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Urothelial cancer proteomics 
provides both prognostic and 
functional information
Guillermo de Velasco1, Lucia Trilla-Fuertes2,3, Angelo Gamez-Pozo2,3, Maria Urbanowicz4, 
Gustavo Ruiz-Ares1, Juan M. Sepúlveda1, Guillermo Prado-Vazquez2, Jorge M. Arevalillo5, 
Andrea Zapater-Moros2, Hilario Navarro5, Rocio Lopez-Vacas2, Ray Manneh1, Irene Otero1, 
Felipe Villacampa6,8, Jesus M. Paramio7,8, Juan Angel Fresno Vara2,3,8 & Daniel Castellano1,8

Traditionally, bladder cancer has been classified based on histology features. Recently, some works 
have proposed a molecular classification of invasive bladder tumors. To determine whether proteomics 
can define molecular subtypes of  muscle invasive urothelial cancer (MIUC) and allow evaluating the 
status of biological processes and its clinical value. 58 MIUC patients who underwent curative surgical 
resection at our institution between 2006 and 2012 were included. Proteome was evaluated by 
high-throughput proteomics in routinely archive FFPE tumor tissue. New molecular subgroups were 
defined. Functional structure and individual proteins prognostic value were evaluated and correlated 
with clinicopathologic parameters. 1,453 proteins were quantified, leading to two MIUC molecular 
subgroups. A protein-based functional structure was defined, including several nodes with specific 
biological activity. The functional structure showed differences between subtypes in metabolism, focal 
adhesion, RNA and splicing nodes. Focal adhesion node has prognostic value in the whole population. 
A 6-protein prognostic signature, associated with higher risk of relapse (5 year DFS 70% versus 20%) 
was defined. Additionally, we identified two MIUC subtypes groups. Prognostic information provided 
by pathologic characteristics is not enough to understand MIUC behavior. Proteomics analysis may 
enhance our understanding of prognostic and classification. These findings can lead to improving 
diagnosis and treatment selection in these patients.

Urothelial cancer (UC) is responsible for approximately 165,000 deaths per year worldwide (GLOBOCAN 2012)1. 
Pathological classification divides UC into two major subtypes according to the invasion depth: non-muscle inva-
sive and muscle invasive urothelial carcinoma (MIUC) but not molecular categorization is clinically indicated. 
However, the outcome and prognosis may be different across subsets of patients within same staging.

MIUC is characterized by a high risk of relapse and metastasise. Despite radical cystectomy with neoadjuvant 
cisplatin-based chemotherapy, the current risk of recurrence as well as mortality is nearly 50%2. In the adjuvant 
setting, chemotherapy is also associated with improved survival in patients with locally advanced bladder cancer3.

Pathological prognostic factors such as lymphovascular invasion, grade or molecular alterations are not cur-
rently modifying treatment choice. Large collaborative efforts have provided a more comprehensive view of the 
genomic landscape of MIUC identifying molecular subtypes that have yet to prove predictive value3–5. At present, 
no molecularly targeted drugs are approved for UC.

Before the genomic era, p53 was thought to be prognostic and predictive marker measured by immunohisto-
chemistry in UC6. Several methodological issues questioned conflicting results including proteomics assessment7. 
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In the last years, proteomics approaches have been incorporated into the study of clinical samples, as a way to 
complement the information provided by classical factors and genomics. Mass spectrometry-based proteomics 
have emerged as preferred components of a strategy for discovering diagnostic and prognostic protein biomark-
ers and as well as new therapeutic targets8. These investigations are very encouraging9,10 and the potential of 
tumor biomarkers discovery is unclear11.

Genomics advance in UC has not been translated into molecularly-based biomarker for treatment selection. 
Since few data is available with proteomics, we aimed to identify whether differentially expressed protein bio-
markers in tumor tissue may predict different outcomes.

Results
Study Population.  Fifty eight patients with a median age of 68 years (range 45–78 years) were included. 
Main characteristics are displayed in Table 1. After a median follow up of 38 months, 34 (58.6%) patients relapsed 
and 35 (60.4%) had died. Median follow-up of all patients was 34 months (range 3–114 months). Median distant 
disease free survival was 27.7 (27.2–45.1, 95%CI). Five- years-distant relapse free survival was: 75% in stage I/II, 
45% in stage III and 25% in stage IV.

Protein preparation and mass spectrometry analysis.  After mass spectrometry (MS) workflow, 58 
urothelial tumors were analyzed. Raw data normalization was performed as described previously12. 4,405 protein 
groups were identified using Andromeda, of which 1,453 presented at least two unique peptides and detectable 
expression in at least 75% of the samples. No decoy protein passed through these additional filters.

