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ABSTRACT

Actinic keratosis (AK) is the main risk factor for
the development of cutaneous invasive squa-
mous cell carcinoma (SCC). It represents the
first sign of severe chronic ultraviolet radiation
exposure, which has a clear significant effect.
Nevertheless, the skin is exposed to many other
exposome factors which should be thoroughly
considered. Our aim was to assess the impact of

exposome factors other than ultraviolet radia-
tion (UVR) on the etiopathology of AK and
Bowen’s disease (BD) and progression of AK to
SCC and to design tailored prevention strate-
gies. We performed an exhaustive literature
search in September 2021 through PubMed on
the impact of exposome factors other than UVR
on AK, BD and SCC. We conducted several
parallel searches combining terms of the fol-
lowing topics: AK, BD, SCC and microbiome,
hormones, nutrition, alcohol, tobacco, viral
infections, chemical contaminants and air pol-
lution. Notably, skin microbiome studies have
shown how Staphylococcus aureus infections are
associated with AK and AK-to-SCC progression
by the production of chronic inflammation.
Nutritional studies have demonstrated how a
caloric restriction in fat intake, oral nicoti-
namide and moderate consumption of wine
significantly reduce the number of premalig-
nant keratoses and SCC. Regarding lifestyle
factors, both alcohol and smoking are associ-
ated with the development of SCC in a dose-
dependent manner. Relevant environmental
factors are viral infections and chemical con-
taminants. Human papillomavirus infections
induce deregulation of cellular proliferation and
are associated with AK, BD and SCC. In addition
to outdoor jobs, occupations such as industrial
processing and farming also increase the risk of
developing keratoses and SCC. The exposome of
AK will undoubtedly help the understanding of
its etiopathology and possible progression to
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SCC and will serve as a basis to design tailored
prevention strategies.

Keywords: Actinic keratosis; Dermatology;
Environmental factors; Exposome; Hormones;
Microbiome; Nutrition; Pollution; Prevention
strategies; Squamous cell carcinoma

Key Summary Points

The main environmental risk factor for
Actinic keratosis (AK), Bowen’s disease
(BD) and squamous cell carcinoma (SCC)
is ultraviolet radiation (UVR) and
therefore photoprotection is always
advisable.

Nevertheless, other host, environmental
and lifestyle factors play a relevant role in
the onset of AK and BD and progression to
invasive SCC.

S. aureus infections, alcohol, tobacco,
human papillomavirus, chemical
contaminants and air pollution are clearly
associated with AK and SCC development.

Bowen’s disease is also associated with
human papillomavirus infections and
arsenic exposure.

Caloric restriction of fat intake, oral
nicotinamide, moderate consumption of
red wine and green leafy vegetables are
beneficial to prevent AK and SCC.

INTRODUCTION

Actinic keratosis (AK) represents the first sign of
severe solar skin damage. It is considered the
most common precursor and the main risk
factor for the development of invasive squa-
mous cell carcinoma (SCC) [1]. There has been
much controversy concerning its classification
as a premalignant lesion or as an in situ carci-
noma [2]. The European guidelines have
defined it as an in situ carcinoma [3] and many
dermatologists claim that it is the same lesion
and that AK simply represents the initial lesion

in a disease continuum that might progress,
histologically and clinically, to invasive SCC
[4, 5]. In fact, the term AK has been recently
reclassified as ‘‘keratinocytic intraepidermal
neoplasia I–III (KIN I–III)’’ [6, 7] or ‘‘in situ SCC
type AK I–III’’ [8]. Bowen’s disease (BD) is
sometimes referred to as SCC in situ, charac-
terized by a proliferation of atypical intraepi-
dermal keratinocytes filling the entire
epidermis, including the granular layer [9, 10].
AK progresses to invasive SCC in 10% of cases
and several pathways have been proposed to
explain this phenomenon such as the ‘‘classic’’
or the ‘‘differentiated pathway’’ [11, 12]. The
risk of progression of BD to invasive SCC is
generally considered to be about 3%, of which
approximately one-third may metastasize [13].
Undoubtedly, AK constitutes a major public
health concern because of its high worldwide
prevalence of between 11% and 25% and its
potential for malignant transformation [5, 14].
According to a systematic review, the rate of
progression of single AK into SCC ranges
between 0 and 0.53% per year with regression of
single lesions between 15% and 63%. Although
the progression rate per lesion per year is small,
in individuals with multiple AK lesions for more
than 1 year, the risk for SCC development may
be higher [15, 16]. Cutaneous SCC, if left
untreated, is a deadly threat owing to its ability
to invade locally, spread via the lymphatic sys-
tem, blood or by perineural invasion, metasta-
size to any organ in the body and eventually
result in death [17, 18]. Treatment of these
lesions is highly recommended [3], although
unfortunately most of the current treatments
have local and systemic adverse effects [14].
Clearly, the best clinical approach is to identify
the risk factors associated with the malignant
onset and progression of these lesions to design
better preventive strategies [18]. It is generally
well acknowledged that the highest incidence
rates are seen in elderly fair-skinned individuals,
with light-coloured eyes and hair, skin that is
prone to sunburn [5, 11, 18–20] and especially
those persons on immunosuppressive therapy
[21–24]. A multicentre case–control study con-
ducted in Europe showed how the risk for AK is
seven times higher in persons with red hair,
followed by those with white, blonde, dark
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blonde and light brown hair. They also observed
a 40% reduced risk for AK in brown-eyed com-
pared with blue-eyed persons, and a lower risk
for darker phototypes. Sun exposure and sun-
burns during childhood significantly increased
the risk for AK [25]. Another multicentre
case–control study showed that chronic sun
exposure was strongly associated with SCC [26].
In addition, many other studies have also
pointed to ultraviolet radiation (UVR), which
has a clear significant effect [27], as the main
environmental trigger of AK [28], underesti-
mating other relevant exposome factors. BD is
also associated with UVR and immunosuppres-
sion, although other exposome factors such as
viral infections and chemical contaminants are
also of importance [10]. As the very first barrier
between our body and the environment, the
skin is exposed to many environmental, life-
style and host factors from conception onwards
which have been defined as the exposome
[29, 30]. Therefore, many exposome factors
besides UVR could be playing an important role
in the onset and progression of AK by the pro-
duction of inflammation, oxidative stress,
impaired apoptosis, mutagenesis, dysregulation
of cell growth and proliferation, and tissue
remodelling, which have all been described as
the main mechanisms of AK formation [31].
Hence, the primary aim of this study was to
assess the impact of exposome factors other
than UVR and other than the well-known host
factors (e.g. immunosuppression, gender, pho-
totype) on the etiopathology of AK and BD, and
in the progression to invasive SCC. The sec-
ondary aim was to serve as a basis for physicians
to define the relevant medical history of
patients, and design tailored prevention strate-
gies which complement sunscreens and expo-
sure reduction to sunlight.

