
ARTICLE Open Access

Genome-wide DNA methylation analysis in
Chinese Chenghua and Yorkshire pigs
Kai Wang1†, Pingxian Wu1†, Shujie Wang1, Xiang Ji1, Dong Chen1, Anan Jiang1, Weihang Xiao1, Yiren Gu2,
Yanzhi Jiang3, Yangshuang Zeng4, Xu Xu4, Xuewei Li1 and Guoqing Tang1*

Abstract

Background: The Chinese Chenghua pig (CHP) is a typical Chinese domestic fatty pig breed with superior meat
quality characteristics, while the Yorkshire pig (YP) has the characteristics of fast growth and a high rate of lean
meat. Long term natural selection and artificial selection resulted in great phenotypic differences between the two
breeds, including growth, development, production performance, meat quality, and coat color. However, genome-
wide DNA methylation differences between CHP and YP remain unclear.

Results: DNA methylation data were generated for muscle tissues of CHP and YP using reduced representation
bisulfite sequencing (RRBS). In this study, a total of 2,416,211 CpG sites were identified. Besides, the genome-wide
DNA methylation analysis revealed 722 differentially methylated regions (DMRs) and 466 differentially methylated
genes (DMGs) in pairwise CHP vs. YP comparison. Six key genomic regions (Sus scrofa chromosome (SSC)1:253.47–
274.23 Mb, SSC6:148.71–169.49 Mb, SSC7:0.25–9.86 Mb, SSC12:43.06–61.49 Mb, SSC14:126.43–140.95 Mb, and SSC18:
49.17–54.54 Mb) containing multiple DMRs were identified, and differences of methylation patterns in these regions
may be related to phenotypic differences between CHP and YP. Based on the functional analysis of DMGs, 8 DMGs
(ADCY1, AGBL4, EXOC2, FUBP3, PAPPA2, PIK3R1, MGMT and MYH8) were considered as important candidate genes
associated with muscle development and meat quality traits in pigs.

Conclusions: This study explored the difference in meat quality between CHP and YP from the epigenetic point of
view, which has important reference significance for the local pork industry and pork food processing.
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Background
Epigenetic modifications of the genome can have both
short-term and long-term effects on gene expression in
different environments [1]. In turn, changes in these ex-
pression profiles have implications for multiple traits.
DNA methylation was the first discovered epigenetic
modification and one of the most thoroughly studied
[2]. DNA methylation predominantly occurs at the C-5
position of cytosine in cytosine and guanine dinucleotide

(CpG) dinucleotides in mammals [3]. Moreover, DNA
methylation is critical for mammalian growth and devel-
opment [4]. DNA methylation is traditionally regarded
as a heritable and stable silence marker, which is essen-
tial for X-inactivation [5], silencing of genomic elements
such as transposons [6], and genetic imprinting [7]. In
addition, variation in DNA methylation involves in a
wide range of cellular functions and pathologies [1], and
DNA methylation also affects muscle growth and devel-
opment [3]. Recently, the role of DNA methylation dy-
namics on skeletal muscle development and disease has
been reported [8].
As the main meat source and human medical research

model [9], the pig has important research value. Long-
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term domestication and modern breeding have resulted
in both genetic variation and epigenetic modification in
different breeds in pigs. Yorkshire pig (YP) is an import-
ant commercial pig breed with a high growth rate and
lean meat [10]. Chenghua pig (CHP) is a Chinese local
breed which is famous for superior meat quality [11]. By
contrast, there are significant differences in body com-
position, muscle, and fat content between Chinese local
pigs and commercial pigs [12], especially between CHP
and YP [13]. Epigenetic variations, and in particular
DNA methylation, might not only influence differences
between individuals but also between populations [14].
Hence, DNA methylation might contribute to phenotype
variation between pig breeds.
Recently, some studies have explored methylation pat-

terns in different pig breeds and tissues. Choi and col-
leagues reported the DNA methylome profiles of five
different tissues [15]. Zhang and colleagues revealed the
epigenetic mechanism of hypoxic adaptation in Tibetan
and Yorkshire pigs [16]. Wang and Kadarmideen pro-
vided an epigenome-wide DNA methylation map of
testis by a genome-wide DNA methylation analysis [17].
However, few studies have investigated the different epi-
genetic patterns between CHP and YP.
The main objective of this study was to explore the

DNA methylation differences between CHP and YP by
genome-wide DNA methylation analysis and then iden-
tify key genes and candidate epigenetic biomarkers asso-
ciated with these differences of meat quality traits. We
identified the differentially methylation regions (DMRs)
and differentially methylation genes (DMGs) of CHP
and YP to determine some of the important genomic re-
gions and key genes associated with these phenotypic
differences and providing new insights into the epigen-
etic mechanisms underlying the differences between the
two pig breeds.

