2 complications (5) and type 2 diabetes
with IL-1 blockade agents (44) can strengthen the suggestion of the
association of type 2 diabetes and COVID-19 complications.

Increased Vascular Permeability and Its
Role in COVID-19 Complications
Increased vascular permeability in diabetes may also contribute
to the susceptibility of COVID-19 diabetic patients in ARDS and
Frontiers in Immunology | www.frontiersin.org 3
sepsis. Micro-angiopathic changes may be present in the
respiratory tract of diabetic patients, interfering with gas
exchanges and lung compliance (45). Endothelial glycocalyx is
a major determinant of vascular permeability during
inflammatory stress. Diabetic patients have impaired
glycocalyx thickness due to oxidative stress which is partially
restored after optimal glycemic control (46). Increased vascular
permeability may promote extravascular or interstitial exudates
in COVID-19 infection as has been shown in sepsis (47). In a
septic state, inflammatory macrophages may release cytokines,
such as IL-1b and IL-6 that induce the expression of adhesion
molecules, inflammatory cell infiltration, and vascular
inflammation. Endothelial cells, also, release proinflammatory
cytokines which contribute to the creation and proliferation of
microcirculatory lesions (48). So, the dysfunctional endothelium
becomes proadhesive and procoagulant (48).

Interleukin-6, a hallmark cytokine in COVID-19 infection,
promotes endothelial dysfunction (49) and also local
enhancement of thrombosis (50). Recently, increased IL-6
production leading to lymphopenia and its reversal by
tocilizumab, an IL-6 inhibitor, has been described in critically
ill COVID-19 patients in need of mechanical ventilation (51).
Indeed, tocilizumab improves endothelial function leading to an
increase of effective myocardial work through a profound
reduction of inflammatory burden and oxidative stress, which
may explain its positive effects on COVID-19 and its
complications (52). Both IL-1b and IL-6 exert detrimental
effects on vascular, coronary, and myocardial function during
uncontrolled inflammation such as exacerbation of rheumatoid
arthritis and their inhibition by biological agents to reverse these
adverse effects (53, 54).
A B

FIGURE 1 | (A) SARS-CoV-2, after infection, triggers NLRP3 inflammasomes of alveolar macrophages. NLRP3 activation leads to a release of IL-1b, IL-18, and
pyroptosis which, in turn, triggers inflammasome and leads to activation of other immune cells (e.g., neutrophils, lymphocytes, monocytes). This may initiate a
cascade of secretion of proinflammatory cytokines (cytokine storm), leading to tissue injury and multiorgan failure. (B) In diabetes, oxidative stress and DAMPS
(Damage-Associated Mollecular Patterns) overactivate inflammasomes leading to a state of low-grade inflammation and a more intense secretion of proinflammatory
cytokines. Low-grade inflammation leads to a delay of INF-g response, lymphopenia, and greater accumulation of inflammatory macrophages and monocytes, which,
in combination with the increased vascular permeability and damaged glycocalyx, may increase the risk for tissue injury and multiorgan failure.
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These mechanisms may lead to susceptibility of endothelial
glycocalyx during COVID-19 infection resulting in increased
vascular permeability and rapid deterioration to lung alveolar
exudation and pneumonitis needing mechanical ventilation (51).
Glycemic oscillations in diabetes have also been suggested to
increase endothelial cytokine and adhesion molecule production
which, in turn, may lead to an uncontrolled extravasation of
leukocytes in the alveolus during influenza infection, promoting
lung damage and impairment in respiratory function (55, 56).
Increased vascular lesions and endothelial inflammation put
individuals with diabetes at greater risk for endothelitis in several
organs whereas change of vascular change and vasoconstriction
can lead to organ ischemia, tissue edema, and a procoagulant state
(57). Thus, endothelial glycocalyx impairment by IL-1b, IL-6, and
oxidative stress in diabetic patients may be a mechanism explaining
their susceptibility to worse COVID-19 infection prognosis.
DISCUSSION

Diabetes is characterized by abnormally elevated glucose levels
and oxidative stress. Poorly uncontrolled diabetes increases the
risk of infections, hospitalizations, and mortality (58, 59).
Numerous clinical studies during the 2019 influenza pandemic
showed an increased susceptibility of individuals with diabetes
for bad outcomes (60–62). Many recent studies have also
suggested that in the new pandemic COVID-19 diabetes is one
of the leading comorbidities associated with infection severity (1,
2, 19, 20). The mechanisms through which diabetes is associated
with COVID-19 severity are proposed to be: the increased ACE2
receptor expressed in diabetic tissues, the dysregulation of diabetic
immune system, the alveolar dysfunction, the endothelial
dysfunction, and coagulopathy because of low grade inflammation
and oxidative stress (31).
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SARS-CoV-2 invasion activates inflammasome of the alveolar
macrophages leading to further activation of the immune
response which may result in a cascade of proinflammatory
cytokine secretion, ARDS, and sepsis (5, 30, 31).

In diabetes glyco-lipotoxicity and oxidative stress increase the
products of intermediate metabolism and danger-associated
molecular patterns (DAMPS) which hyperactivate NLRP3
inflammasome of the macrophages which, in turn
hyperactivate further the innate and acquired immunity,
leading to a dysregulated immune response, a delay in INF-g
response, a prolonged hyperinflammatory state, and lower CD4+
and CD8+ numbers (31, 63). Furthermore, damaged glycocalyx
and increased vascular permeability may promote extravascular
or interstitial exudates in sepsis in COVID-19 (47, 48). Increased
vascular lesions in diabetic individuals lead to greater risk of
endothelitis in several organs, organ ischemia, tissue edema, and
multi-organ dysfunction (32, 57) (Figure 1).

So, we hypothesize that the pre-existing hyperactivation of
NLRP3 inflammasome, hypercytok inemia , chronic
inflammation and increased vascular permeability in
uncontrolled diabetes could be major contributing factors for
the development of severe COVID-19 complications. Such
patients could be good candidates for therapeutic intervention
with colchicine, anti-IL1a, anti-IL1b, or anti-IL6 biological
agents early in the course of COVID-19 infection to prevent
cytokine storm, lung, and cardiovascular complications. Of
course this remains to be investigated through randomized
controlled studies.
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