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Abstract

Toxin synthesis and endospore formation are two of the most critical factors that determine

the outcome of infection by Clostridioides difficile. The two major toxins, TcdA and TcdB,

are the principal factors causing damage to the host. Spores are the infectious form of C. dif-

ficile, permit survival of the bacterium during antibiotic treatment and are the predominant

cell form that leads to recurrent infection. Toxin production and sporulation have their own

specific mechanisms of regulation, but they share negative regulation by the global regula-

tory protein CodY. Determining the extent of such regulation and its detailed mechanism is

important for understanding the linkage between two apparently independent biological phe-

nomena and raises the possibility of creating new ways of limiting infection. The work

described here shows that a codY null mutant of a hypervirulent (ribotype 027) strain is even

more virulent than its parent in a mouse model of infection and that the mutant expresses

most sporulation genes prematurely during exponential growth phase. Moreover, examining

the expression patterns of mutants producing CodY proteins with different levels of residual

activity revealed that expression of the toxin genes is dependent on total CodY inactivation,

whereas most sporulation genes are turned on when CodY activity is only partially dimin-

ished. These results suggest that, in wild-type cells undergoing nutrient limitation, sporula-

tion genes can be turned on before the toxin genes.
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Introduction

Clostridioides difficile, a spore-forming bacterial pathogen, is now the primary cause of antibi-

otic-associated diarrhea, an infection usually acquired during stays in healthcare facilities. At

present, >500,000 patients in the USA are newly diagnosed with C. difficile infection (CDI)

each year and 75,000–175,000 cases of recurrent CDI are seen, leading to an increase in health-

care costs of $4.2 billion [1–3]. While current treatments cure almost 90% of primary infec-

tions, recurrent infection is so high that thousands of patients are on long-term antibiotic

treatment and more than 25,000 CDI patients die each year [1, 4]. The ability of the bacterium

to be so effective in causing disease depends on two critical aspects of its biology. Pathogenic

C. difficile produces at least two potent toxins, TcdA and TcdB, that cause major disruptions of

the mammalian intestinal tract [5]. In addition, the bacteria form spores in the GI tract, a pro-

cess that makes a significant fraction of the infecting cells resistant to all antibiotics and pro-

vides a way for this oxygen-sensitive anaerobe to survive in the environment. Spore formation

appears to be the primary factor responsible for the unusual frequency of recurrent C. difficile
infection; the spores released from the GI tract are difficult to kill, survive in the environment

and are able to cause a new round of infection in patients who have completed their antibiotic

treatment. Discovering factors that influence toxin production or spore formation or both is

critical to our understanding of infection and has the potential to lead to novel ways of pre-

venting and treating C. difficile infection.

The genes that encode the toxins have no known impact on sporulation. Similarly, most

sporulation proteins are not known to influence toxin synthesis directly. (There is some evi-

dence that the sporulation regulator Spo0A contributes to toxin gene regulation, but the effect

varies from strain to strain [6–8]). The toxin genes are transcribed at very high levels by RNA

polymerase containing the toxin gene-specific sigma factor TcdR [9]. Surprisingly, a null

mutation in tcdR causes a decrease in sporulation efficiency and the heat-resistance of the

resulting spores [10], implying that one or more genes normally transcribed by TcdR-contain-

ing RNA polymerase encode proteins that affect spore formation. The conditions that lead to

TcdR activity are complex. During exponential growth in rich medium, the tcdR gene is tran-

scribed at low levels by σA-containing RNA polymerase, the primary form of RNA polymerase

in growing cells. When cells reach stationary phase, the tcdR gene is much more highly

expressed, first from the σA -dependent promoter and then, as TcdR accumulates, from a

TcdR-dependent promoter [11, 12]. A third sigma factor, σD (the motility sigma factor), also

contributes to tcdR gene expression [13]. When TcdR accumulates, it directs RNA polymerase

to the promoters of the toxin genes, leading to high-level toxin gene expression [9].

Although they may or may not influence each other directly, both sporulation and toxin

synthesis are turned on when cells experience nutrient limitation, e.g., when cells in laboratory

culture in a complex medium reach stationary phase. At least two global regulatory proteins

are known to contribute to this form of regulation. CcpA, the regulatory protein that is acti-

vated when rapidly metabolizable sugars are in excess, is a repressor of the tcdR and toxin

genes and represses sporulation as well [14]. The global regulator, CodY, is also a strong

repressor of the tcdR gene [15, 16], as well as an inhibitor of sporulation [17]. Nawrocki et al.
[17] found that in the ribotype 027 strain UK1, a null mutation in the codY gene increases

spore formation 1000-fold in cells growing in 70:30 medium. CodY is found in nearly all low

G+C Gram-positive bacteria and is activated by binding of one of the branched-chain amino

acids (BCAAs; isoleucine, leucine, valine) [18] and, in most species, GTP [19–23]. The respon-

siveness of CodY to BCAAs implies that the cell has evolved to assess accumulation of these

amino acids as a major indicator of nutrient availability; a likely reason is that the BCAAs are

not only used for protein synthesis but are also the precursors of branched-chain fatty acids,
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the principal membrane fatty acids of most Gram-positive bacteria [24, 25]. The GTP level in

the cell influences the ability to synthesize RNA, but is also a general indicator of amino acid

availability; when the intracellular concentration of any amino acid drops below the level

needed for its incorporation into protein, the GTP pool drops significantly due to the conver-

sion of GTP to pppGpp via the stringent response [26, 27]. Thus, when certain nutrients

become limiting, both toxin and sporulation genes can potentially be turned on.

The CodY protein represses transcription of hundreds of genes and activates transcription

of dozens of other genes in many Gram-positive species [15, 16, 28–43]. The direct target

genes tend to be involved in multiple aspects of nutrient uptake, metabolism and virulence;

some target genes encode other regulators that are the direct activators or repressors of the

apparent CodY targets. A previous microarray analysis of genes whose expression is altered by

a codY null mutation in the C. difficile ribtoype 012 strain JIR8074 (also known as 630E) identi-

fied 146 genes that are negatively regulated>4-fold by CodY and 19 genes that are positively

regulated [15].

The diversity and complexity of the CodY regulon raises important issues about how and

why the cell uses such a regulator to control multiple, seemingly unrelated processes. A key

aspect of our approach was to subject a panel of CodY point mutants with different levels of

residual activity to genome-wide transcription analysis by RNA-seq in order to identify genes

that are regulated at different levels of CodY activity. Similar approaches have been used to

analyze the CodY regulons in Bacillus subtilis [30] and Staphylococcus aureus [42]. This type of

analysis provides a global picture of C. difficile’s strategy for altering virulence and sporulation

properties in response to various levels of nutrient availability.

Results

Virulence of codY mutant strains

The documented role of CodY as a repressor of C. difficile toxin gene expression in laboratory

cultures [15, 16] raised the possibility that a codY null mutant strain might overexpress the

toxin genes during infection and therefore be hypervirulent. To address this possibility, we

tested the virulence of strain LB-CD16, a codY null mutant [44] of strain UK1, a ribotype 027

isolate from the Stoke-Mandeville outbreak of 2003 [45]. (The mutation was created by inser-

tion within codY of an intron containing an erythromycin-resistance determinant and is noted

as codY::intron::erm.) In a mouse model of infection in which mice are fed a cocktail of antibi-

otics before infection [46], strain UK1 and the codY null mutant (LB-CD16) induced diarrhea

and weight loss in all mice infected at a dose of 105 spores per mouse (Fig 1A and Table 1);

10% of the mice died after infection by UK1, 20% after infection by the codY null mutant. At a

dose of 104 spores per mouse, strain UK1 was greatly reduced in virulence, but the codY null

mutant caused diarrhea and loss of weight (without death) in nearly all infected mice (Fig 1B

and Table 1).