METHODOLOGY

We performed a broad literature search on
articles published until September 2021
through PubMed on the impact of exposome
factors other than UVR on AK, BD and invasive
SCC. We conducted several parallel searches
combining related terms of the following

topics: actinic keratosis, squamous cell carci-
noma, Bowen’s disease and microbiome, hor-
mones, nutrition, alcohol, tobacco, viral
infections, chemical contaminants and air pol-
lution. Relevant articles including in vitro,
in vivo, ex vivo, clinical and epidemiological
studies were selected for review. This article is
based on previously conducted studies, and
does not involve any new studies of human or
animal subjects performed by any of the
authors.

INFLUENTIAL ROLE OF EXPOSOME
FACTORS

The AK, BD and SCC exposome consists of
environmental, lifestyle and other host factors
(Fig. 1) and their interactions affecting an indi-
vidual and producing a specific biological
response influencing the onset and progression
into a malignant lesion (Table 1).

Host Factors

Skin Microbiome
Our skin is home to beneficial microorganisms
with essential roles such as protecting us against

Fig. 1 Schematic map of the host, nutritional, lifestyle and
environmental factors influencing AK, BD and SCC
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Table 1 Summary of host, nutritional, lifestyle and environmental factors on AK, BD and invasive SCC

Exposome Subclassification Specific factors Risk/
association

References

AK BD SCC

Host Microbiome S. aureus : – : [33–35]

Propionibacterium,
Malasezzia

; ; [34]

Hormones Higher serum vitamin D – – : [47, 54–56]

– – ; [53]

PPARa, PPARc ; – ; [58]

PPARd : – : [58]

Nutritional Fatty acids Calorie restriction of fat ; – ; [65]

High-fat diets – – : [66–68]

Oily fish (moderate intake) ; – – [74, 86]

Vitamins & minerals Green leafy vegetables – – ; [66, 67, 74, 86]

Vitamin B3 ; – ; [82, 83]

b-Carotene – – ; [86]

Vitamin C – – ; [86]

Retinol – – ; [91]

Selenium – – : [92]

Lifestyle Alcohol & tobacco Wine ; – – [74]

Alcohol : – : [103, 104]

Tobacco – – : [107–112]

Environmental Viral infections HPV : : : [116, 117, 120, 121, 125–130]

Merkel cell polyomavirus – : – [132]

Chemical

contaminants

Arsenic : : : [133, 134, 136–139]

Coal tar, soot : – : [140]

Paraquat : – : [144, 145]

Air pollution PM – – : [153]

PAH – – : [157, 158, 160]

Ozone depletion – – : [169]