Protein expression analyses of urothelial tumors and identification of new molecular subtypes.  
Proteomics data from 58 MIUC tumors were analyzed using sparse k-means and random-forest in order to establish 
a consistent classification of our samples. Using these approaches, two different molecular groups were identified 
on the basis of 34 proteins differentially expressed between both groups (Supplementary Figure 1, Supplementary 
Table 1). From those, 20 proteins have higher expression in group 1, including EHD2, FLNA and TNS1. Gene 
ontology analyses showed that these proteins are mainly related with focal adhesion and extracellular matrix. On 
the other hand, 14 proteins have higher expression in group 2, including HSBP1. Gene ontology analyses showed 
that these proteins are mainly related with transcription processes and immune response. Group 1 showed better 
prognosis than Group 2, although these differences were not significant (Fig. 1). Contingency analyses showed that 
these two groups are independent of clinical factors such as stage, tumor size and lymph node status.

Network construction and functional node assignation.  Protein expression data from all samples 
were used in the probabilistic graphical models analyses, with no other a priori information. The resulting graph 
was processed (Fig. 2) looking for a functional structure, i.e., if the proteins included in each branch of the tree 

Urothelial tumors

Number of patients 58

Age (years)

≤60 20(34,5%)

>60 38(65,5%)

Median(IQR) 68(60–71)

Range 45–78

Sex

Male 51(88%)

Female 7(12%)

pT category

pT2a 2(3.5%)

pT2b 10(17.3%)

pT3a 27(46.5%)

pT3b 8(13.8%)

pT4a 9(15.5%)

pT4b 1(1.7%)

Missing 1(1.7%)

pN category

pN0 32(55%)

pN1 14(24%)

pN2 6(10%)

Missing 6(10%)

Highest G grade

G1-2 8(14%)

G3 44(76%)

Table 1.  Study population.
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had some relationship regarding their function, as previously described12. Thus, we divided our graph into eight-
een branches, and performed gene ontology analyses. The structure of the probabilistic graphical model had a 
strong biological function basis. The next step was to calculate the activity for each branch with a specific biolog-
ical function, i.,e., a functional node, as previously described12 (Supplementary Figure 2). Once calculated, we 
evaluated the prognostic value of each functional node activity in MIUC. Focal adhesion functional node activ-
ity splits the population into two groups with different prognosis (p = 0.0241, HR = 0.44 IC95 = 0.234 to 0.899) 
(Fig. 3). Afterwards, we assessed the differences in the functional nodes activities between Group 1 and Group 2 
using class comparison analyses. Twelve nodes showed significant different activity between both groups. Focal 
adhesion, two cytoskeleton nodes, tRNA, ribosomes and metabolism A & B functional nodes showed increased 
activity in Group 1 tumors, whereas vesicles, transport, proteasome, RNA and splicing nodes showed increased 
activity in Group 2 tumors (Supplementary Figure 2).

Focal adhesion functional node.  Focal adhesion functional node includes twenty six proteins related with 
extracellular matrix and focal adhesion. COL1A1, SOD3, COL6A1, COL6A2, CAPN2, MSN, STOM, PRELP, 
NID2, DAG1, LPP and GPI are highly expressed in group 1 while SFN and HDLBP are highly expressed in group 
2 (p < 0.05). Overall, functional activity of this node is higher in group 1. In addition, this functional node has 
prognostic value in our cohort.

Development of a prognostic protein signature in MIUC.  66 proteins were found to be associated 
with recurrence risk in MIUC (Supplementary Table 2). A recurrence signature was developed as previously 
described13. Six proteins of these 66 were included in the prognostic signature: ANXA1 (Annexin A1), BGN 
(Biglycan), IGFBP7 (Insulin Like Growth Factor Binding Protein 7), ISLR (Immunoglobulin Superfamily 

Figure 1.  Kaplan–Meier survival curves obtained from high/low risk groups originated in our classification.

Figure 2.  Probabilistic graphical model analysis unravels the functional organization of proteins in MIUC 
based on correlation. Grey nodes are nodes without any majority function assigned.
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Containing Leucine-Rich Repeat), MDP1 (Magnesium-Dependent Phosphatase 1) and PLS3 (Plastin 3). The 
recurrence protein score split our population into two risk groups with different five year distant relapse free 
survival: 70% vs. 20% (HR 3.53 95% CI 1.8–6.7; [p < 0.001]) (Fig. 4). The association between the score and 
DRFS was similar for patients with stage III and those with stage IV (Fig. 4). These results were verified using 
gene expression data from the MD Anderson cohort4. In this population, the 6 proteins predictor identifies two 
populations with different relapse risk (HR 2.10 95% CI 0.2–1.1; [p = 0.04]) (Supplementary Figure 3).

