
Genomics Proteomics Bioinformatics 20 (2022) 101–109
Genomics Proteomics Bioinformatics

www.elsevier.com/locate/gpb
www.sciencedirect.com
ORIGINAL RESEARCH
Epithelial Cells in 2D and 3D Cultures Exhibit

Large Differences in Higher-order Genomic

Interactions
* Corresponding authors.

E-mail: dczaj@sjtu.edu.cn (Czajkowsky DM), zfshao@sjtu.edu.cn (Shao Z).
# Equal contribution.

Peer review under responsibility of Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformat

Genetics Society of China.

https://doi.org/10.1016/j.gpb.2020.06.017
1672-0229 � 2022 The Authors. Published by Elsevier B.V. and Science Press on behalf of Beijing Institute of Genomics, Chinese Academy of S
China National Center for Bioinformation and Genetics Society of China.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Xin Liu
1,#

, Qiu Sun
2,#

, Qi Wang
3,#

, Chuansheng Hu
1
, Xuecheng Chen

2
, Hua Li

1
,

Daniel M. Czajkowsky 1,*, Zhifeng Shao 1,*
1State Key Laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China

2Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
3Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, School of
Life Science and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai
200092, China
Received 22 August 2019; revised 9 March 2020; accepted 9 August 2020
Available online 23 February 2021

Handled by Giacomo Cavalli
KEYWORDS

3D culture;

In situ Hi-C;

Chromosome conformation;

Compartment;

TAD
Abstract Recent studies have characterized the genomic structures of many eukaryotic cells, often

focusing on their relation to gene expression. However, these studies have largely investigated cells

grown in 2D cultures, although the transcriptomes of 3D-cultured cells are generally closer to their

in vivo phenotypes. To examine the effects of spatial constraints on chromosome conformation, we

investigated the genomic architecture of mouse hepatocytes grown in 2D and 3D cultures using

in situ Hi-C. Our results reveal significant differences in higher-order genomic interactions, notably

in compartment identity and strength as well as in topologically associating domain (TAD)–TAD

interactions, but only minor differences are found at the TAD level. Our RNA-seq analysis reveals

up-regulated expression of genes involved in physiological hepatocyte functions in the 3D-cultured

cells. These genes are associated with a subset of structural changes, suggesting that differences in

genomic structure are critically important for transcriptional regulation. However, there are also

many structural differences that are not directly associated with changes in gene expression, whose

cause remains to be determined. Overall, our results indicate that growth in 3D significantly alters

higher-order genomic interactions, which may be consequential for a subset of genes that are impor-

tant for the physiological functioning of the cell.
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Introduction

The importance of genome structure on the functioning of the
genome has now been well established [1–5]. In recent years,

perhaps foremost among the methods used to this end are
those based on the chromosome conformation capture tech-
niques, most notably in situ Hi-C [6]. Such work has revealed

a hierarchy of structural features, from locally compact, so-
called topologically associating domains (TADs) to more dis-
tant TAD–TAD interactions, including broad multi-
megabase regions called compartments that are designated as

A or B, associated with transcriptionally active or inactive
chromatin [7,8]. Although the underlying mechanisms driving
the formation of both TADs and compartments are still

incompletely understood, their conservation among different
cell types and across species suggests that they constitute fun-
damental components of the eukaryotic genome architecture

[4,9,10].
One of the major focuses of previous work has been the

determination of the relationship between the genome struc-

ture and gene expression [11–14]. Indeed, there have been
well-described changes at both the TAD and compartment
levels that are significantly related to the transcriptional sta-
tuses of genes contained therein [15–17]. Still, there are

recent examples of clear differences in gene expression with
no detectable changes in the corresponding Hi-C data
[18,19], indicating that there can be more complex determi-

nants of the genome structure than just the transcriptional
status.

However, to date, almost all of these studies have focused

on the genome structures of cultured cells, either immunolog-
ical cells grown in suspension or, more commonly, adherent
cells grown in two-dimensional (2D) cultures [6,20–22]. Such
systems are unquestionably powerful to identify biologically

important proteins as well as the functions of these proteins
in regulating chromosome structure. However, there is still
the question of whether or not the overall structures of the gen-

omes in the adherent cells as determined by 2D cultures are
applicable to their in vivo counterparts. Cells within tissues
contact other cells and extracellular matrix components in

three dimensions (3D), which can affect gene expression and
chromatin conformation [23].