AK actinic keratosis, BD Bowen’s disease, HPV human papillomavirus, PAH polycyclic aromatic hydrocarbons, PM
particulate matter, PPAR peroxisome proliferator-activated receptors, SCC squamous cell carcinoma
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invading pathogens and educating our immune
system. Nevertheless, any imbalance between
commensals and pathogens may lead to skin
disease progression [32]. Several studies have
compared the skin microbiome between AK,
seborrhoeic keratosis (SK), SCC, basal cell car-
cinoma (BCC) and healthy skin [33–35]. Nev-
ertheless, we did not find any study evaluating
the role of the microbiota in BD. In a hospital-
based case–control study, Staphylococcus aureus
DNA was strongly associated with SCC and
there was also a trend for association with AK
but no association was found for BCC or SK [33].
The study could not determine the possible
causal or consequential relationship of the
presence of S. aureus with AK and SCC although
it is clear that acquisition of this bacteria was
not due to mere protrusion of the lesions, since
SK, a benign exophytic growth, did not show
such association. A longitudinal, cross-sectional
microbiome analysis conducted in immuno-
competent men showed that Propionibacterium
and Malasezzia organisms were relatively more
abundant in non-lesional photodamaged skin
than in AKs and SCCs. In contrast, Staphylococ-
cus was most commonly associated with
lesional skin, in particular, sequences most
closely related to S. aureus [34]. Only some
S. aureus-like operational taxonomic units
(OTUs) were associated with SCC, which means
that only particular strains of S. aureus are
associated with SCC and could be used as pos-
sible biomarkers [34]. The distinction between
the causal or the consequential role of S. aureus
in the development of AK and AK-to-SCC pro-
gression is not clear, although both may be
possible at the same time. The ulcerating
growth characteristics and the reduced avail-
ability of sebum in both AK and SCC could
partly explain the consequential S. aureus over-
abundance in these lesions. Propionibacterium, a
common skin-colonizing bacterium, depends
on sebum production to survive, and its decline
may exacerbate lesion severity by disrupting the
microbiome homeostasis and promoting S. au-
reus growth [34]. Conversely, S. aureus may be
the cause of AK and AK-to-SCC progression by
causing chronic inflammation, with the pro-
duction of nitric oxide and cytokines which
contribute to carcinogenesis [36–38]. Indeed,

inflammation is a classical mechanism of car-
cinogenesis wherein oxidative stress and pro-
inflammatory cytokines play a notorious role in
oncogenesis, Helicobacter pylori and gastric ade-
nocarcinoma being a clear example [39]. Inter-
estingly, individuals with AK have shown a
decline in RoxP concentration, an exogenous
bacterial protein secreted by Propionibacterium
acnes which modulates the redox status of the
skin protecting the host from oxidative stress
[40]. Furthermore, the staphylococcal alpha-
toxin has been shown to activate several
cytokines and nuclear factor-jB (NF-jB), sup-
porting the hypothesis of the causative role of
S. aureus in AK onset and progression to SCC
[41]. Moreover, S. aureus overabundance has
been significantly associated with human b-de-
fensin 2 (hbD-2) expression, an endogenous
antimicrobial peptide (AMP) with the ability to
induce cell proliferation [35] and to stimulate
keratinocyte migration and proliferation under
the control of EGFR, STAT1, and STAT3 activa-
tion [42]. Overall, it would be of interest to
develop biotherapeutics which stimulate the
normal skin microbiota to the detriment of skin
pathogen growth such as S. aureus. Curiously,
Staphylococcus epidermidis, the antagonist of
S. aureus, produces a molecule, 6-HAP (6-N-hy-
droxyaminopurine), which reduces UV-induced
skin tumours in mice by inhibiting DNA poly-
merase activity [43]. Furthermore, it has been
demonstrated how certain commensals secrete
UV-absorbing compounds such as mycospor-
ine-like amino acids (MAAs), and enzymes,
including superoxide dismutases (SOD), with
antioxidant activity [44]. Accordingly, people
should be encouraged to take care of their skin
microbiota in order to complement sunscreens.
Urbanization and excessive hygiene with soaps
decrease skin microbiota diversity [45] and
therefore it would be of interest to demonstrate
if soap-free shower gels may help in the pre-
vention of skin dysbiosis. UVR influences the
cutaneous microbiota with both positive and
negative consequences [44] and the beneficial
or detrimental effect of sunscreens on the skin
microbiota remains to be demonstrated.
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Hormones
Hormones (e.g. vitamin D, growth hormone or
steroids) influence the development and func-
tion of human skin and cause a wide range of
different biological responses through interac-
tion with receptors [46]. Vitamin D is a clear
example and is synthesized under the environ-
mental influence of sun exposure, which is the
main environmental risk factor for skin cancer
[47]. Keratinocytes can convert vitamin D3 to its
hormonal form, 1,25-dihydroxyvitamin D3

[1,25(OH)2D3] (calcitriol), which in turn stim-
ulates their differentiation, raising the hope to
prevent skin cancer [48]. In fact, 1a,25-dihy-
droxyvitamin D3, the active form of vitamin D3,
has potential antiproliferative, prodifferentia-
tive, and immunomodulatory activities and
thus potential therapeutic applications in the
treatment of AK and SCC [49]. Studies in ani-
mals have demonstrated that vitamin D3

