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Abstract: A new generation of biomaterials with terbium-doped hydroxyapatite was obtained using
a coprecipitation method. The synthesis of new materials with luminescent properties represents
a challenging but important contribution due to their potential applications in biomedical science.
The main objective of this study was to revel the influence of terbium ions on the design and
structure of hydroxyapatite. Different concentrations of terbium, described by the chemical formula
Ca10−xTbx(PO4)6(OH)2, where x is in the range of 0 to 1, were considered. The consequence of ion
concentration on hydroxyapatite morphology was also investigated. The morphology and structure,
as well as the optical properties, of the obtained nanomaterials were characterized using X-ray
powder diffraction analysis (XRD), Fourier Transform Infrared spectrometry (FTIR), SEM and TEM
microscopy, UV-Vis and photoluminescence spectroscopies. The measurements revealed that terbium
ions were integrated into the structure of hydroxyapatite within certain compositional limits. The
biocompatibility and cytotoxicity of the obtained powders evaluated using MTT assay, oxidative
stress assessment and fluorescent microscopy revealed the ability of the synthesized nanomaterials
to be used for biological system imaging.

Keywords: terbium; rare earth ions; doped hydroxyapatite; coprecipitation method; photolumines-
cence; biological system imaging

1. Introduction

Photoluminescence is a significant and valuable instrument for the in situ study of
tissue engineering and restoration, with fluorescent molecules having been used in clinical
trials for a long time. In the last decade, many researchers have been focused on developing
new biological luminescent compounds with special properties, e.g., high quantum yield
and long fluorescence lifetime, for use in the medical field [1,2]. In this context, many
bioceramics have been selected and used for reconstruction and/or to repair different types
of tissue, applied as a coating, as cement, or as nanoparticles [3].

Hydroxyapatite (HAp, Ca10(PO4)6(OH)2), the essential mineral constituent of hard
biological tissues such as teeth and bones [4], is used as a synthetic cement for bone and den-
tal reconstruction due to its osteogenic, osteoconductive and osteoinductive properties [5,6].
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Numerous research studies have suggested that nanoparticles of calcium phosphate can be
used as fluorescent samples after doping with lanthanide by substitution of the Ca2+ ions,
a method that also enhances the biological properties of HAp [7–11]. The substitution of
Ca2+ ions can be made using various doping agents: carbon compounds [12–14], fluorine,
chlorides and silicate [12] or cations—monovalent (K+, Ag+, Na+) [15–17], divalent (Zn2+,
Sr2+, Mg2+, Cd2+, Cu2+) [18–20] and trivalent (Fe3+, Al3+, rare earths ions) [21,22]. In
addition to medical uses, cation-substituted hydroxyapatite can also be used in multiple
applications: sensors, catalysts, water decontamination, optoelectronics or radionuclides,
and heavy metal remediation [23].

Luminescent rare earths have a surprising spectral nature, which allows them to be
successfully used as a non-isotopic substitute for organic fluorophore compounds. Aside
from in vivo detection of cell function applications, this group of elements is widely used
for the luminescent marking of molecules to elucidate the structure and function of proteins
and enzymes [24]. The photoluminescent properties of rare earth ions are mostly due to
the narrow and strong electronic interconfigurational f -f emission transitions [25], a large
effective Stokes shifts, and high quantum yields [26].

Terbium (Tb, atomic number: 65) is an important element in the rare earth group
due to its interesting electronic, magnetic and optical properties, being also suitable for
applications in the glass industry [27], polymers, biochemical sensors [28], and solar
cells [29]. Due to its extensive development and use, terbium is inevitably present in
organisms, the environment, and food chains.

Various researchers have shown that a smaller amount of doped Tb3+ ions can signifi-
cantly increase its luminescence properties, while maintaining the main physicochemical
properties and biological activities of the material [7]. Other researchers have evaluated the
potential applications of HAp/Tb3+ in the biomedical area and their results have shown
an in vitro cytocompatibility with MC3T3-E1 and A549 cells. This fluorescence property
of terbium-doped HAP nanomaterials makes them suitable to be incorporated into living
cells [30,31].