In this regard, there are now well-established methods for

culturing cells in 3D [24–26], and indeed the 3D-cultured cells
exhibit transcriptomes and cellular behaviors that are more
typical of cells within their physiological environment [27–
29]. The overall cell shape and the nuclear shape of cells grown

in 3D are also often significantly different from the same type
of cells grown in 2D [30,31]. Such differences in nuclear shape,
in particular, suggest that there are likewise differences in the

interactions between whole chromosomes, if not also in the
structural details at the sub-chromosomal level. However,
the nature of these differences and their relation to differences

in transcription have not been well examined. In fact, to our
knowledge, the only published Hi-C study which focused on
characterizing the differences in genome structure between
cells grown in 2D and 3D examined fibroblast cells [30], whose

nuclear shape only differs marginally when grown in 2D or 3D
(15% change in volume; see Figure S2 in [30]). This work
indeed identified differences in genome structure, although at
a relatively low resolution of 1 Mb, which is too low to resolve
the majority of TADs (median length 185 kb [6]). However, the

generality of these results, especially to cells of an epithelial
origin, and details of the changes in genomic structure more
locally have not yet been elucidated. Moreover, how these

changes in genome structure between cells cultured in 2D
and 3D relate to the changes in gene expression is also poorly
documented.

Here, we examined the genome structures of mouse hepato-
cytes cultured under 2D and 3D conditions and their relation
to gene expression using RNA sequencing (RNA-seq) and
in situ Hi-C (at a resolution of 40 kb). Overall, we find that

the 3D conformation of the genome is clearly different from
the 2D conformation but, unexpectedly, only in terms of
higher-order interactions, not at the local TAD-level.

Nonetheless, a subset of the structural changes in the 3D-
cultured cells is associated with the up-regulation of genes that
are involved in typical functions of hepatocytes. Thus, growth

dimension indeed influences not only cell behavior and tran-
scriptome but also the genome structure, which appears to
play a role in effectuating the physiological phenotype of the

cell.

Results

In situ Hi-C of hepatocytes cultured under 2D and 3D conditions

To investigate the effects of growth dimension on cell
growth, we performed in situ Hi-C on alpha mouse liver
12 (AML12) cells, a mouse hepatocyte cell line, grown in

either 2D or 3D conditions (Figure 1A). For the latter, cells
were grown in Matrigel-embedded 3D cultures, which con-
tain extracellular matrix components that are important
regulators of normal homeostasis and tissue phenotype

[32,33]. Since chromatin structures are known to change
significantly during the cell cycle [34], we arrested the cells
grown under both conditions at the G1/S boundary using

hydroxyurea, an inhibitor of DNA replication [35]. The
G1/S state of these cells was confirmed using flow cytome-
try (Figure S1A).

Consistent with previous reports, we found that the mor-
phological features of the cells were significantly different
when grown in 2D or 3D [36]. In particular, while the 2D-

cultured cells grew as a single layer, the 3D-cultured cells
grew as many individual 3D spheroids with extensive and
multiple contacts between the cells (Figure S1B and C).
Moreover, the overall cell shape and the nuclear shape of

the 2D-cultured cells were significantly different from those
of the 3D-cultured cells (Figure 1B and C, Figure S1D and
E). Quantitatively, we found that the mean volume of the

nuclei of the 2D-cultured cells was nearly twice that of the
3D-cultured cells (875 ± 71 lm3 and 362 ± 35 lm3, respec-
tively). Such a difference was much more significant than that

previously observed in fibroblast cells [30]. Owing to the
influence of volume on the T4 DNA ligase efficiency, we
adjusted the experimental conditions to optimize the ligation
efficiency for Hi-C under our conditions (Figure S1F; see

Materials and methods for details).



Figure 1 Overview of the experiment

A. Workflow of the experiment. B. and C. Confocal microscopy images of the 2D-cultured (B) and 3D-cultured (C) mouse AML12

hepatocytes stained with DAPI (blue) and fluorescent antibodies for lamina B (red). PFA, paraformaldehyde.

Figure 2 Hi-C measurements of the 2D- and 3D-cultured AML12

cells

A. Heatmaps with increasing resolution as indicated. B. Compar-

ison of the contact reads per 40 kb bin. SCC, stratum-adjusted

correlation coefficient.