hydroxyderivatives can attenuate chemically or
UVB-induced epidermal carcinogenesis and
inhibit growth of SCC and BCC [50]. Further-
more, vitamin D treatment decreases cell
growth and metastasis in vitro [51, 52]. Never-
theless, the relationship in vivo between vita-
min D and SCC is controversial and not well
defined. The level of 25(OH)D, the major cir-
culating form of vitamin D, is widely accepted
as the best indicator of vitamin D status and
vitamin D deficiency occurs if 25(OH)D levels
are less than 20 ng/mL and insufficiency if less
than 30 ng/mL. In a nested case–control study,
higher serum 25(OH)D levels were associated
with a decreased risk of non-melanoma skin
cancer (NMSC) in older Caucasian men [53].
Conversely, other studies, including a system-
atic review and meta-analysis, a prospective
study, and a cohort study, have found positive
associations between circulating 25(OH)D level
and risk of SCC [47, 54, 55]. This positive asso-
ciation could be explained by the confounding
effect of sun exposure, which is responsible for
both vitamin D synthesis and skin carcinogen-
esis. Indeed, in a case–control study, vitamin D
and SCC risk were directly associated in the
unadjusted model but after correcting for the
effect of undesired variables (including age, sex
and sunlight exposure) there was no significant
association [56]. Perhaps, the association

between high vitamin D levels and SCC suggests
that UV exposure may have a predominant
adverse influence that exceeds any putative
benefit from the higher levels of vitamin D.
What is clear is that sun protection should
always be advised, especially for patients with
skin cancer, while ensuring adequate levels of
vitamin D [57]. Hormone receptors are also
important in both AK and SCC. The peroxisome
proliferator-activated receptors (PPARs) are
members of the nuclear receptor superfamily
that regulate important cellular functions in
skin, including cell proliferation and differen-
tiation, as well as inflammatory responses. It has
been reported that PPARa immunoreactivity is
reduced in human keratinocytes of SCC and AK,
while PPARd appears to be upregulated. PPARd
has been demonstrated to have an anti-apop-
totic role and to maintain survival and differ-
entiation of epithelial cells, whereas PPARa and
PPARc activators induce differentiation and
inhibit proliferation and regulate apoptosis [58].
We did not find any study evaluating the
potential role of hormones in the development
of BD.

Nutritional Factors

Quality and Quantity of Free Fatty Acid
Consumption
The first evidence that high-fat diets influence
the development of ultraviolet radiation (UVR)-
induced skin cancer in experimental animals
was reported in 1939 [59]. It has been shown
that high-fat diets markedly shorten the time
between UV exposure and tumour appearance
and increase tumour multiplicity [60, 61].
Interestingly, experimental studies have shown
how caloric restriction inhibits the formation of
skin tumours in animals [62–64]. One dietary-
intervention trial clearly demonstrated how a
large decrease in calories consumed as fat
reduces the incidence of AK in humans. In this
study, subjects who were assigned to the inter-
vention group with a low-fat diet (20% of
energy from fat) for 2 years developed 3 ± 7
(mean ± SD) AKs, which was significantly fewer
than the 10 ± 13 AKs observed in the control
group (40% of energy from fat) [65]. Indeed,
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several studies have shown an increased SCC
tumour risk in susceptible persons, with
increasing consumption of high-fat diets and
consumption of unmodified dairy products,
such as whole milk, cheese and yoghurt [66–68].
Several explanations have been proposed for the
underlying mechanisms of high-fat diets and
skin cancer, such as lipid peroxidation of
unsaturated fatty acids, which plays a role in at
least part of the photocarcinogenic response
[60, 69], and photochemical conversion of skin
cholesterol into carcinogenic substances [70].
Although polyunsaturated fatty acids (PUFA)
are a clear target of free radical attack, a clear
distinction has to be made between the effect of
omega-3 and omega-6 fatty acids [71]. It has
been shown that x-6 fatty acids significantly
enhance carcinogenic expression and tumour
multiplicity, especially in the post-initiation
stage, while x-3 fatty acids inhibit UV-carcino-
genesis even at high dietary levels [72]. Since
there exists a connection between inflamma-
tion and cancer [38] it is logical that x-3 fatty
acids have been shown to dramatically reduce
the plasma and cutaneous pro-inflammatory
and immunosuppressive prostaglandin E syn-
thase type 2 (PGE2) levels, while they increase
the UVR-mediated erythema threshold in
humans. Conversely, x-6 fatty acids increase
PGE2, appear to act as tumour promoters,
downregulate macrophage tumoricidal activi-
ties, inhibit interleukin-2 (IL-2) production,
promote cellular hyperproliferation and tumour
angiogenesis and suppress apoptosis [73].
Accordingly, in the dietary-intervention trial in
which a large decrease in calories consumed as
fat reduced the number of AK [65], there was
also a reduction in levels of cholesterol and
linoleic acid, an x-6 fatty acid [61]. Addition-
ally, a longitudinal study conducted in Australia
using a validated food-frequency questionnaire
showed how a moderate intake of oily fish (an
average of one serving every 5 days) decreases
the rate of AK by 26% and 28% among partici-
pants with intermediate and the highest intakes
of oily fish, respectively [74]. The explanation of
AK improvement with oily fish such as salmon,
tuna and sardines probably relies on the high
content of omega-3 fatty acids, especially if
compared with other fish and seafood [75].

Overall, low-fat diets could play an important
role in the clinical management of AK, as well as
the prevention of SCC.