Results
Meat quality traits
Meat quality traits, including pH45min, pH24h, lightness
(L*), redness (a*), and yellowness (b*), were assessed at
45 min and 24 h postmortem. Table 1 summarized the
meat quality traits of the two breeds. Between the CHP
and YP, the pH45min (P = 7.78e-10), pH24h (P = 1.24e-4),
L*45min (P = 1.95e-4), a*45min (P = 1.06e-6), and b*45min

(P = 1.33e-3) of CHP were higher than those of YP.

Summary of RRBS data
Approximately 690.32Gb raw data was generated by
RRBS from 48 muscle tissue samples of CHP and YP
(approximately 14.38Gb raw data per individual). After
quality control, approximately 523.72Gb clean data was
obtained (approximately 10.91Gb clean data per individ-
ual). Besides, approximately 65% of the reads were

mapped to the porcine reference genome (Table 2).
Moreover, in all individuals, the density of normalized
reads mapped to the proximal and distal regions of the
chromosomes was higher than that of reads mapped to
other regions. Overall methylated cytosines in the CpG/
CHG/CHH (whereby H can be either A, T, or C) con-
text were 51.39%/0.96%/0.7% in CHP and 52.68%/1.04%/
0.78% in YP, respectively. Besides, C methylated in an
unknown context like CN or CHN (whereby N can be
either A, T, G, or C) was observed to be 5.8% in CHP
and 5.77 in YP. Figure 1 shows CpG- and non-CpG-
methylation sites (CHG, CHH, CN, or CHN) in muscle
tissue of CHP and YP.

DMRs in the two groups
Table 3 summarized the numbers of CpG sites and
DMRs identified by CHP vs. YP comparison. A total of
2,416,211 CpG sites and 722 DMRs were identified by
CHP vs. YP comparison (Fig. 2). Of these 2,416,211 CpG
sites, the distribution of 2,416,211 CpG sites annotation
within promoter, exon, intron, and intergenic regions
was 28.31, 15.08, 36.01, and 20.60%, respectively. Add-
itionally, percentages of 2,416,211 sites annotated within
CpG islands, CpG island shores, and other regions were
48.93, 18.96, and 32.11%. However, of these 722 DMRs
in CHP vs. YP group, 3.32% were overlapped with pro-
moter regions, 12.33% with exons, 50.69% with introns,
and 33.66% with intergenic regions (Table 3). Most
DMRs were in introns regions, followed by intergenic,
exons, and promoters. Furthermore, 12.19% DMRs in
CHP vs. YP group were CpG island regions, 16.48% in
the CpG shore region, and 71.33% in other regions. Of
these DMRs, much fewer (32.55% in CHP vs. YP com-
parison) were hypermethylated in CHP (Table S1). Six
key genomic regions were identified by the CHP vs. YP
comparison (Table 4). These genomic regions contained
multiple DMRs shared by the CHP vs. YP comparison
and DMGs. The region on SSC1 (253.47–274.23Mb)
contained 34 DMRs and 18 DMGs. The region on SSC6