Liu X et al / Genomic Interactions of Cells in 2D and 3D Cultures 103
Overview of the chromatin organization of hepatocytes cultured

in 2D and 3D

After sequencing the Hi-C libraries, we generated 214 million

and 156 million raw reads, yielding 71 million and 68 million
valid paired-end reads after all filtration steps, of the 2D-
and 3D-cultured cells, respectively, following a previously

described protocol [37]. To evaluate the reliability of our data,
we examined a biological replicate for each culture condition,
and generated 195 million and 143 million raw reads which

finally yielded 80 million and 61 million valid paired-end reads
of the 2D- and 3D-cultured cells, respectively (Table S1). Both
cultured cells were highly correlated with their corresponding
biological replicate with the stratum-adjusted correlation coef-

ficient (SCC) of 0.98 for 2D and 0.97 for 3D, determined using
HiCRep [38] (Figure S2A–C; Table S1). Furthermore, a prin-
cipal component analysis (PCA) of the individual biological

replicates also confirmed their high degree of similarity (Fig-
ure S2D). Consequently, we combined both of these datasets
for our subsequent analyses, obtaining 151 million and 129

million paired-end reads for the 2D- and 3D-cultured cells,
respectively, with an estimated highest map resolution of
40 kb for both [6].

Inspection of the Hi-C heatmaps of these cells revealed
clear differences in genomic structure at a longer-length scale
(Figure 2A, Figure S2E and F). However, at the highest reso-
lution of 40 kb, the heatmaps in close proximity to the diago-

nal (reflecting local interactions such as TADs), were virtually
indistinguishable (Figure 2A). Consistent with this observa-
tion, the Hi-C datasets at this resolution were highly correlated

(Figure 2B; SCC = 0.92).

Comparative examination of the genome structures at the TAD

level

We annotated both datasets using the Armatus software [39],
and identified a similar number of TADs in both cases (4467

and 4355 TADs in the 2D- and 3D-cultured cells, respectively).
The size range and the median size of the identified TADs were
also highly consistent under both conditions (median length:
240 kb for the 2D-cultured cells and 280 kb for the
3D-cultured cells; Figure 3A; Table S2). These values are also

roughly similar to those of earlier studies of other 2D-cultured
cells [6,8,40]. Strikingly, the vast majority (>90%) of the TAD
borders of these cells overlapped within the limits of our reso-

lution (Figure 3B). Thus, at the TAD level, the genome struc-
tures of these hepatocytes are not significantly influenced by
the cell culture growth dimension.

Characterization of the genome structures at the compartment

level

Since higher-order interactions are also an important aspect of
chromosome conformation with functional consequences
[41,42], we further characterized the composition of the A/B
compartments of the genomes under 2D and 3D conditions



Figure 3 Characterization of the TAD-level features of the 2D-

and 3D-cultured cells

A. Size distribution of the TADs annotated from the 40 kb

resolution maps. B. Venn diagram of the TAD borders of the 2D-

and 3D-cultured cells. TAD, topologically associating domain.
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(Figure 4A; Table S3). As shown in Figure 4B, significant dif-

ferences are apparent at this level, most notably in the com-
partment type and the magnitude of intra-compartment
contact frequency.

In particular, we found that 1490 compartments (� 6% of
all compartments; determined at a 100 kb resolution) are of a
Figure 4 Comparison of the compartment differences between the 2D

A. A typical example of a heatmap at the 100 kb resolution, together with

of the differences in contacts within the compartments. Red and blue rep

respectively, compared to the 2D-cultured cells. C. Pie chart showing the p

cultured cells. The compartments that have changed types are described ac

to that in the 3D-cultured cells (B or A). D. Box plot showing the changes

Box plot showing the expression changes for genes that are in a B compa

cultured cells. *, P<0.05; ***, P<0.001 (Wilcoxon rank sum test). PC
different type between the 2D- and 3D-cultured cells
(Figure 4C). Since this difference is markedly higher than those
between biological replicates (P = 1.25 � 10�198, Chi-squared

test) (Figure S3A and B), the different organization between
two conditions is not only significant but also likely conse-
quential. Interestingly, most of these differences (� 72%)

reflect regions that are A compartments in the 2D-cultured
cells but are B compartments in the 3D-cultured cells.