Antioxidant and Vitamin Intake
Antioxidants such as vitamin E or C are known
to act as free radical scavengers and they can
reduce lipid peroxidation damage. Indeed,
nutritional studies have shown how antioxi-
dants of the skin provide protection against the
formation of UV-induced cholesterol a-oxide
[76]. Animal studies have shown less frequent
actinic lesions and SCCs when receiving
antioxidants [77]. Oral nicotinamide (vita-
min B3) prevents UV radiation-induced
immunosuppression which is triggered by DNA
damage [78, 79]. The underlying mechanism
may rely on its capacity to prevent ATP deple-
tion, thereby boosting cellular energy and
enhancing DNA repair [80, 81]. Several double-
blind randomized controlled trials have shown
how oral administration of nicotinamide effec-
tively reduces AK count [82, 83]. A phase II
placebo-controlled study with 500 mg of orally
administered nicotinamide twice or once daily
has shown a 35% and 29% relative reduction in
AK count at 4 months respectively. What is
more, the study showed lower odds of devel-
oping skin cancer when compared with placebo
[82]. Later, a phase III randomized trial also
demonstrated a lower rate of AK and NMSC
among high-risk patients treated with 500 mg
of nicotinamide twice daily for 12 months [83].
Clinical studies have also indicated that con-
sumption of green leafy vegetables in individ-
uals with history of skin cancer prevents SCC
[66]. Green leafy vegetables contain a variety of
vitamins, minerals and other bioactive sub-
stances that may protect against cancers,
including the antioxidants lutein, vitamins C
and E, flavonoids and folate, which is impli-
cated in DNA synthesis and repair [84]. Never-
theless, the potential beneficial effect of many
vitamins such as vitamin A, vitamin E, vita-
min C and carotenoids and selenium has been
assessed in many epidemiologic studies and the
relationship with SCC has been, at best, weak
[85] (Table 2). We did not find any study
showing the relationship between nutritional
factors and BD.
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Lifestyle Factors

Alcohol Consumption
A longitudinal study conducted in Australia in
the 1990s, using a validated food-frequency
questionnaire, showed that moderate con-
sumption of wine (average of half a glass per

day) significantly reduced the rate of acquisi-
tion of new AKs [74]. There are several classes of
compounds on which polyphenols from wine
could exert a biological effect. The most
important polyphenols include flavonoids
(quercetin, catechin, anthocyanins) and non-
flavonoids (resveratrol), which are considered

Table 2 Epidemiological studies evaluating the association between vitamins, minerals and NMSC

Reference Type of study No. of
individuals

Vitamins and minerals
analysed

Main outcome

Kune et al.

[86]

Case–control study 88 cases ? 88

controls

b-Carotene and

vitamin C serum

concentration

b-Carotene- and vitamin C-containing

foods appear to be protective for both

SCC and BCC. Cases had a lower mean

serum level of b-carotene (p\ 0.001)

and vitamin A (p = 0.02)

Karagas

et al.

[87]

Nested case–control

study

132

cases ? 264

controls

Selenium, a-tocopherol,

b-carotene and

retinol serum

concentration

No association was found between the

concentrations of any of these nutrients

and SCC

Frieling

et al.

[88]

Randomized,

double-blind,

placebo-

controlled trial

22,071 12 years of 50 mg of b-

carotene

supplementation on

alternate days

An average of 12 years of supplementation

with b-carotene does not affect the

development of both BCC and SCC

Green

et al.

[89]

Community-based

randomized

controlled trial

1621 30 mg of b-carotene

supplementation per

day

No beneficial or harmful effect on the

rates of SCC and BCC as a result of b-

carotene supplementation

Greenberg

et al.

[90]

Randomized clinical

trial

1805 50 mg of b-carotene

supplementation per

day

In persons with a previous nonmelanoma

skin cancer, treatment with b-carotene

does not reduce the occurrence of new

skin cancer over a 5-year period

Moon

et al.

[91]

Randomized,

double-blind,

controlled trial

2297 25,000 IU of oral

retinol

supplementation per

day

Daily supplementation with 25,000 IU of

retinol was effective in preventing SCC,

although it did not prevent BCC

Duffield-

Lillico

et al.

[92]

Double-blind,

randomized,

placebo-

controlled clinical

trial

1312 200 lg daily selenium

supplementation

Selenium supplementation is ineffective at

preventing BCC and it increases the risk

of SCC and total NMSC

BCC basal cell carcinoma, NMSC non-melanoma skin cancer, SCC squamous cell carcinoma
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powerful antioxidants and are bioavailable after
wine consumption [93]. Nevertheless, there is
more and more evidence that flavonoids are
unlikely to act as major antioxidants but rather
through modulation of signalling cascades such
as the MAP kinase pathway [94]. Polyphenols,
especially resveratrol, have demonstrated anti-
inflammatory and also anticancer properties,
including inhibition of tumorigenesis [95, 96],
and they also inhibit UVR damage in human
skin cells [97]. It should be considered that the
concentration of trans-resveratrol varies
depending on the quality and type of wine.
Specifically, red wines have a concentration of
between 0.1 and 14.3 mg/L while white wines
rank much lower (\0.1–2.1 mg/L) [98, 99].
Proprietary formulations with resveratrol have
been developed for skin rejuvenation due to its
antioxidant and anti-aging properties [100], but
not for AK and SCC. Since resveratrol has been
shown to inhibit the growth of human skin SCC
A431 xenograft in nude mice by inducing
apoptosis and suppressing survivin and the
activation of caspase-3 [101], it would be of
interest to test the potential beneficial effect of
topical resveratrol in the treatment of AK and
SCC. Nonetheless, the anticarcinogenic prop-
erties of wine should be considered carefully
since acetaldehyde, the first ethanol metabolite,
is a cancer-causing agent [102]. In fact, alcohol
drinking is positively associated with SCC in a
dose-dependent manner [103], and is an inde-
pendent risk factor of AK according to a retro-
spective observational study [104].
Nevertheless, we did not find any study point-
ing to this association in BD.