2. Experimental Section
2.1. Materials

All used reagents were of analytical grade and were used without further purification.
Reagent-grade calcium nitrate tetrahydrate (Ca(NO3)2·4H2O, 99.9%, Sigma Aldrich, St.
Louis, MO, USA), terbium-(III) nitrate pentahydrate (Tb(NO3)3·5H2O, 99.9%, Alfa Aesar,
Haverhill, MA, USA), ammonium phosphate dibasic ((NH4)2HPO4, 99.0%, Alfa Aesar,
Haverhill, MA, USA), and ammonia solution (NH4OH, 25% solution) were used for the
synthesis. The compounds were dissolved in deionized water.

2.2. Synthesis Procedure

Samples Notation: HAp represents the undoped hydroxyapatite; Ca10−xTbx(PO4)6(OH)2
represents the hydroxyapatite doped with different concentration of terbium ions, where x = 0,
0.05, 0.1, 0.25, 0.5 and 1.

The terbium-doped hydroxyapatite (Ca10−xTbx(PO4)6(OH)2) nanomaterials were syn-
thesized using a coprecipitation method. The samples were obtained using the following
synthesis procedure: initially, a solution was obtained by dissolving an appropriate amount
of Ca(NO3)2·4H2O with terbium-(III) nitrate pentahydrate, in deionized water, under
vigorous stirring at room temperature. Subsequently, to this solution was added dropwise
a solution of ammonium phosphate dibasic obtained in the same conditions. The ratio
Ca/P and (Ca + Tb)/P was maintained at 1.67. The atomic ratio Tb/(Tb + Ca) was varied
between 0 and 10%. The reaction was kept for 2 h under continuous stirring. Meanwhile,
the resulting suspension was adjusted, and pH = 10.5 was maintained by adding NH4OH
(25%) solution. Undoped HAp was synthesized using a similar procedure, without the
addition of terbium precursor. The resulting suspensions were kept for 24 h. After matura-
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tion, the precipitates were filtered off, washed with deionized water at pH value close to
7.0 and finally dried in an air oven at 80 ◦C for 12 h.

2.3. Characterization

The structure of the obtained powders was investigated with a Nicolet iS50R spectrom-
eter, in ATR mode at 4 cm−1 resolution, at room temperature. Each spectrum was measured
in the range of 4000–400 cm−1. XRD spectra were recorded using a PANalytical Empyrean
diffractometer at room temperature, with a Cu X-ray tube (λ Cu Kα1 = 1.541874 Å) oper-
ating with in-line focusing, with programmable divergent slit on the incident side and a
programmable anti-scatter slit mounted on the PIXcel3D detector on the diffracted side.
The diffraction patterns were collected in a Bragg–Brentano geometry, with a scanning
step of 0.02◦ and a 255 s measuring time per step. The XRD patterns were recorded in
the 2θ scan ranging from 20◦ to 80◦. The lattice parameters mean crystallites sizes and
strains were calculated using the High Score Plus 3.0e software and refined by the Rietveld
method. A Quanta Inspect F50 FEG (field emission gun) scanning electron microscope with
1.2 nm resolution was used for SEM examinations. The microscope was equipped with an
energy-dispersive X-ray (EDX) analyzer (resolution of 133 eV at MnKα, FEI Company) on
sample covered with a thin gold layer. The bright field TEM micrographs were obtained us-
ing a Tecnai G2 F30 S-Twin high-resolution transmission electron microscope from Thermo
Fisher (former FEI) (Waltham, MA, USA), which operated at an acceleration voltage of
300 kV. An Able Jasco V-560 spectrophotometer, with a scan speed of 200 nm/s, between
200 and 850 nm, was used for obtaining the UV-Vis diffused reflectance spectra. The PL
spectra were measured by using a Perkin Elmer LS 55 fluorescence spectrophotometer,
with a scan speed of 200 nm/s between 350 and 800 nm, and with excitation and emission
slit widths of 7 nm. The used excitation wavelength was 320 nm. The samples were finely
ground by using an agate mortar and pestle. The fine powder was placed afterwards in the
solid sample holder of the solid sample accessory of the device. The content of terbium in
the mineral phase of the substituted hydroxyapatite was analyzed using an inductively
coupled plasma mass spectrometry (ICP-MS). Prior to ICP-MS analysis (Agilent 8800, Agi-
lent Technologies, Santa Clara, CA, USA), approximately 10 mg of sample was dissolved
in 100 µL HNO3 and diluted in 10 mL volumetric flasks with ultrapure water. Solutions
of 1 mg/mL Ca10−xTbx(PO4)6(OH)2 (x = 0, 0.05, 0.1, 0.25, 0.5, 1) were further diluted by
1000 and 10,000 times, respectively. Calibration curves, ranging from 1 ppb to 50 ppb, were
prepared using multielement standard solution (multi-element calibration standard-2A,
Agilent Technologies). Linear calibrations, with a correlation coefficient greater than 0.99,
were obtained for all elements.