As for the differences in the magnitude of intra-

compartment contact frequency, we found a difference
between the A and B compartments. Of all the possible combi-
nations (A-A, A-B/B-A, and B-B) in the 2D/3D-cultured cells,
only the B compartments that are in common between 2D- and

3D-cultured cells (B-B) differed in interaction strength, with
those of the 3D-cultured cells exhibiting a greater level of
intra-compartment contacts than those of the 2D-cultured cells

(Figure 4D; Figure S3C). Consistent with this result, there was
also a significantly enriched level of inter-TAD contacts,
specifically within the B compartments (Figure S4A and B).

These results were also observed when we first normalized
the 2D and 3D data jointly (Figure S5), indicating that these
results were not caused by technical, condition-specific biases

in these samples [43]. Thus, while these genomes were essen-
tially identical at a local TAD level, there were considerable
- and 3D-cultured cells

the calculated PC1 values used to identify compartments. B. Example

resent higher and lower contact frequencies in the 3D-cultured cells,

ercentages of compartments of a different type between 2D- and 3D-

cording to their designation in the 2D-cultured cells (A or B) changing

in intra-compartment contacts between 2D- and 3D-cultured cells. E.

rtment in the 2D-cultured cells but in an A compartment in the 3D-

1, first principal component; TPM, transcripts per million.
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differences at the higher-order scale, especially within the B
compartments that were in common between 2D- and
3D-cultured cells.

Comparison between transcriptional and genomic structural

changes

Based on the commonly observed relationship between tran-
scription levels and genomic structures, particularly at the
TAD level, and the high similarity of genomic structures at

the TAD level described above, we expected that there might
be only a few expression differences between the 2D- and
3D-cultured cells. To verify this hypothesis, we performed an

RNA-seq analysis of the cells grown in 2D and 3D in parallel.
Contrary to our expectation, more than a thousand genes
exhibited significantly different expression in the 3D-cultured
cells, including 674 up-regulated genes and 592 down-

regulated genes, when compared to the 2D-cultured cells
(P < 0.05, |log2 fold change| > 2). Interestingly, Gene Ontol-
ogy (GO) analysis showed that the genes that were up-

regulated in the 3D-cultured cells were enriched in the terms
related to the physiological functions of the hepatocytes (par-
ticularly metabolic functions) (Figure S6A; Table S4), in agree-

ment with common expectations [44–46]. Notably, these genes
were not preferentially up-regulated in the 3D-cultured fibrob-
last cells compared with those cultured in 2D [30].

To examine the possible relationship between gene expres-

sion levels and genomic structures at the TAD level, we inves-
tigated the expression differences of the genes in the TADs
which were shared by the 2D- and 3D-cultured cells but had

different contact frequencies. However, we found no signifi-
cant difference in the expression of the genes in these TADs
in the 2D- and 3D-cultured cells (Figure S7A and B).

A similar analysis at the compartment level, however,
showed significant differential gene expression within the com-
partments which were B-type in the 2D-cultured cells but A-

type in the 3D-cultured cells (2D-B/3D-A; P < 0.05, Wilcoxon
rank sum test; Figure 4E). Notably, there was an enrichment
of genes that were up-regulated in the 2D-B/3D-A compart-
ments of the 3D-cultured cells, and these genes were associated

with the physiological functions of hepatocytes (Figure S6B
and C; Table S5). However, examination for the correlation
between transcriptional changes and other compartment-level

features (i.e., A common, B common, and 2D-A/3D-B) did
not identify any enrichment of genes with differential expres-
sion (Figure S8A–C). Nonetheless, the up-regulation of the

genes associated with the physiological functions of hepato-
cytes in the 3D-cultured cells appeared to be related to the
changes in the compartment-level genomic structures of these
cells (Figure S9).

Discussion

In this study, we investigated the genomic structure and the
transcriptome of hepatocytes cultured under 2D and 3D con-
ditions, and examined whether these structural differences cor-

relate with changes in gene expression. This first comparison of
the genomic structures of cells grown under these different
conditions at the sub-TAD resolution reveals several features
of chromosome architecture, particularly with regard to its

relationship with gene expression.
First, we find that, at the local TAD level, the architecture
of the genomes of the 2D- and 3D-cultured cells is highly sim-
ilar despite the differences in their transcriptomes. Although

the underlying mechanisms driving the formation of TADs
are still being uncovered, our observations clearly indicate that
they are not exquisitely sensitive to the growth dimension of

the cells or to the profound differences in nuclear shape or vol-
ume we observed. Furthermore, the absence of any significant
correlation between TAD-level structures and the differences

in gene expression between 2D- and 3D-cultured cells also
indicates that these mechanisms are not highly dependent on,
or related to, the transcriptional statuses of genes contained
therein. Recent studies have also described a lack of close cor-

relation between changed transcriptomes and differences in
Hi-C data at the TAD level [19,47,48]. Whether this reflects
a change in histone modifications within an essentially similar

genomic structure [20,49–51] or other mechanisms requires
further investigation.