Table 1 Summary of meat quality traits of the two breeds

Meat quality traitsa CHP (n = 20) YP (n = 28) P

pH45min 6.66 ± 0.12 6.22 ± 0.18 7.78e-10

pH24h 5.93 ± 0.51 5.57 ± 0.16 1.24e-4

L*45min 47.41 ± 2.58 42.58 ± 6.11 1.95e-4

a*45min 8.00 ± 1.79 5.22 ± 1.65 1.06e-6

b*45min 6.95 ± 0.75 5.25 ± 2.85 1.33e-3

L*24h 48.35 ± 3.77 50.94 ± 4.41 3.85e-2

a*24h 10.30 ± 2.78 9.11 ± 2.11 9.37e-2

b*24h 7.64 ± 1.16 7.12 ± 1.11 0.18
aMeat quality traits: measurements of meat quality traits, including muscle pH
values, lightness (L*), redness (a*), and yellowness (b*) at 45 min and 24 h. CHP
Chenghua pigs, YP Yorkshire pigs
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(148.71–169.49Mb) contained 18 DMRs and 8 DMGs.
The region on SSC7 (0.25–9.86Mb) contained 26 DMRs
and 6 DMGs. The region on SSC12 (43.06–61.49Mb)
contained 18 DMRs and 11 DMGs. The region on
SSC14 (126.43–140.95Mb) contained 17 DMRs and 9
DMGs. The region on SSC18 (49.17–54.54Mb) con-
tained 11 DMRs and 6 DMGs.

DMGs identified according to DMRs and functional
annotation of DMGs
We annotated 466 DMGs from DMRs identified by
comparing CHP vs. YP. Besides, 149 DMGs exhibited
higher levels of DNA methylation in CHP than in YP
(Table S2), while 317 DMGs exhibited lower levels of
DNA methylation in CHP than in YP (Table S3).
The main GO terms enriched in 466 DMGs that were

identified by CHP vs. YP comparison (Fig. 3 and Table
S4) and that might be related to nucleolus (P = 9.18e-3),
transcription from RNA polymerase I promoter (P =
9.94e-3), DNA-directed RNA polymerase I complex (P =
1.15e-2), and membrane (P = 1.64e-2), while the KEGG
pathways included Type II diabetes mellitus (P = 3.62e-
3), cAMP signaling pathway (P = 4.05e-3), and Purine
metabolism (P = 8.71e-3). According to the functions of
DMGs, we identified 8 DMGs (ADCY1, AGBL4, EXOC2,
FUBP3, PAPPA2, PIK3R1, MGMT, and MYH8) which
were possibly related to the difference in appearance,
meat quality, disease resistance, reproductive capacity,
and adaptability between CHP and YP (Table 5).

Discussion
In this study, we found that there were differences in
DNA methylation between CHP and YP. The methyla-
tion patterns of CHP may help to explain the epigenetic
regulation mechanisms of traits.
Bisulfite sequencing is an ideal and practical technique

for studying epigenetic modifications of different species
and tissues [18], especially DNA methylation, which can
detect the DNA methylation level at each base position
of the whole genome. However, genome-wide DNA
methylation sequencing with high coverage of the whole
genome is required to accurately assess the methylation
levels at each base position. Thus, RRBS was used in this
study because of its high coverage, small data require-
ment, low cost, and simple operation. Compared to
other studies in pigs [16, 17, 19], this study used a larger
population size. Therefore, RRBS is suitable for detecting
DNA methylation differences among breeds in this
study.
We observed several interesting GO terms and KEGG

pathways associated with muscle metabolism and devel-
opment. The KEGG pathways of Type II diabetes melli-
tus (enriched with MAPK10, PRKCE, GCK, MTOR,
PIK3R1), cAMP signaling pathway (enriched with
ADCY1, ACOX3, ADCY5, ARAP3, PIK3R1, MAPK10,
GRIN2B, VIPR2, and VAV2), the GO terms of skeletal
muscle acetylcholine-gated channel clustering (enriched
with COLQ and DNAJA3) and the cAMP-mediated sig-
naling (enriched with ADCY1, ADCY5, and KSR1) were

Table 2 Mapping results of reduced representation bisulfite sequencing (RRBS) data in the two breeds

Breeds Mean raw data (Gb) Mean clean data (Gb) Mean BS Conversion Rate (%) Mean mapping rate (%)

CHP 14.16 10.59 99.55 63.60

YP 14.54 11.14 99.40 65.61

CHP Chenghua pigs, YP Yorkshire pigs

Fig. 1 Comparison of the methylation level of CpG and non-CpG sites between CHP and YP. Non-CpG methylation was divided into CHG, CHH,
CN, or CHN
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Table 3 Annotation of CpG sites and differential methylated regions (DMRs) in the pairwise comparison