Toxin titers in parental and mutant strains

To test the relationship between the hypervirulence of strain LB-CD16 (UK1 codY) and toxin

titer, culture fluids of laboratory cultures that had grown for 24 hrs at 37˚C in an anaerobic

chamber were tested for toxin titers by ELISA assays. As shown in Fig 2, the culture fluid of the

codY null mutant contained considerably more TcdA (Toxin A) and TcdB (Toxin B) than did

its parent strain. These results were consistent with the much higher level of expression of the

toxin genes in laboratory cultures of strain UK1 codY (Fig 3).

To verify that toxin overproduction in strain LB-CD16 was a result of the codY null muta-

tion, complementation was achieved by integrating a wild-type copy of codY contained within

Global role of C. difficile CodY

PLOS ONE | https://doi.org/10.1371/journal.pone.0206896 January 30, 2019 3 / 34

https://doi.org/10.1371/journal.pone.0206896


the transposon Tn916 at a non-homologous locus in the C. difficile chromosome. As shown in

Fig 2, the complemented strain had near-parental levels of toxin proteins. In addition, the vast

overexpression of the tcdA and tcdB genes in the UK1 codY mutant strain was greatly reduced

in the complemented strain (Fig 3).

Creation of a family of CodY point mutants with different levels of residual

activity

Whereas complete inactivation of CodY in strain UK1 led to about a 1000-fold increase in

toxin gene expression at the onset of stationary phase (Fig 3), the level of CodY activity needed

to repress the toxin genes has not been determined. To address this question and simulta-

neously determine the extent to which other CodY target genes are affected by partial inactiva-

tion of CodY in strain UK1, we created a family of codY point mutants with different levels of

residual activity. We then determined the impact of these mutations on gene expression during

mid-exponential phase in cells growing in a rich medium. Doing so prevented the potential

contribution of changes in nutrient availability that would alter multiple other regulatory

mechanisms that are likely to affect many of the CodY-regulated genes.

Fig 1. Infection outcomes induced by strain UK1 and its codY mutant derivative. Groups of mice (n = 10) were

infected with spores of strain UK1 and its codY null mutant (UK1 codY, also known as LB-CD16) and were monitored

for weight change at doses of 105 spores per mouse (A) or 104 spores per mouse (B). Weight changes between the two

groups were analyzed by 2-way ANOVA. The p values were calculated based on the differences in weight changes

between the mice infected with the wild-type strain and the mice infected with the codY null mutant over the entire

time course of the experiment (days 0–9 for Fig 1A and days 0–7 for Fig 1B). The impact of these infections on mouse

diarrhea and viability is listed in Table 1.

https://doi.org/10.1371/journal.pone.0206896.g001

Table 1. Diarrhea in mice infected with codY+ and codY null mutant strains.

Strain Dose of spores per mouse Mice with diarrhea (%) Death of infected mice (%)

UK1 105 100 10

UK1 codY 105 100 20

UK1 104 20 0

UK1 codY 104 90 0

Groups of 10 mice pretreated with antibiotics and infected with the indicated doses of spores of C. difficile strains

UK1 and UK1 codY (LB-CD16) were monitored for survival and the occurrence of diarrheal symptoms over the

course of 7 days of infection.

https://doi.org/10.1371/journal.pone.0206896.t001
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Our approach was to introduce mutations in the region of CodY that includes the BCAA-

binding pocket in order to reduce, but not eliminate, the affinity of CodY for the BCAAs or

the extent of CodY conformational change upon BCAA binding. To know which amino acid

Fig 2. Toxin titers in cultures of parent and codY null mutant strains. Relative levels of TcdA and TcdB in culture

supernatants of UK1, UK1 codY (LB-CD16) and UK1 codY/codY+ (ND-CD10) collected after 24 hrs of bacterial

growth were determined by ELISA. Two samples were assayed for each toxin for each strain; toxin levels were averaged

and normalized to the values in the wild-type strain (UK1) set at 1.0. Error bars were created for all pairs of samples,

but for some pairs the difference was so small that the bars are not visible.

https://doi.org/10.1371/journal.pone.0206896.g002

Fig 3. Effect of a codY null mutation on tcdA and tcdB transcription in strain UK1. Cultures of strains UK1,

LB-CD16 (codY::intron::erm) and ND-CD10 (codY::intron::erm codY+) were grown in CDMM medium and samples

were removed at 8 hrs (late exponential growth phase) and 24 hrs (stationary phase). RNA was extracted and assayed

for tcdA and tcdB expression by qRT-PCR (see Materials and Methods). Results for the toxin genes were normalized to

those obtained for the rpoA gene.

https://doi.org/10.1371/journal.pone.0206896.g003
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residues of CodY are likely to play a major role in interaction with and response to BCAAs, we

determined the crystal structure of the N-terminal half of C. difficile CodY (CdCodY).

a) Structure of the GAF domain of CdCodY. The cGMP-specific phosphodiesterases-

adenylyl cyclases-FhlA (GAF) domain of B. subtilis CodY (BsCodY) protein, formed by the N-

terminal 155 residues, includes a loop of amino acid residues that interact with BCAAs; such

binding induces a change in protein structure leading to increased affinity for CodY-binding

sites [47–49]. The GAF domain sequences of C. difficile and B. subtilis CodY proteins (44%

identity) are not nearly as similar as the C-terminal, DNA-binding domains (93% identity)

(Fig 4). The crystal structure of the GAF domain of CdCodY bound to isoleucine was solved

by molecular replacement and refined against data extending to 1.7 Å resolution, as described

in Supplementary Materials and Methods and S1 Table. The CdCodY GAF domain was found

to consist of a central, five-stranded, anti-parallel β-pleated sheet (β3-β4-β5-β1-β2) onto the

bottom face of which are packed two α-helices, α2 and α4. Extending from the opposite face of

the sheet are two extended loops; β2-β3 meanders across the top of the sheet forming a promi-

nent β-hairpin and a short α-helix, whereas β3-β4 does not contain a regular secondary struc-

ture. The N-terminal α1 helix protrudes strikingly away from the rest of the GAF domain in

CdCodY (Fig 5A). Although they differ in sequence, the tertiary structure of the CdCodY GAF

domain is similar to that of the GAF domain of BsCodY (Fig 5C); 120 Cα atoms can be super-

posed with a root mean squared positional displacement (rmsΔ) of 1.5 Å.

In both CdCodY and BsCodY, the effector isoleucine is bound in a pocket on the face of the

β-sheet that is distal to the long helices α2 and α5, but the positions and modes of isoleucine

binding are quite different (Fig 5C). The CdCodY binding site is formed by residues from

strands β1 and β5 from the β-pleated sheet and from the β2-β3 and β3-β4 segments of the poly-

peptide, which embrace the ligand so that it is completely enclosed in the protein interior (Fig

5B). Isoleucine is expected to bind to the protein as a zwitterion. The first of the carboxylate

oxygens of isoleucine forms an ion-pairing interaction with the ε-NH3
+ of K110 and a charge-

dipole interaction with the side chain hydroxyl of S130, with the second carboxylate oxygen

forming charge-dipole hydrogen bonds with the phenolic hydroxyl of Y42 and the side chain

amide–NH2 of N40 (Fig 5B). Meanwhile the α-amino group of the ligand forms an ion-pairing

interaction with the side chain carboxylate of E104 and charge-dipole interactions with the

hydroxyl of the side chain of S62 and the main chain carbonyl of D60. As shown in Fig 5B,

R107 plays an important role in ligand binding since its guanidino moiety forms a two-

pronged ion pairing interaction with the side chain of E104. Collectively these interactions ful-

fill the electrostatic and hydrogen bonding potential of the ligand. The isobutyl side chain,

which distinguishes BCAAs from other amino acids, projects into a pocket circumscribed by

the aromatic side chains of Y42, F74 and F101, and the aliphatic portions of the side chains of

S62, S130 and E104.