2.4. Cellular Viability Assays
2.4.1. MTT Assay

The biocompatibility of synthesized terbium-doped hydroxyapatite samples was
estimated using MTT [3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide] assay
(Vybrant®MTT Cell Proliferation Assay Kit, Thermo Fischer Scientific, Waltham, MA, USA).
The human mesenchymal amniotic fluid stem cells (AFSC) were grown in DMEM medium
(Sigma-Aldrich, Saint Luis, MO, USA) supplemented with 10% fetal bovine serum, 1%
antibiotics (penicillin and streptomycin) (Sigma-Aldrich, Saint Luis, MO, USA), changed
twice a week. The growth of AFSC cells took place in 96-well plates, with a seeding
density of 3000 cells/well in the presence of Ca10−xTbx(PO4)6(OH)2 powders, for 72 h.
Subsequently, 15 mL (12 mM) of MTT was added to the cells, followed by incubation at 37
◦C for 4 h. A solution of 1 mg Sodium Dodecyl Sulphate in 10 mL HCl (0.01 M) was added
and pipetted vigorously in order to solubilize the formed formazan crystals. A TECAN
Infinite M200 spectrophotometer (Männedorf, Switzerland) at 570 nm was used to evaluate
the optical density (OD) of solubilized formazan, after 1 h.
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2.4.2. GSH-Glo Glutathione Assay

The oxidative stress assessment was performed using the GSH-Glo Glutathione Assay
kit (Promega, WI, USA). AFSC was seeded at a density of 3000 cells in 300 µL of Dulbecco’s
Modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum and 1%
antibiotics (penicillin, streptomycin/neomycin) in 96-well plates. After 24 h of seeding,
cells were treated with Ca10−xTbx(PO4)6(OH)2 and then incubated for 72 h. To this solution
was added 100 µL 1X GSH-Glo Reagent, followed by incubation at 37 ◦C for 30 min.
Subsequently, 100 µL Luciferin Detection Reagent was added and incubated at 37 ◦C for an
additional time of 15 min. Afterwards, the medium from the wells was well homogenized
and then the plate was read on the luminometer (Microplate Luminometer Centro LB 960,
Berthold, Germany) [32–34].

2.4.3. Fluorescence Microscopy

A RED CMTPX fluorophore (Thermo Fischer Scientific, Waltham„ MA, USA) was
used to evaluate the biocompatibility of the obtained Ca10−xTbx(PO4)6(OH)2 (x = 0, 0.05,
0.1, 0.25, 0.5, 1) powders. The CMTPX (cell tracker for long-term tracing of living cells
tracker) was added to the cell culture, previously treated with the synthesized nanoparticles.
The viability and morphology of the AFSC was evaluated after 5 days. To allow the dye
penetration into the cells, the CMTPX fluorophore, at a concentration of 5 µM and incubated
for 30 min, was added in the culture medium. Finally, the AFSC were washed with PBS
and visualized by fluorescent microscopy using an Olympus CKX 41 digital camera driven
by CellSense Entry software (Olympus, Tokyo, Japan) [35].