Genetic
features

Number Annotated with genea Annotated within CpGb

Promoter Exon Intron Intergenic CpG island CpG shore Other regions

CpG sites 2,416,211 28.31% 15.08% 36.01% 20.60% 48.93% 18.96% 32.11

DMRs 722 3.32% 12.33% 50.69% 33.66% 12.19% 16.48% 71.33%
aAnnotated with gene, the percentage of CpG sites or differential methylated regions that overlap with gene promoter, exon, intron, or intergenic; bAnnotated
within CpG, the percentage of CpG sites or differential methylated regions that overlap with CpG island, CpG shore or other regions

Fig. 2 The distribution of differentially methylated regions (DMRs) throughout the whole genome in CHP vs. YP. The purple circle represents the
hypomethylated DMRs. The orange triangle represents the hypermethylated DMRs. The color on a chromosome represents the gene density
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identified in CHP vs. YP. As a major metabolic tissue,
metabolic-related pathways and GO terms, including
Type II diabetes mellitus, cAMP signaling pathway, skel-
etal muscle acetylcholine-gated channel clustering, and
cAMP-mediated signaling was enriched in this study.
The results indicated that DMGs associated with these
metabolic processes show significant differences between
CHP and YP. The pork pH has an important relation-
ship with muscle metabolism. In this study, the pH45min

(P = 7.78e-10) and pH24h (P = 1.24e-4) of CHP were
higher than those of YP. Therefore, DMGs involved in

muscle metabolism were identified in CHP and YP,
which suggested that the difference of pH between the
two breeds may be influenced by these pathways and re-
lated genes.
cAMP signaling pathway is a crucial pathway which

regulates pivotal physiologic processes including metab-
olism, secretion, calcium homeostasis, muscle contrac-
tion, cell fate, and gene transcription. In this study, 9
DMGs are enriched in the cAMP signaling pathway.
Two of these DMGs, including ADCY1 and PIK3R1, are
related to melanoma metastasis. Previous studies have

Table 4 Six key genomic regions identified by the pairwise comparison

Genomic regions Number of
DMRs

Related DMGsa

SSC1:253.47–
274.23 Mb

34 SNX30, RGS3, ANAK, CDK5RAP2, ADGRD2, RABEPK, FAM102A, DNM1, GPR107, HMCN2, FUBP3, ABL1, FAM163B,
NUP214, MED27, AK8, VAV2, OLFM1

SSC6:148.71–
169.49 Mb

18 ROR1, NFIA, DAB1, CDCP2, AGBL4, RAD54L, PRFX1, ERI3

SSC7:0.25–9.86 Mb 26 EXOC2, GMDS, PSMG4, RPRF4B, CDYL, PHACTR1

SSC12:43.06–61.49
Mb

18 UTP6, KSR1, SLC13A2, ABR, NXN, WSCD1, ALOX15, CLDN7, MYH8, SLC47A1, RAI1

SSC14:126.43–
140.95 Mb

17 GFRA1, PLPP4, BUB3, DHX32, ADAM12, PTPRE, MGMT, TCERG1L, CFAP46

SSC18:49.17–54.54
Mb

11 TNS3, CCDC201, ADCY1, NPC1L1, GCK, CAMK2B

aRelated DMGs: Based on the Ensemble database (http://asia.ensembl.org/Sus_scrofa/Info/Index). DMRs differentially methylated regions, DMGs differentially
methylated genes, SSC Sus scrofa chromosome