In the GAF domain of CdCodY, the isoleucine carboxylate abuts the β-sheet, while in

BsCodY it is displaced from the sheet and oriented away from it such that the respective car-

boxylate carbon atoms are separated by 9 Å in Fig 5C. This structural comparison helps to

explain why residues participating in BCAA binding in BsCodY are strongly conserved in the

CodY orthologs of some other low G+C Gram-positive bacteria, but not in CodY from C. diffi-
cile (Fig 4).

b) Creation of point mutations in the GAF domain. To create relatively conservative

mutations in the codY gene based on the structure determined by crystallography, we modified

some amino acid residues, such as F74 and F101, that interact directly with isoleucine, and

others, such as E99, P102 and E103, that are nearby, but do not interact directly. Because of the

difficulty in creating point mutations in a specific gene in the C. difficile UK1 chromosome, we

cloned the wild-type or mutant genes within the conjugative transposon Tn916; when

Global role of C. difficile CodY

PLOS ONE | https://doi.org/10.1371/journal.pone.0206896 January 30, 2019 6 / 34

https://doi.org/10.1371/journal.pone.0206896


introduced by conjugation into C. difficile strain LB-CD16 (codY::intron::erm), the modified

transposon inserted at random sites. In no case was the codY::intron::erm mutation altered.

Instead the transconjugants have two or more copies of codY, one at the normal codY locus

interrupted by an erm-containing intron and at least one additional copy (with or without a

GAF domain point mutation) elsewhere on the chromosome. Analysis by qPCR allowed us to

choose strains in which the lowest number of copies of Tn916 carrying codY had integrated

(S2 Fig). The presence of the expected point mutations was verified by amplifying and

sequencing the versions of codY located within Tn916. The chromosomal locations of the

transposons were also determined by sequencing (S2 Table); isolates in which the insertion

occurred within a gene were removed from analysis.

Fig 4. Alignment of the sequences of CodY from C. difficile (Cd) and B. subtilis (Bs). The protein secondary

structures for the full-length CdCodY and BsCodY are depicted above and below the sequences, respectively. Sequence

identities are indicated by red shading. Residues that form prominent interactions with the effector molecule

(isoleucine) in C. difficile CodY are labeled with black arrowheads.

https://doi.org/10.1371/journal.pone.0206896.g004

Fig 5. Structure of the GAF domain of C. difficile CodY. A. Ribbon tracing of chain A color ramped from the N-

terminus (blue) to the C-terminus (red). The secondary structure elements are labeled. The isoleucine cofactor is

shown as spheres and colored by atom: carbon, green; nitrogen, blue; oxygen, red. B. Stereo view of the ligand binding

site with the isoleucine effector shown in cylinder format and with carbon atoms colored grey. 2Fo-Fc electron density

associated with the effector in the refined structure is contoured at 1σ and shown in light blue. Surrounding protein

residues are shown in cylinder format with their carbon atoms colored in green. C. Comparison of the GAF domains

of CodY from C. difficile and B. subtilis shown as blue and gold ribbons respectively with the isoleucine ligands shown

as spheres with grey and green carbon atoms respectively. The different positions and orientations of the effector

molecules are apparent.

https://doi.org/10.1371/journal.pone.0206896.g005
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Altered gene expression in the panel of codY mutant strains

To assess the effects of the various point mutations on CodY activity, RNA was extracted from

cells grown in tryptose-yeast extract (TY) medium to mid-exponential phase (A600 = 0.4–0.6).

After removal of DNA, the RNA was assayed for five specific transcripts by qRT-PCR. The

genes were chosen based on previous microarray analysis of CodY-regulated genes in strain

JIR8094 [15]. The results, shown in Fig 6, indicate that the five genes, all of which are repressed

by CodY, were derepressed to different extents in the panel of mutants, suggesting that the

mutants had different levels of residual CodY activity.

As shown in S3 Fig, all strains used for the experiments below (except for the original null

mutant) produced significant levels of CodY protein. Unlike the case in B. subtilis, however,

the codY gene of C. difficile is repressed by CodY. As a result, the concentration of CodY pro-

tein in most or all point mutants was higher than in wild-type cells (S3 Fig). Thus, the extent of

gene regulation mediated by various point mutants is a complex result of both the mutant pro-

tein’s intrinsic activity and the extent to which it is overexpressed.

Based on their apparent intermediate levels of residual CodY activity, RNA from the wild-

type strain, the codY::intron::erm null mutant and three of the point mutant strains (ND-CD12

codY::intron::erm codY [F74Y]; ND-CD13 codY::intron::erm codY [E99D] and ND-CD17

codY::intron::erm codY [F101W]) was then subjected to RNA-seq analysis. Of the 3505 pro-

tein-encoding genes annotated for this strain, DESeq analysis [50] identified 522 and 79 genes

with more than a 3-fold higher or lower transcript abundance, respectively, and with an

adjusted P value <0.05 in the null mutant compared to the parent strain. Transcript levels in

all strains were then converted to RPKMO values (reads per kb of gene length per million

reads aligning to all annotated ORFs in sample) [51] (see S4 Table for all values obtained). To

further reduce the likelihood of erroneous identification of CodY-regulated genes, we excluded

genes whose highest average normalized transcript level was less than 2 RPKMO in either the

wild-type strain (for positively regulated genes) or the codY null mutant strain (for negatively

Fig 6. Effects of codY point mutations on expression of five C. difficile genes. Three-to-four individual cultures of

wild-type strain UK1, its codY null mutant and five different codY point mutant strains were grown in TY medium to

an OD600 = 0.4–0.6. RNA was extracted and assayed by qRT-PCR for the potential target genes R20291_2712

(encoding a peptidase), R20291_1235 (encoding chloromuconate cycloisomerase), R20291_1413 (ilvC), R20291_1698

(encoding a cell surface protein) and R20291_ 0812 (glgC). Counts were normalized to those for the rpoA gene and

presented relative to the counts obtained with the wild-type strain.

https://doi.org/10.1371/journal.pone.0206896.g006
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regulated genes) and genes whose RPKMO value for one of the null mutant samples was

within the range of wild-type samples. This filtering reduced the numbers of genes over- and

underexpressed in the codY null mutant to 495 and 57, respectively (S3 Table). These genes

may not represent the entire CodY regulon, since the exclusion of genes whose transcript level

was affected less than 3-fold by a codY null mutation is arbitrary and is likely to exclude some

genes whose expression is managed by other proteins in addition to CodY (see below). The

impact of the three point mutations on gene expression as measured by RNA-seq was similar

to that seen by qRT-PCR (Fig 6) for the five genes tested using both analyses (see S3–S7 Tables

for RNA-seq data for the genes in Fig 6).

The derepressed genes (S4A Table) included more than 200 nutrient transport and metabo-

lism genes (including amino acid biosynthesis genes), 14 peptidase and protease genes, 12 reg-

ulatory proteins, 47 known sporulation genes, the genes of the major toxin locus (tcdR
tcdBEA) and many genes of unknown function. The most highly underexpressed genes in the

codY null mutant were the glucitol-sorbitol metabolism operon, pyruvate/formate metabolism

genes and cysteine metabolism genes (S4B Table).