3. Results and Discussions
3.1. ICP-MS Analysis

The concentration of terbium ions from doped HAp was analyzed by ICP-MS tech-
nique. Table 1 shows the measured concentrations, the correlation coefficient, and the limit
of detection.

Table 1. Terbium ion contents for substituted HAp.

Sample Element µg Element/mg
Sample

Limit of Detection (LoD)
[ug/L] Correlation Coefficient (r2)

Ca9.95Tb0.05(PO4)6(OH)2

159Tb

7.89

0.0002 0.997

Ca9.9Tb0.1(PO4)6(OH)2 25.11

Ca9.75Tb0.25(PO4)6(OH)2 41.27

Ca9.5Tb0.5(PO4)6(OH)2 70.66

Ca9Tb1(PO4)6(OH)2 110.37

The data from Table 1 confirm the presence of terbium ions in doped hydroxyap-
atite powders. It was found that the content of dopant ion increases from 0 to 1 of ions
doped HAp.

3.2. FTIR Analysis

Figure 1 shows the FTIR spectra of Ca10−xTbx(PO4)6(OH)2 samples. The absorption bands
characteristic of HAp and reported in literature [36] appear in the HAp spectrum. The FTIR
spectrum of pure HAp (black line in Figure 1) shows a broad band in the region 3000–3400 cm−1

which corresponds to the -OH groups. The bands around 1090, 1023 and 960 cm−1 are due
to the stretching mode of P-O [37]. The bands around 602 cm−1, 562 cm−1 and 474 cm−1 are
attributed to the bending mode of O-P-O [38]. The band at around 873 cm−1, which appears in
all studied compound spectra, is due to the [HPO4]2− ions [39,40].
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Figure 1. Normalized FTIR spectra of hydroxyapatite (HAp) and Ca10−xTbx(PO4)6(OH)2.

Comparing the FTIR spectra, it can be seen that the spectra of Ca10−xTbx(PO4)6(OH)2
powders with various rare earth concentrations are similar to the FTIR spectrum of pure
HAp. In FTIR spectra of Ca10−xTbx(PO4)6(OH)2 samples, the bands around 873 and
1426 cm−1 are assigned to CO3

2−. This can be attributed to the CO3
2− groups replacing

the PO4
3−groups, signifying an interaction between HAp and carbon dioxide from air [41].

The intensity of PO4
3− bands decreases with increasing terbium concentrations until the

molar fraction of terbium is 0.1%. Above this concentration, the banding bands of O-P-O
increase. An explanation for this is that by replacing calcium ions with terbium ions, a
change of bonding forces between the ions is induced, resulting in weakness of the banding
bands of O-P-O [42]. The mechanism of substitution of Ca ions with rare earth ions has not
been fully elucidated, on the basis of these studies. The increasing concentration of doped
terbium ions caused a decrease in the intensity of the bands, associated with a decrease of
HAp crystallinity.

3.3. XRD Analysis

The XRD patterns of the studied terbium-doped hydroxyapatite and undoped HAp
reveal the formation of a pure hexagonal HAp phase (according to ICDD PDF4+ card no
00-068-0738, Figure 2 [43], in agreement with the literature [44–46]. The XRD patterns of the
studied samples indicate only the pure hexagonal HAp phase of the space group P63/m,
along with all of the diffraction peaks in the HAp standard JCPDS database (PDF4+ card
no 00-068-0738), such as: (002), (121), (112), (030), (022), (130), (222), (123) and (004).

The crystallinity degree and crystallite size of the studied samples are shown in Table 2,
and an illustrative variation of those parameters is presented in Figure 2. In all of the studied
samples, the peak intensities decrease with increasing terbium ion doping concentration level,
signifying an interference of terbium ions with the crystal structure of HAp.