Cigarette Smoking
Epidemiologic studies evaluating the effect of
cigarette smoking in AK are scarce, and
although several studies have assessed the pos-
sible positive association, statistical significance
has never been reached [105, 106]. Neverthe-
less, it would be advisable for patients with AK
to stop smoking since it has been reported to be
associated with SCC in many studies [107–112],
including prospective [107, 108] and case–con-
trol studies [109–112]. Some of them have also
reported a dose–response relationship in SCC

with number of cigarettes [110–112], years
smoked and pack-years of smoking [112].

Environmental Factors

Viral Infections
Human papillomaviruses (HPV) are ubiquitous
viruses that infect the skin [113] and have been
reported to be responsible for cervical carci-
noma [114] and oropharyngeal carcinoma [115]
among others. Regarding actinic lesions and
NMSC, a cross-sectional study of skin swabs
demonstrated that HPV species 1 and 2 of the
Betapapillomavirus genus were associated with
the presence of AK. Indeed, a greater number of
HPV types per sample was found in individuals
with AK or SCC or AK alone than in healthy
participants [116]. Other studies have also
demonstrated the relationship between Beta-
papillomavirus species 2 with SCC, especially in
sun-exposed sites [117]. The preferential finding
of HPV DNA in sun-exposed sites might be due
to increased promoter activity after UV irradia-
tion [118], as well as decreased apoptosis [119].
Specifically, the inhibition of apoptosis in
response to UV damage by the E6 protein from a
range of cutaneous HPV types may play a key
role in providing a survival advantage to
genetically damaged keratinocytes, resulting in
AK and SCC [120]. Epidermodysplasia verruci-
formis-associated HPV (EV-HPVs) are possibly
involved in the development of AK, as has been
demonstrated in serological studies, and may
play a role in the pathogenesis of SCC
[120, 121]. Interestingly, an observational
report with 9-valent HPV vaccination as
adjunctive, off-label management of AK showed
AK regression beginning within months of the
first injection, leading to the clearance of
thousands of lesions before the vaccination
protocol was completed [122]. Regarding the
possible association with other viral infections,
the literature is scarce and controversial. While
one study suggested the association of human
herpesvirus 8 (HHV-8) with proliferative skin
lesions [123], another study suggested that both
HHV-8 and Epstein-Barr virus do not play an
etiological role in cutaneous oncogenesis [124].
BD has also been associated with HPV infections
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in many epidemiological studies [125–130].
Several serotypes have been associated with BD
including HPV-6 and HPV-18 co-infection
[126], HPV-58 sub-lineage A1 [125], HPV-31
[130], HPV-11, -16 and -18 [128]. Prevalence of
HPV infection in patients with BD varies greatly
from 4.8% [130] to 68% [129], according to
different studies. A retrospective study showed
that HPV detection rate was significantly higher
in pelvic BD compared to non-pelvic BD [127].
Conversely, one clinical study involving two
cases of BD failed to detect evidence of HPV
infection [131]. BD has also been associated
with Merkel cell polyomavirus infection in a
Brazilian population study [132].

Chemical Contaminants
A strong positive correlation has been estab-
lished between arsenic and chromium concen-
tration and AK and NMSC [133]. Most human
arsenic exposure occurs from consumption of
contaminated water. Skin lesions are the first
signs of chronic arsenic exposure [134]. Several
arsenic poisoning outbreaks have been reported
in Bangladesh and India due to the introduc-
tion of deep tube-pumps to obtain drinking
water from underground sources [135, 136]. A
population study assessing water levels of
arsenic and skin lesions in India showed that
the age-adjusted prevalence of keratosis was
strongly related to water arsenic levels, rising
from zero for the lowest exposure level
(\0.05 mg/L) to 10.7 and 8.3 per 100 for male
and female individuals, respectively, for the
highest exposure level ([0.8 mg/L) [136]. BD
has also been associated with arsenic exposure
in several case-report publications [137–139].
Water from areas of endemic arsenic poisoning
clearly needs to be thoroughly analysed as a
preventive measure. Other sources of exposure
to chemical contaminants may arise during
exposure in certain occupations. Aside from
outdoor workers, keratoses and skin cancers can
arise in other workers exposed to chemical car-
cinogens such as coal tar products and arsenic:
tar keratoses or arsenical keratoses are a clear
example. Tar keratoses may appear years after
exposure to coal distillation products (e.g. coal
tar, pitch, shale oil) [140]. Arsenical keratoses
usually appear on the palms of the hands and