Fig. 3 The bubble diagram of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway terms in CHP vs. YP group.
The X-axis represents the P value of genes enriched in the corresponding GO and KEGG pathway terms. The Y-axis represents the GO and KEGG
pathway terms to which the genes enriched. The shape of bubble represents the classification of GO and KEGG pathway terms. The color of
bubble represents the log transformation of P value
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shown that knockdown of ADCY1 gene leads to de-
creased intracellular cAMP and subsequently inhibits
PKA activity, and phospho- cAMP-responsive element
binding protein (CREB) and microphthalmia-associated
transcription factor (MITF) levels were significantly
downregulated after inactivation of PKA [20]. Further-
more, CREB and MITF have been implicated in melan-
oma tumor growth and metastasis [21–23]. Besides, the
ADCY1 gene was identified as a key candidate gene in-
volved in melanoma metastasis [24]. There is an import-
ant link between pigmentation and melanoma. This
result suggests that ADCY1 gene may affect pigmenta-
tion through cAMP. The PI3K protein, encoded by
PIK3R1 gene, is a key protein involved in the PI3K/AKT
signaling pathway, which is essential for myogenic differ-
entiation [25] and regulates cell survival, growth, differ-
entiation, glucose transport, and utilization [26].
Therefore, the high levels of methylation of ADCY1 and
PIK3R1 in CHP may trigger changes in their expression,
potentially leading to different meat color traits between
CHP and YP.
Notably, some other key DMGs, including AGBL4,

EXOC2, FUBP3, PAPPA2, MGMT, and MYH8 were
found in this study. The AGBL4 gene was regarded as a
candidate gene associated with the heterotic quantitative
trait in beef cattle [27]. A genome-wide association study
(GWAS) suggested that one SNP (rs12210050) in
EXOC2 was related to the tanning ability of Europeans
[28]. A previous study demonstrated that the FUBP3
gene was associated with the skeletal formation in Duroc
population [29]. Furthermore, the FUBP3 gene was iden-
tified as a candidate gene associated with the loin eye
area in pigs [30]. The PAPPA2 gene encodes pregnancy-
associated plasma protein A2 (PAPPA2) which plays an
important role in the regulation of IGF-I bioavailability
[31]. It is a metalloproteinase that can specifically clew
IGFBP-3 and IGFBP-5, thereby releasing IGF-I from its
ternary complex, enabling it to bind to IGF-I receptors
on the cell surface, initiating growth-promoting activity
[32]. Besides, in genome-wide association analysis, PAPP

A2 and its related gene, PAPPA, were identified as com-
mon genetic variants associated with adult stature in the
general population [33]. The MGMT gene is a DNA re-
pair gene responsible for removing alkylation adducts
from the O6-position of guanine in DNA. The promoter
CpG island hypermethylation associated gene silencing
of MGMT is involved in a wide spectrum of human can-
cers, including glioblastoma [34], gastric [35], colon [36],
and ovarian [37]. The MYH8 gene belonged to the my-
osin heavy chain gene family that share the common fea-
tures of ATP hydrolysis, actin binding, and potential for
kinetic energy transduction [38]. Moreover, the MYH8
myosin is re-expressed during muscle regeneration and
is deemed as a specific marker of regenerating fibers in
the pathologic skeletal muscle [39, 40].

Conclusion
This study performed epigenome-wide DNA methyla-
tion analysis using RRBS data generated for muscle tis-
sues of 48 pigs. CHP vs. YP revealed 722 DMRs and 466
DMGs based on these DMRs. Besides, 6 key genomic re-
gions and 8 key DMGs, which might be related to
phenotypic differences between CHP and YP, were iden-
tified according to the further functional analysis. Our
finding may help to further understand the epigenetic
mechanisms of phenotype traits and have reference sig-
nificance for the local pork industry.

Methods
Animals and measurements of meat quality
Totals of 48 healthy pigs were used in this study from
two pig breeds, including CHP (n = 20) and YP (n = 28).
These pigs were maintained in a similar environment to
avoid the effects of other confounders. There are 10
males and 10 females in the Chenghua pigs, and there
are 20 males and 8 females in the Yorkshire pigs. Each
population contains a certain number of males and fe-
males. In addition, a large sample size was used to re-
duce the influence of confounders. Animals were
slaughtered at a commercial slaughterhouse when they

Table 5 The summary of 8 key DMGs identified by the pairwise comparison

DMGs SSC Starta Enda DMR Function

ADCY1 18 50,046,575 50,143,771 SSC18:50056501–50,057,000 Related to pigmentation

AGBL4 6 161,952,983 163,216,257 SSC6:163155001–163,155,500 Associated with skeletal formation

EXOC2 7 195,081 341,454 SSC7:251501–252,000 Related to the tanning ability

FUBP3 1 270,652,398 270,705,033 SSC1:270700001–270,700,500 Associated with loin eye area