The average crystallite size of the undoped HAp was 6.07 nm. For terbium-doped HAp
samples, a decrease in crystallite size was observed with increasing ion dopant content.
The lattice parameters of the terbium ion-doped HAp powders slowly decreased with
increasing content of the terbium cations (Table 2). The introduction of Tb3+ in HAp lattice
induces a decrease of crystallite size from 5.72 to 4.83 nm and an increase of microstain
from 1.61% to 191%. Then, for a substitution degree of more than 10%, an increase of
crystallite size up to 6.43 nm was observed.
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Table 2. Calculated crystallite size (D) values and degree of crystallinity (χc) of pure HAp and
terbium-doped hydroxyapatite with various concentrations.

Samples D/nm S/% χc/%

HAp 6.07 ± 0.82 1.52 ± 0.53 31.50

Ca10−xTbx(PO4)6(OH)2

Ca9.95Tb0.05(PO4)6(OH)2 5.72 ± 0.76 1.61 ± 0.54 37.40

Ca9.9Tb0.1(PO4)6(OH)2 4.87 ± 0.71 1.89 ± 0.60 37.00

Ca9.75Tb0.25(PO4)6(OH)2 4.66 ± 0.72 1.97 ± 0.60 35.02

Ca9.5Tb0.5(PO4)6(OH)2 4.83 ± 0.57 1.91 ± 0.69 32.87

Ca9Tb1(PO4)6(OH)2 6.43 ± 0.70 1.44 ± 0.56 28.95

The lattice parameters a = b and c obtained from XRD peaks for undoped HAp have
values of a = b = 9.4227 Å and c = 6.8837 Å, which is in accord with literature data [47,48].
The small changes in the lattice parameters are due to the ionic radius of terbium and
calcium ions: Tb3+ (0.923 Å) and for Ca2+ is 1Å. The small differences observed for the
studied samples are caused by the small differences in ionic radius [48]. When one ionic
radius is greater than the others, a slow lattice expansion is observed. For terbium ions at
low concentration, differences are not observed, but a higher substitution degree results in
substantial changes in the unit cell parameters.

From the data in Table 3 and Figures 3 and 4 show the values of the unit cell parameters
a, c, V and the agreement indices obtained from Rietveld analysis (Rexp, Rp, Rwp and χ2),
an indication of the quality of fit, for hydroxyapatite HAp and terbium-doped HAp with
different concentrations. The evaluation of crystallinity degree indicates a decrease in
crystallinity with increasing ion dopant contents for all studied samples.
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Table 3. Unit cell parameters a, c, V and agreement indices for hydroxyapatite HAp andCa10−xTbx(PO4)6(OH)2 (with x =
0.05, 0.1, 0.25, 0.5 and 1).

Sample a [Å] c [Å] V [Å3] Rexp Rp Rwp χ2

HAp 9.4227 ± 0.0033 6.8837 ± 0.0025 529.3087 3.1050 4.5059 5.7040 3.3747

Ca10−xTbx(PO4)6(OH)2

Ca9.95Tb0.05(PO4)6(OH)2 9.4208 ± 0.0030 6.8846 ± 0.0023 529.1685 3.6765 3.8036 5.0633 1.8967

Ca9.9Tb0.1(PO4)6(OH)2 9.4395 ± 0.0037 6.8903 ± 0.0029 531.7138 3.6495 3.6622 4.7929 1.7247

Ca9.75Tb0.25(PO4)6(OH)2 9.4135 ± 0.0043 6.8844 ± 0.0035 528.3299 3.4967 3.4024 4.5551 1.6969

Ca9.5Tb0.5(PO4)6(OH)2 9.4283 ± 0.0046 6.8788 ± 0.0036 529.5652 3.3414 3.3127 4.2472 1.6157

Ca9Tb1(PO4)6(OH)2 9.4066 ± 0.0037 6.8901 ± 0.0028 527.9956 3.1025 2.9919 3.9236 1.5994
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3.4. SEM Investigation

The SEM morphologies of pure HAp and terbium-doped hydroxyapatite with various
concentrations are shown in Figures 5 and 6. The SEM images recorded for HAp highlight
a morphology with agglomerated nanoparticles, in the form of rods, but also intergranular
spaces. The obtained particles have a size in the range of 5–9 nm.