Second, we observe significant differences between 2D- and

3D-cultured cells in higher-order interactions, from TAD–
TAD interactions to entire compartments. Some of these dif-
ferences are associated with differential gene expression

between two culture conditions. Furthermore, the correlation
between the up-regulation of genes involved in physiological
hepatocyte functions in the 3D-cultured cells and the change
of genome structure from a B (inactive) compartment in the

2D-cultured cells to an A (active) compartment in the 3D-
cultured cells, strongly suggests that some of these structural
changes are required to effectuate the more physiological phe-

notype of the 3D-cultured cells. However, the identification of
many structural changes that are not correlated with the chan-
ged gene expression suggests that these structural changes

could play roles other than gene regulation, an observation
that is becoming better appreciated [18,19,52].

In conclusion, our work demonstrates the importance of

characterizing the genome structure of cells grown under con-
ditions that yield a more physiological phenotype. The genome
structure is fundamentally different in cells grown under 2D
and 3D conditions, and this difference appears to be conse-

quential to the physiological functioning of the cells. While
the ideal sample to investigate are cells within their native tis-
sue, our work shows that culturing cells in 3D provides a read-

ily attainable and highly effective system for this purpose.

Materials and methods

Cell culture, synchronization, and crosslinking

AML12 cells (Stem Cell Bank, Chinese Academy of Sciences,
Shanghai, China) were cultured in a mix of Dulbecco’s modi-
fied Eagle’s medium and Ham’s F12 medium (1:1) containing

10% fetal calf serum and supplied with 1� ITS liquid media
supplement [10 lg/ml recombinant human insulin, 5.5 lg/ml
human transferrin (substantially iron-free), 5 ng/ml sodium

selenite (Catalog No. I3146, Sigma-Aldrich, St. Louis, MO),
40 ng/ml dexamethasone (Catalog No. D4902, Sigma-
Aldrich), 100 U/ml penicillin–streptomycin (Catalog No.
11548876, Gibco, Carlsbad, CA)] at 37 �C for 48 h. Then,

the cells were dissociated with 0.25% trypsin to suspend them
for re-plating. For the 2D cultures, cells were re-plated in
10-cm dishes. For the 3D cultures, cells were grown in
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Matrigel-embedded 3D cultures in 10-cm dishes. When the
cells in the 2D cultures were 50% confluent and the cells in
the 3D cultures had grown for 24 h, 1 mM hydroxyurea was

added to the medium for 24-h [53] and 36-h incubations for
2D and 3D conditions, respectively. This difference in incuba-
tion time with hydroxyurea was chosen owing to the differ-

ences in cell-cycle time under these culture conditions. The
2D-cultured cells were cross-linked directly, and then detached
from the Petri dish with 1% paraformaldehyde (PFA) for 4 h

at 17 �C while mixing in the Petri dish. The PFA was quenched
with glycine at a final concentration of 0.125 M for 15 min at
room temperature while mixing. The intact spheroids of the
3D-cultured cells were collected with the Cell Recovery Solu-

tion (Catalog No. 354253, Corning, NY), and then fixed fol-
lowing the same procedure used for 2D-cultured cells. The
cross-linked cells were pelleted by centrifugation, washed with

ice-cold PBS, flash-frozen in liquid nitrogen, and finally stored
at �80 �C until the preparation of the in situ Hi-C libraries.