soles of the feet after ingestion of arsenic and
can progress to SCC [140]. Arsenic (As3?) may
induce large deletion mutations leading to
genomic instability [141], which is a hallmark
of cancer, and it is likely to act as a tumour
promoter by stimulating Jun kinases (JNKs), AP-
1, c-jun and c-fos [142]. Arsenic is used in many
industrial processes, including the manufacture
of semiconductors, glass and also insecticides
and herbicides [140]. It is also produced as a by-
product in the smelting of copper, lead and
zinc. Workers may also be exposed to arsenic in
its mining and smelting [140]. Farmers are
exposed to arsenic pesticides and thereby
exposed to increased risk of AK and SCC. There
are other pesticides such as paraquat which
have also been reported to be potentially car-
cinogenic [143]. The relationship between
paraquat and keratosis, hyperkeratosis and SCC
has been controversial. Some studies have
reported an increased risk of developing these
lesions in paraquat manufacturers, probably
due to exposure to tarry by-products in the
production process [144, 145]. Conversely,
other studies have reported no significant asso-
ciation between paraquat and keratoses or other
skin lesions [146–148]. SCC, the malignant
progression of AK, may also result from poly-
cyclic aromatic hydrocarbons (PAH), which are
the main carcinogens present in tar, pitch, soot
and raw paraffin [140]. To understand the risks
of industrial processes thoroughly it is crucial to
design better prevention strategies such as per-
sonal protective equipment (PPE), coupled with
educational projects to encourage the early
detection of premalignant lesions.

Air Pollution
Urban air pollution is a complex mixture of
gases and particles with condensed organic
matter. The major sources of airborne pollu-
tants are mainly from incomplete burning of
materials derived from fossil fuels, vegetative
sources or mixtures of these materials (e.g. gar-
bage, waste and coal) [149]. As the outermost
organ, the skin is exposed to many air pollu-
tants such as PAH, volatile organic compounds,
oxides, particulate matter (PM) and ozone
which have detrimental effects on the skin
[150].
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Particulate Matter PM consists of complex
mixtures of particles suspended in the air which
vary in size and composition. It is categorized
according to the size of the particles: coarse
particles larger than 1 lm diameter (e.g. PM2.5

and PM10), fine particles smaller than 1 lm, and
ultrafine particles smaller than 0.1 lm. The
major components are metals, organic com-
pounds such as PAH and endotoxins, materials
of biologic origin, ions and particle carbon core.
They are produced in factories, power plants,
refuse incinerators, motor vehicles, construc-
tion activity, fires and natural windblown dust
[151]. PM penetrates into barrier-disrupted skin
through hair follicles or across the stratum
corneum, causing inflammation and increased
levels of IL-8, matrix metalloproteinase-1
(MMP-1) and reactive oxygen species (ROS),
which have detrimental effects in the skin.
Indeed, PM leads to neutrophil infiltration in
the deep dermis, as well as epidermal thicken-
ing. Most PM that penetrates into the skin
consists of fine particles that are hazardous for
human skin [152]. A semi-individual cohort
study showed that an increase in PM10 of 10 lg/
m3 was associated with a 52% increase in rela-
tive risk of NMSC [153]. Another epidemiologic
study demonstrated that urban PM10 air pollu-
tion in São Paulo was associated with incidence
and mortality of skin cancer [154]. Accordingly,
a higher residential green space level should
have a protective effect for NMSC in areas with
low to moderate UV intensity.

Polycyclic Aromatic Hydrocarbons PAH are
the largest class of chemical compounds, ranked
ninth most threatening and known to cause
cancer. They are present ubiquitously in the
environment as pollutants and are formed by
the incomplete combustion of almost any fuel
such as motor vehicle emissions, residential
heating and pollution from industrial machines
and are transported through the atmosphere in
the vapour phase. Indoor air sources of PAH
exposure include tobacco smoke, fumes from
open fires, kerosene heaters and cooking.
Humans are exposed to PAH by inhalation,
ingestion and skin contact, which bioaccumu-
late in soft tissues, binding to DNA and causing
mutations that result in cancer [149, 155, 156].