When the transcript levels of both negatively and positively regulated CodY target genes

were compared in the panel of point mutants, the overall pattern was consistent with the

assumption that the strain expressing the E99D mutant form of CodY is closest to the wild-

type for both negative and positive regulation, that the strain expressing the F74Y mutant form

is closest to the null mutant (despite its own high level of expression, S3 Fig), and that the

strain expressing the F101W mutant form has intermediate residual activity. This pattern can

be seen in Fig 7 for examples of the 57 positively regulated genes and in Table 2 and Figs 8 and

9 for the negatively regulated genes. The full sets of positively and negatively regulated genes

for the panel of codY mutants can be found in S4–S7 Tables.

The transcript levels of some genes positively regulated by CodY were significantly reduced

in all of the point mutants, whereas the transcript levels of other genes were reduced in only

one or two of the point mutants (Fig 7), suggesting that for some genes the mutant forms of

CodY are still able to serve as activators of transcription.

Similarly, the transcript levels of some genes negatively regulated by CodY were markedly

increased in one or two or three point mutants whereas the transcript levels of others were not

significantly elevated in any of the point mutants (Fig 9). The similarity in the patterns of tran-

script abundance seen for all the genes of a given operon argues that these patterns are a true

indication of the specific impact of the point mutants on transcript levels of genes and

operons.

The CodY-regulated genes that are overexpressed in the null mutant but not at all in any of

the point mutants include those that encode aconitase (acn) and isocitrate dehydrogenase (icd)

(Fig 9K). The simplest interpretation of this result is that such genes are so strongly repressed

by CodY that they are only expressed when CodY is almost totally inactivated. This would

occur when the concentrations of the BCAAs and/or GTP in the cell become too low to main-

tain the minimal concentration of ligand-bound CodY needed to bind to the relevant CodY

targets. An extension of this interpretation is that, in cells that are consuming the nutrients

that supply ILV and other amino acids, the Krebs Cycle genes would be among the last of the

CodY regulon components to be turned on.

This hypothesis is complicated, however. As the intracellular levels of ILV and/or GTP

drop, repression by CodY of the ILV biosynthetic pathway and ILV transporters is relieved,

resulting in at least partial restoration of the intracellular ILV concentrations. This assumption

was tested by analysis of the intracellular concentrations of valine, leucine and intermediates

in their biosynthesis. (Intermediates in isoleucine biosynthesis were not analyzed.) As shown

in Fig 10, the accumulation of valine, leucine and most intermediates in their biosynthesis in
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the panel of codY mutant cells is consistent with the increased expression of the biosynthesis

genes as CodY activity decreases. Note that the measurement of isopropylmalate does not dis-

tinguish between 2-isopropyl- and 3-isopropyl- and that the leucine value includes both

Fig 7. RNA-seq analysis of genes and operons positively regulated by CodY. Transcript levels (RPKMO values

relative to wild-type, which was set at 1.0) in the codY null mutant and each of three point mutants are shown for

examples of the 57 genes whose transcript levels were>3-fold lower in the codY null mutant than in the wild-type

strain. The different colored patterns for each gene indicate the relative transcript levels in each of the mutant strains.

Sections A-F present the results for all the genes of six different clusters. In clusters A and B, the gene names are their

numbers in the R20291 genome.

https://doi.org/10.1371/journal.pone.0206896.g007

Table 2. Overexpressed genes in codY mutant strains.

Overexpression compared to WT codY mutation

Null F74Y F101W E99D

>3-fold 495 257 173 98

>5-fold 333 149 105 39

>10-fold 210 91 57 26

>20-fold 135 43 40 20

>50-fold 71 17 28 15

>100-fold 40 7 23 14

As indicated in the first line of data, 495 genes were overexpressed >3-fold in the codY null mutant compared to the WT. Of those 495 genes, 333 were overexpressed

>5-fold, 210 were overexpressed >10-fold, etc. Members of the group of genes overexpressed in the null mutant were overexpressed to various extents in the individual

point mutants. The ethanolamine gene cluster (CDR20291_1828–1846) has such a low level of expression in the codY null mutant that 13 of the 19 genes were excluded

from the listing. However, this gene cluster was very highly overexpressed in the point mutants. The pattern of expression is presented in detailbelow.

https://doi.org/10.1371/journal.pone.0206896.t002
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leucine and isoleucine. The accumulation of amino acids is presumably a result of derepression

of both the biosynthesis operons and transporters.

CodY-mediated regulation of virulence genes

The vast hyperexpression of the major toxin genes (tcdA, tcdB) in exponential phase cells of

the codY null mutant of strain UK1 (Fig 11) is consistent with its increased virulence in mice

(Fig 1), although other factors must be involved as well. Many other genes are known to con-

tribute to virulence [52]. For instance, the genes encoding the ADP-ribosylating toxin CdtAB

were overexpressed 2.5–3.0 fold in the codY null mutant, even though the expression of CdtR,

the positive regulator of cdtAB [53, 54], was not affected by codY mutations. Interestingly, the

tcdA and tcdB genes are positively regulated by CdtR in two ribtoype 027 strains [55]. In con-

trast, transcription of other virulence factor genes, such as the dlt operon [56], fbpA [57],

groEL [58], fliC and fliD [59], the pdaV-sigV gene cluster [60], zinc- and collagen-binding pro-

tein genes [61–63], and a lipoprotein gene [64] was not affected substantially by a codY null

mutation. In a cluster of 39 surface protein-related genes that includes uppS, tuaG, manC,

Fig 8. RNA-seq analysis of genes negatively regulated by CodY. Of the 495 genes whose transcript levels (measured as RPKMO) were>3-fold higher in the codY null

mutant than in the wild-type strain, the relative levels for 392 genes are shown for the null mutant and three point mutants. The genes were divided into subgroups

according to the level of overexpression in the null mutant.

https://doi.org/10.1371/journal.pone.0206896.g008
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Fig 9. RNA-seq analysis of individual metabolic operons negatively regulated by CodY. Examples of the effects of the codY null

mutation and three point mutations on individual negatively regulated operons are shown. For each gene, the average RPKMO value for

wild-type cells was assigned a value of 1.0 and average transcript levels in each mutant strain were calculated relative to that in the wild-

type. The different colored patterns for each gene indicate the relative transcript levels in each of the mutant strains. Each of the A-K parts

of the figure present separate gene clusters.

https://doi.org/10.1371/journal.pone.0206896.g009
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pgm2, mviN, cwp84, cwp66, secA2 and slpA [65–67], only the uppS gene was significantly dere-

pressed (7.5-fold) in a codY null mutant (Fig 11). Of 22 other surface protein-encoding genes

(Cwp8-Cwp29) [65], the genes encoding CwpV (R20291_0440), Cwp23 (R20291_1698) and

Cwp28 (R20291_1911) were derepressed 6.8-, 18.0- and 6.2-fold, respectively, in the codY null

mutant (Fig 11).

The intracellular concentration of c-di-GMP also has an impact on C. difficile virulence.