Functional proteomics add prognostic information to prognostic signature.  Information pro-
vided by the prognostic signature is complementary to the prognostic information provided by focal adhesion 
functional node activity signature and both predictors combined establish four different classes into the pop-
ulation with different relapse risk (p-value = 0.0003) (Fig. 5). Univariate analyses of clinical (stage, tumor size 
and nodal involvement) and proteomics-based variables (6 protein signature and focal adhesion node activity) 
showed that focal adhesion node activity (p-value = 0.013), 6 proteins signature (p-value = 0.002) and tumor 
size (p-value = 0.033) have prognostic value in MIUC. Multivariate analyses showed that both focal adhesion 
(p-value = 0.011) and 6 proteins signature (p-value = 0.020) has independent prognostic value (Table 2).

Discussion
The principal aim of the study was to establish a molecular classification and survival prediction in MIUC based 
on proteome analysis since bladder cancer classifications have generally been based on histology features14 and 
genomics have yet to be implemented in the clinic. In the clinical practice, there seems to be different groups 
of patients beyond pathological characteristics. Some patients, even with positive lymph nodes, may never 
relapse after surgery. However, other subset of patients with apparent favorable features may become metastatic. 
Therefore it is clear that stratification using the current system is inadequate to satisfactorily differentiate progno-
sis. Consequently, it is necessary to characterize MIUC patients in accordance to prognostic evolution and molec-
ular features. The proposal of new classifications and characterization of MIUC could lead to further stratification 
of MIUC tumors and may drive treatment selection.

Our proteomics pipeline allowed us detecting 4,405 proteins in 58 FFPE MIUC samples. We identified groups 
in our protein data using sparse k-means and confirmed its consistency by random forest, supporting that dif-
ferent molecular subgroups exist in MIUC. Sparse k-means classification is based on 34 proteins, most of them 
related with focal adhesion. These two molecular groups provide additional information to clinical parameters. 
As we demonstrated in previous works, probabilistic graphical models using protein expression data allow char-
acterizing differences in biological processes and pathways between groups of patients12,15. We were able to estab-
lish different functional nodes according to biological functions. The analysis identified 18 different functional 
nodes, 12 of them monitoring eleven biological processes showed differential activity between the prognostic 
groups previously established. These results confirm that this approach is valid to study the differential activity of 
biological functions between tumor groups12.

Group 1 showed higher expression of some proteins related with focal adhesion and extracellular matrix. 
Specifically, some of these proteins have been related with epithelial-to-mesenchymal transition (EMT) mark-
ers such as EH domain containing 2 (EHD2), which can inhibit metastasis by regulating cadherins16 or tensin 
1 (TNS1), involved in focal adhesion. Low levels of TNS1 have been associated with worsening-free survival 
in non-muscle invasive bladder cancer17. Additionally, filamin A, a downstream effector of mTORC2, plays an 
important role in motility and invasion18. Additionally, we showed an increased activity of biological processes in 
Group 1, such as Cytoskeleton and Focal Adhesion, Metabolism and tRNA and ribosomes. It is noteworthy that 
related nodes, such as Cytoskeleton and Focal Adhesion nodes, and also tRNA and ribosomes nodes showed a 
similar behaviour, showing consistency for obtained biological information. Metabolism A node includes pro-
teins related with negative regulation of protein metabolic process whereas Metabolism B node included proteins 

Figure 3.  Focal adhesion node’s activity has prognostic value (p-value = 0.0241, HR = 2.178, IC95 = 1.107 to 
4.283).
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related to glycolysis and pyruvate metabolism, involved in generation of precursor metabolites and energy. All 
together, these results suggest that Group 1 have lower metastatic potential and specific features regarding metab-
olism and protein synthesis when compared with Group 2.

On the other hand, several proteins showed higher expression in group 2. Some immune proteins such as 
HSBP1 (heat shock factor binding protein 1) were associated with a decreased immune activity which may have 
therapeutic implications19. Additionally, group 2 showed increased activity in Vesicles, Transport, Proteasome, 
Splicing and RNA nodes. Again, we found coherence in the biological information, as long as nodes with compa-
rable function showed similar behavior. These results suggest differences regarding intracellular trafficking, RNA 
processing and Proteasome activities when comparing new defined groups.

Figure 4.  Prognostic signature composed by 6 proteins. A. All data. B. Stage 1–2. C. Stage 3 D. Stage 4.

Figure 5.  Kaplan–Meier curve curves showing overall survival based on 6 protein signature merged with focal 
adhesion node activity signature (p-value = 0.0003).