The PAH benzo[a]pyrene (BaP) and
dibenzo[def,p]chrysene (DBC) both produced
SCC in an FVB/N mouse skin tumour model
[157]. The carcinogenic effect of PAH is medi-
ated through the interaction with their recep-
tor, the aryl hydrocarbon receptor (AhR), and
subsequent activation of CYP1A1. This protein
constitutes a member of the cytochrome P450
family, which is responsible for the degradation
of PAH, resulting in the formation of highly
carcinogenic diol-epoxide metabolites that
form DNA adducts. Indeed, AhR?/? mice
exposed to airborne PM developed SCCs while
AhR-/- did not [158]. Interestingly, animal
studies have demonstrated that resveratrol, a
natural AhR antagonist, inhibits BaP-induced
CYP1A1 expression and subsequent formation
of DNA adducts [159]. It has also been demon-
strated that UVA combined with BaP signifi-
cantly increases the risk of skin cancer [160]. In
cell culture, BaP synergistically increases the
formation of 8-hydroxy-20-deoxyguanosine (8-
OHdG) in combination with UVA [161]. BaP
serves as a photosensitizer to generate massive
ROS upon UVA irradiation which in turn causes
oxidative damage and BaP–DNA binding (ge-
netic effect), and potentiates the activation of
signal transduction cascades (epigenetic effect),
thereby leading to carcinogenesis. In fact, topi-
cal application in mice of BaP followed by UVA
significantly increased the skin tumour inci-
dence and multiplicity compared with UVA or
BaP treatment alone [162]. Photoproducts
resulting from UVB radiation are also able to
activate AhR, which leads to subsequent acti-
vation of cytochrome P450 1A1 and EGF
receptor internalization with activation of the
EGF receptor downstream target ERK1/2 and
subsequent induction of cyclooxygenase-2
(COX-2), which is involved in SCC develop-
ment by generating pro-inflammatory and anti-
apoptotic metabolites [163]. In addition, the
UVB-sensitive transcription factor AhR attenu-
ates the clearance of UVB-induced cyclobutene
pyrimidine dimers in human HaCaT KC and
skin from SKH-1 hairless mice by inhibition of
p27 tumour suppressor protein [164]. Interest-
ingly, the AhR has been identified as a locus
significantly associated with SCC development
in a genome-wide association study [165].
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Regarding BD, we did not find any study eval-
uating the potential role of air pollution.

Ozone Ozone is an unstable toxic gas normally
found in the stratosphere, where it plays a
beneficial role in filtering out the short-wave
spectrum of UV radiation. Unfortunately,
growing emissions of chlorofluorocarbon
molecules are causing a diminution in the
ozone layer, resulting in more UVB reaching the
Earth’s surface [166]. Consequently, for every
1% decrease in ozone there is a 2% increase in
UVB irradiance, and therefore a 2% increase in
skin cancer is predicted [167]. Specifically, each
percentage point degradation in the O3 layer
thickness would raise the incidence of SCC by
3% to 4.6% [168, 169]. Surprisingly, large
reductions in UV irradiance have been observed
in polluted urban areas when compared to
pristine locations. While the cleaner atmo-
sphere in Lauder, New Zealand is undoubtedly
beneficial for health, its effect on UV may not
be. During the summer, mean UVB irradiances
in Tokyo are approximately 40% less than in
Lauder for the same solar zenith angle. These
differences are slightly smaller in the winter,
and in the UVA region. The effects of pollution
in Tokyo impose large reductions in UV irradi-
ances compared with those at the pristine Lau-
der site. The reductions in UV in Tokyo become
progressively larger as the wavelength decreases
through the UVA and UVB regions [170]. While
ozone in the upper atmosphere (stratosphere)
occurs naturally and protects skin by filtering
out harmful solar ultraviolet radiation, ozone at
ground level (troposphere) is a noxious, highly
reactive oxidant pollutant [171]. It is formed in
photochemical smog reactions, with the inter-
action of sunlight (UVR) with hydrocarbons,
VOCs, NOx, carbon monoxide (CO) and other
pollutants [150]. Acute ozone exposure depletes
skin vitamins C and E and induces lipid perox-
idation in upper epidermal layers. The stratum
corneum, as the penetration barrier of the body,
appears to be particularly susceptible to ozone-
induced oxidative stress. Such processes at
superficial skin layers lead to barrier perturba-
tions and could trigger inflammatory responses
in adjacent skin layers [172]. Nevertheless, to

the best of our knowledge there is no evidence
claiming that tropospheric ozone causes SCC.

CONCLUSIONS

The main environmental risk factor for the
development of AK, BD and SCC is UVR expo-
sure, which has a clear significant effect, in
combination with other host factors (e.g. pho-
totype, gender, and light-coloured hair and
eyes). Accordingly, photoprotection is clearly
advisable, especially for patients with skin can-
cer and individuals prone to sunburn. Never-
theless, the exposome of AK, BD and SCC should
not be restricted to UVR since many other
exposome factors play a relevant role in the
disease onset and progression. Historically, the
exposome of AK, BD and SCC has mainly
focused on UVR, and the interactions with other
exposome factors are missed or poorly under-
stood. Clearly, the independent effect of these
other potential risk factors is difficult to quan-
tify, and inconsistencies and controversial data
are due to the confounding effect of sun expo-
sure. However, many exposome factors interact
with each other on a genetic background to
produce a specific biological response. In addi-
tion to photoprotection it would be advisable to
take care of the microbiota, by avoiding exces-
sive hygiene, eating omega-3 fatty acids (e.g.
salmon), avoiding excessive fatty acid meals,
following a regular diet rich in antioxidants,
stopping smoking and being aware of the
potential occupational risk factors. Undoubt-
edly, the exposome of AK, BD and SCC pre-
sented here will help not only to understand AK
and SCC etiopathology but also to understand
the underlying mechanisms of malignant
transformation and be able to design tailored
prevention strategies which complement sun-
screens and avoidance of sun exposure.
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