Overexpression of the di-GMP cyclase gene CD630_14200 causes a decrease in motility [68]

and in expression of the tcdA and tcdB genes [69]. This effect appears to be due to inactivation

by c-di-GMP of SigD, the RNA polymerase sigma factor that activates flagellar genes and the

tcdR gene [13, 69]. Of the 31 genes encoding di-GMP cyclases or c-di-GMP phosphodiester-

ases in strain R20291 [70], only one, R20291_0884 (corresponding to CD630_10280),

Fig 10. Impact of codY mutations on expression of the genes and biochemical intermediates of the BCAA

biosynthesis pathway. On the left side of the figure, the pathway from pyruvate to valine and leucine is shown. The

genes that code for the various enzymes are in italics. The numbers in parentheses indicate the RPKMO ratios for each

of the genes in the codY null mutant relative to wild-type and the concentrations of the various metabolites in the codY
null mutant relative to the wild-type. The right side of the figure shows the results of metabolomics analysis for a panel

of codY mutants relative to wild-type (the latter set at 1.0 for all metabolites). The pathway to valine is shown above the

pathway to leucine. The asterisk associated with the concentration of leucine indicates that the concentration is

actually the sum of leucine and isoleucine, which were not separated in this analysis. The double asterisk for 2- and

3-isopropylmalate indicates that 2.9 is the sum of the two inseparable isomers.

https://doi.org/10.1371/journal.pone.0206896.g010

Fig 11. RNA-seq analysis of virulence genes. The relative transcript levels (RPKMO) of eight virulence-associated

genes in the codY null mutant and three codY point mutants is shown. All genes displayed here were overexpressed

>3-fold in the codY null mutant. The different colored patterns for each gene indicate the relative transcript levels in

each of the mutant strains. In part A, the genes of the major toxin locus are shown in their genetic order. In part B,

other virulence genes are grouped, but are not genetically linked to each other.

https://doi.org/10.1371/journal.pone.0206896.g011
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encoding a di-GMP cyclase, was overexpressed (15.9-fold) in the codY null mutant of strain

UK1 (S4 Table). None of these genes was underexpressed in the codY null mutant. Since over-

expression of a di-GMP cyclase would be expected to limit virulence, the effect of CodY on

R20291_0884 is unlikely to contribute to the codY mutant strain’s hypervirulence. Interest-

ingly, a di-c-GMP hydrolase gene, CD630-15150, is repressed by CodY in strain 630 [15, 71],

but not in UK1 (R20291_1364; S3 Table).

Complex regulation of the ethanolamine utilization and other pathways

Although the codY point mutant strains had intermediate residual CodY activity with respect

to the parent strain and the codY null mutant for more than 390 genes (Fig 8), some genes

were most highly expressed in the point mutants. A major example is the large gene cluster

that encodes the proteins of ethanolamine metabolism (CDR20291_1828–1846) (Fig 12 and

S8 Table). In C. difficile strain 630Δerm, all of these genes are expressed at a high level at 2 hrs

after the end of exponential growth [72]. Most of the genes in the eut cluster were expressed at

so low a level in the codY null mutant that they were not included among the 495 genes whose

transcripts are increased >3-fold by the null mutation (S3 Table). All the genes of this cluster,

however, proved to be very highly expressed in all three codY point mutants (S8 Table). In

addition, 7 genes, including the ilvCB operon (CDR20291_1412–1414) and a cellobiose trans-

port operon (CDR20291_2927–2928), were much more highly expressed in the F101W mutant

than in the codY null mutant.

The mechanism responsible for the unusual effect of the codY point mutations is not

known, but the general pattern is similar to that seen for the B. subtilis braB gene [73]. CodY is

a direct repressor of braB, but is also a repressor of scoC, which encodes a second repressor of

braB. Thus, as CodY activity diminishes, direct repression of braB is initially relieved, but a

further decrease in CodY activity leads to ScoC accumulation and restoration of repression.

The identities of the putative second regulators of eut, ilvCB and cellobiose genes are

unknown. In the case of eut, two genes within the cluster (R20291_1831 and 1832) appear to

encode a response regulator and histidine kinase, but they are likely to be positive regulators of

eut gene expression. An apparent transcription factor encoded immediately downstream of

the eut gene cluster (R20291_1847) is also unlikely to be the predicted eut regulator, since its

own expression is only slightly affected by codY mutations.

Regulation by CodY of sporulation gene expression

Endospore formation is a type of bacterial differentiation that is restricted to a handful of bac-

terial genera; it has been studied principally in the genera Bacillus and Clostridium and a few

of their close relatives. When faced with certain kinds of nutrient limitation, cells of spore-

forming species stop dividing and create two compartments within the same cytoplasmic

membrane. One compartment, the forespore, is the precursor of the mature spore and is sur-

rounded by the mother cell. The forespore and mother cell express a large number of compart-

ment-specific genes. When the developing spore has reached maturity, the mother cell lyses,

releasing the spore into the environment. Both the initiation and the various stages of spore

formation are dependent on specific transcriptional regulators. Five different RNA polymerase

sigma factors, σH, σF, σE, σG, and σK, are needed for transcription of key genes, some of which

are transcribed before internal cell division and others in the separate compartments [74, 75].

The Spo0A protein is a positive regulator of a large number of genes at the onset of sporula-

tion; its own synthesis depends on σH and it activates transcription of the genes that encode σF

and σE [76–79].
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Previous work by Nawrocki et al. [17] showed that spore formation and the expression of

spo0A and the genes that encode sporulation sigma factors σF, σE and σG are significantly

enhanced in the codY null mutant (LB-CD16) of strain UK1 compared to wild-type. The effect

of the codY mutation was overcome by complementation with the wild-type gene [17]. Consis-

tent with this finding, the spo0A gene, which encodes the primary factor needed for initiation

of sporulation gene expression, was derepressed during exponential growth phase in the codY
null mutant (Fig 13A), as was a gene encoding a histidine kinase known to activate Spo0A by

phosphorylation (R20291_1476, equivalent to CD630_15790) [80] (Fig 13B). Four other genes

encoding potential Spo0A kinases were not affected by codY mutations (Fig 13B). The genes

and operons encoding σF, σανδσΓ were also overexpressed >3-fold in the codY null mutant

(Fig 13C–13E), as were more than 40 other genes that are required for C. difficile sporulation

or are homologous to known sporulation genes in other bacteria (Table 3 and Fig 13D–13H).

The distribution of genes under the control of the various sporulation sigma factors is shown

in Fig 13I–13M for σF, Fig 13N–13P for σ, Fig 14A–14C for σG and Fig 14D and 14E for σK.

The gene encoding σH was only overexpressed 1.8-fold (adjusted P value = 0.054) in the codY
null mutant and the gene encoding σK was only overexpressed 2.9-fold; neither gene was

included in the list of CodY-regulated spo genes (Table 3). Moreover, genes encoding quo-

rum-sensing factors that potentially activate Spo0A phosphorylation (R20291_2639–2640 and

3187–3189) [81] were neither overexpressed nor underexpressed more than 3-fold in the codY
null mutant. Fimlaid et al. [82] reported that in strain JIR8094 more than 200 stationary phase

Fig 12. RNA-seq analysis of ethanolamine metabolism gene cluster. Some CodY-repressed genes had unusual patterns of expression in the panel of codY point

mutants. Shown here are the genes of the ethanolamine metabolism gene cluster, R20291_1828 to 1846. In the top panel, the average RPKMO values for each gene in the

wild-type strain are shown. In the bottom panel, the transcript levels in the mutants relative to the wild-type (set at 1.0) are presented. The different colored patterns for

each gene indicate the relative transcript levels in each of the mutant strains. The top panel indicates that several genes, including those encoding a putative histidine

kinase (HK) and response regulator (RR) are expressed at a relatively high level in the parent strain. The lower panel shows that all genes were overexpressed to a greater

extent in two point mutants, E99D and F101W, than in the null mutant.

https://doi.org/10.1371/journal.pone.0206896.g012
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Fig 13. RNA-seq analysis of Spo0A-, σF- or σE-dependent genes. (A-H) Expression patterns of Spo0A-dependent (A-H), σF-

dependent (I-M) and σE-dependent (N-P) genes and operons in a panel of codY mutants. Transcript levels (RPKMO values) are

presented relative to the levels in the wild-type strain (set at 1.0). The different colored patterns within each part of the figure

reflect the behavior of individual genes. In parts C, E, F, and P, the genes are from individual clusters. In parts B, H, M, N and O,

the genes presented together are not genetically linked. In part P, the expression of the spoIIIA operon in strain ND-CD17 was

not included, because the transposon carrying the mutant codY gene inserted upstream of spoIIIAA and reduced expression of

the entire operon.

https://doi.org/10.1371/journal.pone.0206896.g013
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genes depend on Spo0A for their expression. The number of Spo0A-dependent genes in strain

JIR8094 was later increased to 434 (A. Shen, personal communication) based on RNA-seq

results of Pishdadian et al. [83]. Taking advantage of a table provided by L. Barquist and R.