Multivariate analysis

Sig. Exp(B)

95.0% IC para Exp(B)

Inferior Superior

6prots 0.020 3.486 1.217 9.981

Adhesion Node 0.011 3.029 1.287 7.130

Stage 0.840 1.086 0.489 2.412

Size 0.452 0.910 0.711 1.164

N 0.747 1.150 0.492 2.687

Table 2.  Multivariate analysis.
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The differences in biological functions, after proper validation, could lead to develop specific treatments in 
concrete groups of patients. For instance, differences in metabolism could be targeted with 2-D-deoxy-glucose 
or metformin20, which are being currently tested in clinical trials for breast cancer treatment. On the other hand, 
proteasome targeting drugs have demonstrated therapeutic value in multiple myeloma treatment21.

In this study we show that the discovery of proteins as prognostic biomarkers is feasible using FFPE samples 
and proteomics. Indeed, we were able to identify a six protein-signature with prognosis value independently of 
stage, size and lymph node status. Proteins contained in this predictor are involved in multiple processes. ANXA1, 
a membrane-located protein, has been related with prognosis in breast cancer22. BGN is a protein involved in 
inflammation processes23. Niedworok et al.24 suggested that biglycan is an endogenous inhibitor of bladder cancer 
cell proliferation and its high expression is associated with good prognosis. PLS3 was proposed as biomarker for 
breast cancer prognosis25. To our knowledge, no previous information about MDP1, IGFBP7 and ISLR role in 
cancer disease has been previously reported. The prognostic value of the 6-protein signature was validated using 
gene expression data from another cohort.

Probabilistic graphical models allow to compare biological functions between groups but also, to build prog-
nostic signatures. Focal adhesion functional node activity had prognostic value and split population in low and 
high risk of relapse. Strikingly, prognostic information provided by a traditional protein signature was comple-
mentary to information provided by focal adhesion functional node activity signature, and also to the prognostic 
information provided by clinical factors, as shown in the multivariate analysis. Merging these molecular features, 
it is feasible to establish four different risk populations. These results confirm that functional approaches could 
provide additional information to traditional gene/protein-centered analyses.

Our study has some limitations. Technically, proteomics provide less information when compared with 
genomics, thus an improvement in number of detected proteins is still necessary. On the other hand, peptide and 
protein identification relies in statistical parameters. Due to this, we applied strict filters for peptides/proteins 
selection, in order to avoid false detections, ensuring that proteins with the highest confidence in both identifica-
tion and quantification are selected for analyses. Finally, although a meta-validation has been performed, these 
results should be validated in additional cohorts to evaluate the 6-protein signature robustness and the functional 
differences between new defined molecular groups. Other limitations of this study include the relatively small 
sample size and there may be other bias that could affect outcomes. We believe that our findings serve as impor-
tant hypothesis generating findings that can be explored in future studies.

In conclusion, our approach, combining proteomics and probabilistic graphical models allow the integration 
of different levels of molecular information that can improve MIUC molecular characterization. We were able to 
differentiate two different molecular groups from our proteomics data, with different functional features that may 
represent new therapeutic opportunities for bladder cancer treatment. Moreover, we defined a 6 protein-signature 
that can predict the outcome of MIUC patients and we identified a functional node with prognosis value in 
MIUC, adding prognostic information to the prognostic 6-protein signature and to clinical factors.

Methods
Patient’s characteristics and samples selection.  Patients treated at University Hospital 12 de Octubre 
(Madrid, Spain) were included if they had histologically documented (TNM staging26, T1-T4a and any N, M0) 
urothelial carcinoma (including of the renal pelvis, ureter, urinary bladder, or urethra). In total, 58 patients who 
underwent curative surgical resection between 2006 and 2012 were selected. FFPE samples were retrieved from 
I + 12 Biobank (RD09/0076/00118). Samples were reviewed by a genitourinary pathologist and included if cases 
had at least 50% of urothelial tumor cells and were invasive in the muscularis propria. The study was approved 
by independent review board and Ethical Committee of Hospital Universitario 12 de Octubre. All experiments 
were performed in accordance with relevant guidelines and regulations. Informed consent was obtained from all 
participants before starting treatment.