Immunofluorescence

For the Lamin B1 staining, the cells were first fixed with 4%
PFA at room temperature for 10 min, followed by PFA

quenching with glycine at a final concentration of 50 mM. Sub-
sequently, the cells were washed three times with PBS, perme-
abilized with 0.5% Triton X-100 for 10 min, and then blocked
with 5% BSA to reduce non-specific binding. Next, the cells

were incubated with the primary antibody, anti-Lamin B1
(1:200; Catalog No. ab16048, Abcam, Cambridge, UK), over-
night at 4 �C. The cells were then washed three times with PBS

and incubated with the secondary antibody, Donkey anti-
Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Anti-
body, Alexa Fluor 568 (1:200; Catalog No. A10042, Thermo-

Fisher Scientific, Waltham, MA) for 1 h at room temperature.
Finally, the nuclei were stained with DAPI (1 lg/ml). For
staining of the plasma membrane, the sample was fixed, perme-

abilized, and blocked as previously described, and then incu-
bated with Wheat Germ Agglutinin, Alexa Fluor 555
conjugate (1:200; Catalog No. W32464, ThermoFisher Scien-
tific) for 30 min at room temperature. All imaging was per-

formed with confocal fluorescence microscopy (A1Si, Nikon,
Japan) at a scan speed of 1/4 frames/s.

Hi-C library preparation

The cells were thawed on ice and re-suspended into ice-cold
lysis buffer [10 mM Tris-HCl pH 8.0, 10 mM NaCl, 0.2%

Triton X-100, 1/100 volume of the proteinase inhibitor
cocktail (Catalog No. P8340, Sigma-Aldrich)]. Following
incubation on ice for 30 min, the nuclei were pelleted and

washed with ice-cold lysis buffer. After washing with 1.2�
cutsmart buffer (Catalog No. B7204, NEB, Ipswich, MA),
the nuclei were re-suspended with 1.2� cutsmart buffer
supplemented with 0.1% SDS and incubated for 1 h at

65 �C. After, the nuclei were incubated with 1% Triton
X-100 for 15 min at 37 �C, and then digested overnight at
37 �C with 100 U of restriction endonuclease MboI (5 U/ll;
Catalog No. R0147, NEB) with slow rotation.

The nuclei were pelleted and washed twice with
1� NEBuffer 2 (Catalog No. B7002, NEB). The nuclei were
then re-suspended with 1� NEBuffer 2 containing 0.015 mM
dCTP, 0.015 mM dGTP, 0.015 mM dTTP, 0.015 mM biotin-
14-dATP, and 5 U of Klenow enzyme (Catalog No. M0210,

NEB). The mixture was incubated at 37 �C for 2 h with slow
rotation. Next, the nuclei were harvested and re-suspended
in the ligation master mix [1� T4 ligase buffer (NEB),

0.1 mg/ml BSA, 40 U/ll of T4 ligase (Catalog No. B0202,
NEB) in ddH2O], followed by incubation at 25 �C for 4 h
and 16 �C for 8 h. The crosslinking was then reversed by incu-

bating overnight at 65 �C with proteinase K (1 lg/ll). The
DNA was extracted with phenol–chloroform and purified with
ethanol precipitation. Then, the RNA was removed by RNase
A (1 lg/ll), and the DNA was sheared with Covaris M220.

The DNA fraction in the size range of 300–500 bp was
collected with Agencourt AMPure XP beads (Catalog No.
A63881, Beckman Coulter, Brea, CA).

The DNA was end-repaired and ‘A’ tailed with the
‘‘NEBNext End Pre” module, and adapters were ligated with
the ‘‘Adaptor ligation” module in the NEBNext Ultra DNA

Library Prep Kit for Illumina (Catalog No. E7370, NEB)
according to the manufacturer’s instructions. Subsequently,
biotin-mediated pull-down of the ligation products was per-

formed as previously described [6] with minor modification.
Then, the DNA suspension was transferred into a PCR tube
and PCR amplified with index primers, universal PCR
primers, and the NEBNext High Fidelity 2� PCR Master

Mix. The PCR reactions were performed following the manu-
facturer’s instructions of the NEBNext Ultra DNA Library
Prep Kit for Illumina (Catalog No. E7370, NEB). The concen-

trations of the Hi-C libraries were determined using the Qubit
dsDNA HS Assay, and the quality was measured by Agilent
2100 DNA 1000 HS Kit. Lastly, the high-quality libraries were

sequenced using an Illumina X-ten platform with 150 bp
paired-end reads.