Fagan that matches R20291 genes with those of strain 630, we found that 159 of the 434

Spo0A-dependent genes were overexpressed� 3-fold during exponential growth in the codY
null mutant (S7 and S8 Tables). Dembek et al. [84] used transposon mutagenesis to identify

R20291 genes essential for efficient sporulation. Of the 798 genes in which transposon inser-

tions limited spore formation 4-fold or more, 138 were overexpressed during exponential

phase growth in the codY null mutant and 14 were underexpressed.

The expression patterns of sporulation operons in the point mutant strains suggested

that the level of CodY activity needed to maintain repression of sporulation genes is variable

(Figs 13 and 14). The spo0A gene was partially activated in all of the point mutants, whereas

other sporulation genes required greater inactivation of CodY in order to be expressed,

implying either that the level of spo0A derepression determines to different extents the level

of expression of these genes or that some or all of these genes are also direct targets of

CodY.

Table 3. Hyperexpression of spo genes in a codY null mutant.

Gene Expression ratio (codY null/WT) Gene Expression ratio (codY null/WT)

spo0A 4.7 spoIVA 304

R20291_1476 (Spo0A kinase) 3.5 R20291_0714

(stage IV sporulation protein)

5.1

spoIIA operon: spoIIAA 24 R20291_3400

(spore cortex-lytic enzyme)

21

spoIIAB 23 sspA 5.7

sigF 20 sspB 4.7

spoIIE 223 cspBA 19

spoIIG operon: spoIIGA 51 cspC 15

sigE 59 gerG 50

spoIIP 61 spoVAC 76

spoIIR 16 spoVAD 21

sigG 125 spoVAE 9.4

spoIIIA operon: spoIIIAA 995 spoVD 60

spoIIIAB 212 spoVS 3.2

spoIIIAC 177 spoVT 670

spoIIIAD 157 spore coat assembly 50

spoIIIAE 95 R20291_0212

(spore coat protein)

7

spoIIIAF 160 cotJB1 6.5

spoIIIAG 824 cotJC1 6.6

spoIIIAH 284 spmA 61

spoIIID 91 spmB 14

sleB 4.6 cwlD 4.6

sleC 3.3 bclA2 5.6

gpr 384 bclA3 4.1

gerS 3.8

The indicated genes have been shown to be required for spore formation in C. difficile or are homologs of B. subtilis sporulation genes. The expression ratios are based

on RPKMO levels as determined by RNA-Seq.

https://doi.org/10.1371/journal.pone.0206896.t003
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Discussion

Impact of CodY on metabolism

More than 250 of the 552 genes overexpressed or underexpressed more than 3-fold in the codY
null mutant strain during exponential growth are involved in metabolic processes, e.g., trans-

port and metabolism of carbon and nitrogen sources, biosynthesis of amino acids, energy pro-

duction, glycogen biosynthesis, sugar metabolism, and the Krebs Cycle. The results obtained

with strains expressing mutant forms of CodY with different levels of residual activity imply

that some metabolism genes (e.g., the leu and glg operons) are considerably derepressed when

CodY activity is only slightly reduced, some genes (e.g., the ntp and etf operons) are only sig-

nificantly derepressed when CodY activity is more reduced and other genes (e.g., the xdhA
and aksA clusters) are only derepressed when CodY activity is eliminated. The implication of

these findings is that the affinity of CodY for its binding sites varies considerably from target

to target, a situation proven to be true on a genome-wide basis for B. subtilis CodY [30], but

not yet tested for C. difficile CodY. An apparent implication of these results is that, as cells con-

sume critical nutrients, expression of the operons cited above would increase first for the leu
and glg operons and lastly for the xdhA and aksA operons. However, this implication may not

be correct, because all of these operons are undoubtedly regulated by other factors as well,

each of which responds to different changes in nutrient availability. Thus, the timing of expres-

sion of CodY-regulated genes and operons when cells transition from exponential to stationary

phases is likely to be complex.

Impact of CodY on virulence

The CodY proteins of multiple Gram-positive pathogens serve as virulence regulators. As

shown in Fig 1, despite the high level of virulence of C. difficile strain UK1, inactivation of

Fig 14. RNA-seq analysis of sporulation genes dependent on σG or σK. Expression patterns of individual σG-dependent (A-C) and

σK-dependent (D-E) genes in a panel of codY mutants. Transcript levels (RPKMO values) are presented relative to the levels in the

wild-type strain (set at 1.0). The different colored patterns within each part of the figure reflect the behavior of individual genes. Part

E displays the results with a single gene (cotB), but all other parts of the figure show collections of unlinked genes that have similar

levels of overexpression in the codY null mutant.

https://doi.org/10.1371/journal.pone.0206896.g014
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CodY further increases its virulence significantly. Ribotype 027 strains have often been viewed

as “hypervirulent” compared to other isolates, although not all members of the ribotype are

highly virulent [85]. In S. aureus [39–42, 86, 87] and Bacillus thuringiensis [88], CodY is also a

negative regulator of virulence. In fact, a hypervirulent S. aureus USA300 strain became even

more virulent when the codY gene was inactivated [39]. Thus, the virulence of multiple species

is restrained to a significant extent under conditions where CodY is active. In Bacillus anthra-
cis [28], Bacillus cereus [35], Listeria monocytogenes [36], Clostridium botulinum [43, 89] and

several Streptococcal species [33, 90, 91], however, CodY appears to activate virulence. More-

over, in Clostridium perfringens, the impact of CodY on virulence varies from strain to strain.

In both the Type D strain CN3718 and the Type A strain SM101, CodY activates virulence

gene expression, but the mechanisms of regulation are different. In CN3718, CodY directly

activates expression of the etx gene, which encodes epsilon toxin [34], whereas, in SM101,

CodY activates expression of the cpe (C. perfringens enterotoxin) gene indirectly by positively

regulating certain key sporulation genes [92]. By contrast, CodY represses sporulation gene

expression in strain CN3718 [34]. The variability in the impact of CodY on virulence and spor-

ulation implies that different strains and species have evolved to use this global regulator in

ways that suit their preferred conditions for sporulating and causing damage to the host.

Mechanism of regulation of sporulation genes by CodY

Virtually all of the genes of known or predicted functions that are expected to be required for

spore formation in C. difficile are expresssed during exponential growth phase in mutant

strains defective in CodY. The spo0A gene, which encodes the primary regulator of sporula-

tion, is derepressed 4.5-fold in the codY null mutant strain (Fig 13). At first approximation,

this result is surprising, since many other sporulation genes, all of which depend on direct or

indirect activation by Spo0A, are derepressed to a much greater extent. Two factors may be

responsible for this level of spo0A gene regulation. First, the spo0A gene in strain JIR8094 does

not have a CodY-binding site [15]; the sequence upstream of spo0A in stain UK1 is very similar

to that in JIR8094 and presumably also lacks a binding site. Thus, CodY regulation of spo0A is

undoubtedly indirect. Second, in wild-type cells of strain UK1, spo0A mRNA is within the top

4% of mRNAs in terms of abundance (RPKMO value); in the codY null mutant, the spo0A
mRNA moves to the top 3%. Thus, increased synthesis of spo0A mRNA may not be critical for

spore formation. Instead, phosphorylation of already highly abundant Spo0A is likely to be the

critical factor that initiates sporulation. The gene encoding a kinase known to phosphorylate

Spo0A in vitro [80] has a CodY-binding site [17] and is derepressed in the codY null mutant

(Fig 13), potentially serving as the primary factor in leading to sporulation gene expression.