Liquid chromatography - mass spectrometry shotgun analysis.  Proteins were extracted from FFPE 
samples as previously described27. Mass spectrometry analysis was performed on a QExactive mass spectrometer 
coupled to a nano EasyLC 1000 (Thermo Fisher Scientific). Solvent composition at the two channels was 0.1% 
formic acid for channel A and 0.1% formic acid, 99.9% acetonitrile for channel B. For each sample 2 μL of peptides 
were loaded on a self-made column (75 μm × 150 mm) packed with reverse-phase C18 material (ReproSil-Pur 
120 C18-AQ, 1.9 μm, Dr. Maisch GmbH) and eluted at a flow rate of 300 nL/min by a gradient from 2 to 35% B in 
80 min, 47% B in 4 min and 98% B in 4 min. Samples were acquired in a randomized order. The mass spectrometer 
was operated in data-dependent mode (DDA), acquiring a full-scan MS spectra (300–1700 m/z) at a resolution 
of 70000 at 200 m/z after accumulation to a target value of 3000000, followed by HCD (higher-energy collision 
dissociation) fragmentation on the twelve most intense signals per cycle. HCD spectra were acquired at a resolu-
tion of 35000 using normalized collision energy of 25 and a maximum injection time of 120 ms. The automatic 
gain control (AGC) was set to 50000 ions. Charge state screening was enabled and singly and unassigned charge 
states were rejected. Only precursors with intensity above 8300 were selected for MS/MS (2% underfill ratio). 
Precursor masses previously selected for MS/MS measurement were excluded from further selection for 30 s, and 
the exclusion window was set at 10 ppm. The samples were acquired using internal lock mass calibration on m/z 
371.1010 and 445.1200.

Protein identification and label free protein quantification.  The acquired raw MS data were pro-
cessed by MaxQuant (version 1.5.2.8), followed by protein identification using the integrated Andromeda 
search engine. Spectra were searched against a forward Swiss Prot-human database, concatenated to a reversed 
decoyed fasta database and common protein contaminants (NCBI taxonomy ID9606, release date 2014-05-06). 
Carbamidomethylation of cysteine was set as fixed modification, while methionine oxidation and N-terminal 
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protein acetylation were set as variable. Enzyme specificity was set to trypsin/P allowing a minimal peptide length 
of 7 amino acids and a maximum of two missed-cleavages. Precursor and fragment tolerance was set to 10 ppm 
and 20 ppm, respectively for the initial search. The maximum false discovery rate (FDR) was set to 0.01 for pep-
tides and 0.05 for proteins. Label free quantification was enabled and a 2 minutes window for match between runs 
was applied. The re-quantify option was selected. For protein abundance the intensity was used, corresponding to 
the sum of the precursor intensities of all identified peptides for the respective protein group.

Sparse k-means classification.  Sparse k-means was used to establish differential groups between samples. 
Classification consistency was tested using random forest. An analysis with the Consensus Clustering algorithm28, 
applied on the data containing the variables that were selected by the sparse K-means method29, has provided an 
optimum classification into two subtypes in previous studies30.

Functional network construction.  Network construction was performed using probabilistic graphical 
models compatible with high dimensional data using correlation as associative method as previously described12. 
In order to identify functional nodes in the networks we split them in several branches and we used Gene 
Ontology analysis to assign a majority function to each node. Activity measurement was calculated by the mean 
expression of all the proteins of each node related with the assigned node function.

Gene-Ontology Analysis.  Protein to Gene Symbol conversion was performed using Uniprot and DAVID31. 
Gene Ontology Analysis was also done in DAVID selecting “Homo sapiens” background and GOTERM-FAT, 
Biocarta, KEGG and Panther databases.

Protein signature construction.  We computed a statistical significance level for each protein based on a 
univariate proportional hazards model with the aim of identifying proteins whose expression were significantly 
related to the distant metastasis-free survival (DMFS) as described previously13. Leave-one-out cross-validation 
was used to evaluate the predictive accuracy of the profiles. The cutoff point was established a priori and to test 
the statistical significance, the p-value of the log-rank test statistic for the risk groups was evaluated using 1000 
random permutations. Analyses were performed in BRB-ArrayTools v4_2_1 and R v3.2.432. BRB-ArrayTools has 
been developed by Dr. Richard Simon and BRB-ArrayTools Development Team.

Prognostic signature meta-validation.  With the aim to verify the utility of 6 protein signature, gene 
expression data from a MD Anderson cohort was used4. All probes in dataset for each gene were retrieved. Probes 
with higher CV were selected when multiple probes were found for a single gene, then expression values of each 
gene were z-score transformed as previously described15. To apply protein expression based signatures to gene 
expression values, per-gene normalization was applied as previously described13.

Statistical analyses.  Statistical analyses (class comparisons contingency analyses, etc.), were performed 
using GraphPad Prism v6 and Cytoscape33. Univariate and multivariate Cox regression models were performed 
using IBM SPSS Statistics. All p-values where two-sided, and p < 0.05 was considered statistically significant.
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