PAPPA2 9 118,364,592 118,635,969 SSC9:118601501–118,602,000 Plays an important role in regulation of IGF-I bioavailability

PIK3R1 16 46,434,873 46,523,609 SSC16:46495001–46,495,500 Be essential for myogenic differentiation

MGMT 14 138,499,161 138,779,938 SSC14:138646501–138,647,000 Involved in a wide spectrum of human cancers

MYH8 12 55,134,844 55,167,749 SSC12:55148501–55,149,000 Belonged to the myosin heavy chain gene family
aBased on the Ensemble database (http://asia.ensembl.org/Sus_scrofa/Info/Index). DMRs differentially methylated regions, DMGs differentially methylated genes,
SSC Sus scrofa chromosome
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reached the slaughter weight of 105 kg. Subsequently,
muscle pH values were measured at 45 min and 24 h
postmortem using a portable pH meter (model 720A;
Orion Research Inc., Boston, MA, USA). Meat color, in-
cluding lightness (L*), redness (a*), and yellowness (b*)
were assessed at 45 min and 24 h postmortem on the
longissimus dorsi muscle using a Minolta CR-300 color-
imeter (Minolta Camera, Osaka, Japan). After slaughter,
tissue samples from muscle were collected from each
breed for DNA isolation. Tissue samples were frozen in
liquid nitrogen and stored at − 20 °C until analysis. All
experimental procedures and sample collection were ap-
proved by the Institutional Animal Care and Use Com-
mittee of the College of Animal Science and Technology
of Sichuan Agricultural University, Sichuan, China,
under permit No. DKY-B20121403.

Library construction
Briefly, genomic DNA was isolated from flash frozen
muscular tissue. Then, the construction of RRBS librar-
ies and paired-end sequencing using Illumina HisSeq
analyzer was performed at Novogene technology co.,
LTD (Beijing, China). Raw sequencing data were proc-
essed by an Illumina base-calling pipeline. Genomic
DNA was digested with MspI enzyme at 37 °C for 16 h.
The DNA fragments after enzyme digestion were
repaired at the end, and the sequencing adapters with all
cytosine methylated were attached. The inserted DNA
fragments with the length ranging from 40 to 220 bp
were selected for glue cutting. Then, Bisulfite conversion
was carried out. After that, the unmethylated C was
changed to U (after PCR amplification to T), while the
methylated C remained unchanged. Finally, PCR amplifi-
cation was carried out to obtain the final DNA library.
Clean reads were obtained from the raw data after re-
moving reads containing adaptor sequences, unknown,
or low-quality bases. The process of quality control was
carried out using Trimmomatic software [41]. Quality
control was adopted to access the high data quality by
(1) removing low-quality reads using a sliding window
method (SLIDINGWINDOW: 4:15); (2) removing reads
including adaptor sequences (ILLUMINACLIP: adap-
ter.fa: 2:30:7:1: true); (3) removing reads with tail quality
lower than 3 or with unknown bases (TRAILING: 3).

Data analysis
Clean reads were aligned to the pig reference genome
(Sscrofa11.1) using Bismark v0.22.1 [42]. This progress
includes three steps: genome preparation, alignment
using Bowtie 2 v2.3.5.1 [43], and methylation extractor.
Bismark methylation extractor outputs read coverage
and methylation percentage of detected methylated or
unmethylated reads at one genomic position. The R
package methyKit v1.14.2 [44] was used to identify

DMRs (window size = 500 bp, qvalue< 0.01, methylation
difference > =0.25) based on the Bismark coverage file.
The R package Rldeogram v0.2.2 [45] was used to
visualize the distribution of DMR. The DMGs within
DMRs were annotated using the Ensemble database.
The R package genomation v1.20 [46] was used to per-
form annotation of DMRs. The porcine RefSeq and CpG
island database (Sscrofa11.1/susScr11) for annotations
were derived from the UCSC website (http://genome.
ucsc.edu/cgi-bin/hgTables).

Enrichment analysis
Significant GO terms and KEGG pathways were selected
after filtering with P < 0.01. R package ggplot2 v3.3.2 was
used to visualize the significant GO terms and KEGG
pathways for the DMGs associated with DMRs.
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