(The 4.5-fold increase in spo0A mRNA in the codY null mutant may be due to autoactivation

of spo0A transcription by Spo0A~P.) In fact, very few sporulation genes have direct CodY-

binding sites, suggesting that CodY regulates sporulation genes primarily through indirect

effects.

Despite the limited direct effects, the impact of CodY on spore formation by C. difficile is

much greater than for B. subtilis. Inactivation of CodY increases spore formation by B. subtilis,
but the effect is relatively small and only occurs in particular media [21]. It is likely that the

complex regulation of spore formation in B. subtilis minimizes the impact of inactivation of a

single negative regulatory protein. C. difficile, by contrast, lacks several of the regulators of B.

subtilis spore formation, including Spo0F and Spo0B (members of the Spo0A phosphorylation

cascade), Rap proteins that dephosphorylate Spo0F~P, and Spo0E (a Spo0A~P phosphatase).

The lack of such complex regulation may explain why a codY mutation has a stronger effect on

sporulation in C. difficile than in B. subtilis.
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Co-regulation of sporulation and toxin synthesis

Toxin synthesis and spore formation are both major contributors to C. difficile infection.

TcdA and TcdB are the primary factors causing damage to the host and spore formation is

critical for resistance to antibiotics, for survival of the bacteria outside the GI tract and for

transmission of the bacteria to other hosts. Thus, it makes sense that both processes are

induced when nutrients become limiting and are subject to overlapping regulation, as shown

here and in previous publications [16, 17]. Unlike sporulation genes, which appear to be

mostly indirect targets of CodY, the tcd locus is a direct target of CodY [16]. Although CodY

represses both processes, the results with the point mutants described here imply that many

sporulation genes are turned on when CodY is only partially inactivated, whereas expression

of the toxin genes requires complete inactivation of CodY.

A potential complication is the likely impact of toxin synthesis on spore formation and vice
versa. Toxin activity is expected to increase the availability of nutrients due to damage to host

cells. In cells that have not yet committed to sporulation, an increase in nutrient availability

may permit renewed growth, thereby delaying or preventing sporulation. Since different RNA

polymerase sigma factors are required for transcription of toxin genes (σA, σD and TcdR) [9,

11–13] and sporulation genes (σA, σH, σF, σE, σG and σK) [74, 76, 82], it seems unlikely that

sporulating cells express the toxin genes, but no experiments to date have addressed this issue.

How does the C. difficile population balance the production of toxins and spores? Is the popu-

lation divided between the two responses to nutrient limitation? The relative behavior of the

CodY point mutants described here implies that, as nutrients become limiting, many sporula-

tion genes are turned on; the toxin genes by contrast are among the last genes to be turned on

as nutrient availability decreases, implying that at least a portion of the population initiates

sporulation before any of the cells produce the toxins. Since spore formation is irreversible

after an early stage, the cells that choose to sporulate will complete the process, creating a

mixed population that provides multiple advantages to the bacterium. The non-sporulating

cells that produce toxin will generate nutrients that will allow them to multiply, while the spor-

ulating members of the population will become prepared to survive outside the GI tract and

initiate new infections.

Multiple factors contribute to the regulation of toxin synthesis and sporulation, in some

cases providing co-regulation and in other cases opposing regulation. Like CodY, the glucose-

activated CcpA protein is a negative regulator of both the tcd gene cluster and the spo0A and

sigF genes [14]. In addition, in strain R20291, a tcdR mutation causes a decrease in spore for-

mation and heat resistance of the spores produced [10], implying that TcdR is a positive regu-

lator of sporulation as well as toxin synthesis. Possible mechanisms include stimulation of

sporulation by toxins (by an unknown mechanism) or a requirement for the TcdR sigma fac-

tor for maximal transcription of one or more sporulation genes. On the other hand, in strain

630Δerm, the RstA protein is an activator of sporulation, but an inhibitor of toxin synthesis

[93]. In the same strain, one group found that a spo0A mutation causes overexpression of the

tcdA gene [8]. Other researchers detected binding of Spo0A to the tcdB gene in vitro, but saw

little or no effect of a spo0A mutation on toxin production in vivo [6]. A third group found evi-

dence of overexpression of both tcdA and tcdB in a spo0A mutant of a ribotype 027 strain, but

not in 630Δerm [7]. (It is likely that differences in the isolates and media used for these experi-

ments contribute to their varying results.) Although the details remain to be resolved, it is

likely that C. difficile has evolved to base its extent of toxin synthesis and sporulation (and

potentially the decision as to which pathway to pursue at the single-cell level) on multiple envi-

ronmental factors and regulatory proteins.
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Materials and methods

Bacterial strains and growth conditions

The bacterial strains and plasmids used in this study are listed in Table 4. C. difficile strains

were grown in tryptose-yeast extract (TY) medium [94], BHIS medium [95] or in defined

CDMM [96], supplemented with 250 μg D-cycloserine per ml, 40 μg kanamycin per ml, 20 μg

thiamphenicol per ml, and 20 μg lincomycin per ml or 5 μg erythromycin per ml, as needed.

C. difficile strains were maintained at 37˚C in an anaerobic chamber (Coy Laboratory Prod-

ucts) in an atmosphere of 10% H2, 5% CO2 and 85% N2. Escherichia coli and B. subtilis strains

were grown at 37˚C in L broth [97] supplemented with 20 μg chloramphenicol per ml or

100 μg ampicillin per ml for E. coli and with 1 μg of erythromycin and 12.5 μg of lincomycin

per ml for B. subtilis, as needed.

Containment practices and biosafety precautions

Laboratory experiments using C. difficile strain UK1 and its derivatives were approved by the

Tufts University Institutional Biosafety Committee as registration number 2013-BRIA16 from

Table 4. Bacterial strains and plasmids.

Strains and

Plasmids

Description Source and/or

Reference

Plasmids

pJS107 TargeTron vector J. Sorg

pBL100 TargeTron vector [98]

pBL92 pBL100 codY::intron::ermB This work

pBL103 pJS107 codY::intron::ermB This work

pSMB47 E. coli plasmid carrying part of Tn916 [99]

pBL26 Derivative of pSMB47 carrying the cat gene from pJIR1456 [17]

pND3 pBL26::codY+ This work

pND5 pBL26::codY (F74Y) This work

pND6 pBL26::codY (E99D) This work

pND7 pBL26::codY (E103D) This work

pND9 pBL26::codY (F74L) This work

pND11 pBL26::codY (F101W) This work

pND12 pBL26::codY (P102G) This work

Escherichia coli
HB101 (pRK24) F+ supE44 hsdS20(rB+mB+) recA13 ara-14 proA2 lacY1 galK2 rpsL20

xyl-5 mtl-1 (Tra+ Mob+ Ampr Tcr)

[95]

Bacillus subtilis
BS49 Contains integrated Tn916 [100]

Clostridoides
difficile
UK1 Ribotype 027 D. Gerding

LB-CD16 UK1 codY::intron::ermB [44]

ND-CD5 UK1 codY::intron::ermB Tn916 This work

ND-CD6 UK1 codY::intron::ermB Tn916::codY (E103D) This work

ND-CD10 UK1 codY::intron::ermB Tn916::codY+ This work

ND-CD12 UK1 codY::intron::ermB Tn916::codY (F74Y) This work

ND-CD13 UK1 codY::intron::ermB Tn916::codY (E99D) This work

ND-CD17 UK1 codY::intron::ermB Tn916::codY (F101W) This work

ND-CD18 UK1 codY::intron::ermB Tn916::codY (P102G) This work

https://doi.org/10.1371/journal.pone.0206896.t004
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April 25, 2013 to April 1, 2016 and as number 2016-BR04 from March 31, 2016 to March 31,

2019. All researchers were required to pass annual laboratory safety training tests. In accor-

dance with the registration, live samples of C. difficile strains were grown and stored in an

anaerobic chamber and killed by treatment with bleach or by autoclaving before disposal. To

extract DNA, RNA or protein from C. difficile cultures, the cells were killed in order to allow

the molecules to be purified outside the chamber. Researchers handled the material outside the

chamber in sealed containers and were protected by gloves and lab coats.