By doping with different concentrations of terbium ions, a small influence can be
detected in the morphology of substituted HAp when compared to pure HAp.

Figure 6 shows SEM images of the hydroxyapatite doped with terbium of different
concentrations. By doping hydroxyapatite with terbium ions, the morphology was modi-
fied. Thus, the nanoparticles become spherical, the agglomerates denser and their size is in
the range of 3–7 nm. The SEM findings were supported by TEM analysis.

3.5. TEM Investigation

In Figure 7, TEM images of hydroxyapatite doped with terbium ion for x = 0.05
(Figure 7a), x = 0.25 (Figure 7b) and x = 1 (Figure 7c) are shown. The bright field TEM
images show a rod-like morphology of the particles specific to hydroxyapatite.

The TEM micrographs confirmed what was also shown in SEM images, in terms of
the tendency to form agglomerates because of the nanometric dimensions of the particles
and the decrease in particle size with increasing terbium content.

3.6. UV-Vis and PL Spectra

The UV-Vis spectra of terbium-doped hydroxyapatite powders from Figure 8a shows
two shoulders at 242 nm and 259 nm. The intensity of band observed at 242 nm increases
with increasing terbium content. No other bands are observed in UV-Vis absorption spectra
of terbium-doped hydroxyapatite powders.
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The PL emission spectra of Ca10−xTbx(PO4)6(OH)2 at different concentrations from
Figure 8b present two distinct domains. The first domain, which covers a wavelength
range from 350 nm to 530 nm, contains emission bands due to the emission spectrum of
HAp and oxygen vacancy, interstitial or oxygen antisites. The intensity of the PL emission
spectra in this domain increases with terbium content up to x = 0.05 and then decreases
until x = 1. The most intense observed emission peaks are associated with: 5D4 → 7F6
(~495 nm); 5D4 → 7F5 (542 nm); 5D4 → 7F4 (583 nm); and 5D4 → 7F3 (619 nm) [48]. The
intensities of these maxima increase with increasing terbium content.

3.7. Cell Viability and Cytotoxicity Assessment by MTT Assay, GSH Assay and Fluorescence
Microscopy

MTT assay from Figure 9 shows that the obtained terbium-doped hydroxyapatite
nanomaterials present absorption values close to the control sample at 72 h, proving their
non-toxicological effect.
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biochemical results. No dead cells or cell fragments are detected; AFSCs have a normal
morphology, with a distinctive appearance.
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AFSC presents extensions that suggest an active phenotype. These are possible due
to the activity of the cytoskeleton and mainly represent actin filaments and microtubules.
Cellular metabolism is active, as shown by fluorescence microscopy images, with cells
absorbing the fluorophore CMTPX dye in the cytoplasm, suggesting their viability after
five days of incubation with amniotic fluid stem cells.
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4. Conclusions

In summary, the influence of terbium ions on the formation and structure of hydroxya-
patite biomaterials synthesized by the coprecipitation method, was investigated. Different
concentrations of terbium were considered, described by the formula Ca10−xTbx(PO4)6(OH)2,
where x = 0.05; 0.1; 0.25; 0.5 and 1. The FTIR analysis and X-ray diffraction proved the suc-
cessful replacement of the calcium ions from HAp lattice with terbium ions until a sample
concentration of x = 0.5 was achieved. Increasing concentration of terbium ions resulted in
a decrease of HAp crystallinity. SEM and TEM analysis confirmed a spherical morphology
with a tendency to form agglomerates, caused by their nanometric dimension. However, when
doping of HAp is performed with different concentrations of terbium ions, it was shown to
retain its physicochemical characteristics, while conferring new photoluminescence proper-
ties. The biocompatibility study of the obtained Ca10−xTbx(PO4)6(OH)2 powders evaluated
by fluorescence microscopy revealed a pronounced effect of cell viability and proliferation
with the existence of a greater number of active cells. Therefore, the present study provides
improved research consisting of obtaining terbium-doped hydroxyapatite nanomaterials with
new photoluminescence properties for biomedical applications.
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