Hi-C data processing

We mapped all Hi-C reads to the mm10 mouse reference gen-
ome using Bowtie 2 (v2.2.9) iteratively as described [37]. For
each end of the Hi-C reads, we first mapped an outermost

length of 30 bp, and if this length of region failed to map
uniquely, we included an additional 20 bp in the next round
of mapping. This procedure continued until the mapping

length reached the full read length of 150 bp. Read pairs with
mapping quality (MAPQ) larger than 30 for each end were
kept. Then, the reads mapped to the same restriction fragment

and the dangling reads having a separating genomic distance
shorter than 500 bp were removed. We generated Hi-C contact
matrices at 1 Mb, 100 kb, or 40 kb resolutions for each
chromosome and normalized using ICE [54]. To test the

validity of our data, we calculated the SCC [38] between the
biological replicates of the 2D- and 3D-cultured cells,
respectively. For comparison, we selected the same number

(35 M) of intra-chromosomal reads for each replicate of the
2D- and 3D-cultured cells. The fractions of trans-interactions
among the valid reads for the 2D and 3D datasets were � 32%

and � 43%, respectively, within the range (27%–57%) of sev-
eral recently published Hi-C datasets [20,55–59]. Furthermore,
these percentages were highly consistent between individual

biological replicates (31%/32% for 2D and 42%/43% for 3D).
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Annotation of the compartments and TADs

We annotated the compartments at a 100 kb resolution as
previously described [7]. Specifically, we performed a PCA of
the normalized contact matrix for each chromosome, and

assigned the signs of the first principal component (PC1) to
different types of compartments. To determine the signs of the
PC1, we calculated the Pearson correlation coefficient (PCC)
between the eigenvectors and the read densities of RNA-seq of

the corresponding regions. If the PCC was negative, the eigen-
vector was multiplied by �1. Positive values of the PC1 defined
A-type compartments and negative ones defined B-type.

To reduce the bias introduced by the differences in sequenc-
ing depth, we normalized the total contact numbers of each
chromosome in the 2D and 3D datasets to the same depth

before annotating the domains. After the depth normalization,
we annotated the domains using the software Armatus v1.0
[39,60] with the gamma parameter set to 0.8.

Calculation of the compartment–compartment and TAD–TAD

contact enrichment

For each pair of compartments and TADs, we calculated the

average contact frequencies of all pairs of bins with gap bins
excluded. We removed the compartment and TAD pairs if
the number of gap bin pairs took more than 50% of the total

bin pairs within the corresponding compartments or TADs.
The average contact frequencies of TAD–TAD or
compartment–compartment pairs between 2D- and

3D-cultured cells were then calculated.

RNA-seq library construction

Total RNA was extracted from 3 million cells using Trizol
Reagent, and the quality was assessed using Agilent
Bioanalyzer 2100. The RNA-seq libraries were prepared using
the KAPA Stranded mRNA-seq Kit (Catalog No.

07962193001, Roche, Basel, Switzerland) following the manu-
facturer’s instructions. The quality of the libraries was mea-
sured by the Qubit fluorometer and Agilent Bioanalyzer

2100. The libraries were then sequenced with the Illumina
X-ten platform (2 � 150).

RNA-seq data analysis and functional annotation

We removed adapters and low-quality reads using cutadapt
(v1.8.3) [61] and Trimmomatic (v0.36) [62] with default param-
eters. The remaining valid paired reads were mapped to the

GRCm38 mouse reference genome by HISAT2 (v2.0.5) [63]
with options ‘‘--rna-strandness RF --no-softclip”. We next
assembled and quantified the transcripts using Stringtie

(v1.3.4) [64] with the Mus_musculus.GRCm38.93.chr GTF file
downloaded from the Ensembl database. The read counts of
the detected genes were extracted from the output files of

Stringtie through the Python script ‘‘prepDE.py” provided
online (https://ccb.jhu.edu/software/stringtie/dl/prepDE.py).
To evaluate the difference in gene expression between 2D-

and 3D-cultured cells, we used the R package ‘‘DESeq2” [65]
to calculate the fold change of the transcription levels and
assigned a statistical significance to each pair of genes. Genes
with |log2 fold change| > 2 and P < 0.05 were identified as
differentially expressed genes. The GO terms for the gene func-
tional classification were determined using DAVID (v6.8)

(https://david.ncifcrf.gov/gene2gene.jsp).

Data availability

The Hi-C and RNA-seq datasets in this study have been
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at the National Genomics Data Center, Beijing Institute of
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Center for Bioinformation (GSA: CRA002599) that are pub-
licly accessible at https://ngdc.cncb.ac.cn/gsa.
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