Storage and sharing plan

Individual strains of C. difficile were stored on labeled Petri plates inside the anaerobic cham-

ber or at -80˚C in tubes containing labels that reveal their origin. The sites of storage were only

accessible by researchers who had passed the laboratory safety training tests. If strains of C. dif-
ficile were sent to other labs as part of this project or upon requests by other scientific groups,

the bacteria were only sent if the proposed recipient was experienced in working with C. diffi-
cile and dealing with its potential hazards. Such shipments met the requirements of UN 3373

(Biological Substance, Category B, as defined by IATA DGR 6.2 –Infectious Substances). Infec-

tion of mice by C. difficile was carried out under the prescribed, careful conditions described

below.

Strain and plasmid construction

Oligonucleotides used in this study are listed in S8 Table. Creation by TargeTron methodology

of an insertional mutation in the codY gene of C. difficile strain UK1 was described by

Mooyottu et al. [44]. To complement the codY gene disruption, a 983-bp fragment containing

the wild-type codY gene and its upstream region was amplified using primers oLB275 and

oLB276 (S10 Table) and cloned between the BamHI and HindIII sites of pBL26, a region

homologous to the transposon Tn916. The resulting plasmid was named pND3. To create

each desired point mutation in the codY GAF domain, two sets of primers were designed (S10

Table) to amplify overlapping portions of the codY gene, each of which would have the desired

mutation. After amplification by Hi-Fidelity Phusion polymerase (New England Biolabs), the

two PCR products were purified, mixed and amplified using the primers oLB275 and oLB276,

which yielded the entire codY gene with the intended point mutation. Each of the mutated

genes was then cloned in plasmid pBL26, generating plasmids pND5, pND6, pND7, pND11

and pND12.

Introduction into E. coli strain JM107 caused the plasmids derived from pBL26 to create

concatemers that facilitated subsequent transformation of B. subtilis strain BS49, which carries

Tn916 within its chromosome; the codY gene inserted within the chromosomal Tn916 by

homologous recombination. The various B. subtilis strains were then mated with C. difficile
strain LB-CD16 (codY::intron::erm), resulting in strains ND-CD10 (codY::intron::erm Tn916::

codY+), ND-CD12 (codY::intron::erm Tn916::codY F74Y), ND-CD13 (codY::intron::erm
Tn916::codY E99D), ND-CD17 (codY::intron::erm Tn916::codY F101W), and ND-CD18

(codY::intron::erm Tn916::codY P102G), each of which has a full-length copy of the codY gene

(with or without a point mutation) and a copy interrupted by the intron. The creation of

mutant strains of C. difficile was approved by the Institutional Biosafety Committee for Tufts

University and Tufts Medical Center and was assigned the registration number 2016-BR04 for

the period 03/31/16-03/31/19.

To determine the number of codY-containing Tn916 insertions per C. difficile genome,

chromosomal DNA was extracted as previously described (72). As a model, DNA extracted

from strain UK1 was 5-fold serially diluted (from 5 to 0.016 ng/μl) and used as a template for
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quantitative PCR of codY (primers oND34/oND35) using the Roche SYBR Green I PCR mix

and a Roche LightCycler 480 II thermocycler. Reactions were performed in triplicate in a final

volume of 20 μl using 1 μl of the serially diluted DNA and each primer at 0.5 μΜ. The thresh-

old cycle value of each dilution was determined. In a base 10 logarithmic graph, the threshold

cycle was plotted versus the dilution factor and the data were fitted to a straight line. The corre-

lation coefficient (R2) for the line was 0.99 or greater. This plot was then used as a standard

curve for extrapolating the relative concentration levels of the codY gene in strain LB-CD16

carrying Tn916 embedded with various versions of the codY gene. The relative concentration

value was then used to generate the number of codY copies using the website http://cels.uri.

edu/gsc/cndna.html. A separate standard curve was generated for the housekeeping gene rpoA
using oligos oLB273 and oLB274. The number of codY copies in each sample was then normal-

ized to that of rpoA. Clones that appeared to have a single full-length codY copy per chromo-

some, indicated with an asterisk in S2 Fig, were used in subsequent studies. However, strain

ND-CD13 was later found to have two copies of the codY gene (S2 Table).

To map the sites of Tn916 insertion, two approaches were taken. First, applying the method

of Hava and Camilli [101] chromosomal DNA of each mutant strain was amplified using a

Tn916-specific primer (oLS9) and a partially randomized primer (ARB1); after 30 cycles, the

products were purified using a QiaQuick PCR Purification Kit (Qiagen) and then subjected to

a second round of PCR using a second Tn916-specific primer (oLS17) and a non-random

primer (ARB2) that anneals to products produced by ARB1. After purification, the products

of the second round were sequenced using the Tn916-specific primer oLS17. The second

approach was a verification based on the RNA-seq results. That is, in most cases, the RNA-seq

data revealed a junction between the mRNA for a chromosomal gene and one end of Tn916,

thereby indicating where the transposon had inserted. In all strains except ND-CD13, only

one site of Tn916 insertion was detected. In strain ND-CD13, however, three sites were found.

Insertions between R20291_ 0447 and _0448 and between R20291_ 1900 and _1901 contained

pSMB47 carrying the mutant version of the codY gene. The insertion between R20291_0467

and _0468 did not contain pSMB47.

Determination of CodY stability and abundance by immunoblotting

C. difficile strains grown to mid-exponential phase in TY medium (6 ml) were collected by cen-

trifugation and stored at -80˚C overnight. Cells were washed with 0.5 mL of solution A (50 mM

Tris-HCl, 2 mM EDTA, 1 mM DTT), resuspended in 0.5 mL of solution A and disrupted using

a Mini BeadBeater (two beatings of 30 sec each at speed 48.) The samples were stored to -80˚C

for 1 hour, thawed and subjected to a second round of disruption. Unbroken cells and cell

debris were removed by centrifugation at 13,000 rpm for 15 min at 4˚C. The total protein con-

centration of the supernatant was determined using the Bio-Rad protein assay reagent; for each

sample, 4 μg of total protein was then analyzed by Western blotting as follows. Protein samples

were mixed with an equal volume of 2× SDS-PAGE-loading buffer, boiled for 3 min, loaded on

12% polyacrylamide-SDS gels, and subjected to electrophoresis at a constant voltage of 100V for

2 h. Proteins were then electro-transferred to Immobilon-P membranes (Millipore) and immu-

noblotted using rabbit antibody to CodY (prepared by Biodesign International (21)) diluted

5000-fold in 5% skim milk in 50 mM Tris, 150 mM NaCl, 0.1% Tween 20. Immune reactions

were visualized using an enzyme-based chemiluminescence (ECL) kit (ThermoFisher).

Animal infection conditions

C. difficile spores were prepared as described (45). Briefly, an overnight culture in BHIS

medium was diluted in fresh medium to an optical density at 600 nm of 0.2. A 150-μl portion
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of this suspension was spread onto 5 ml of BHIS agar in each well of a six-well tissue culture

dish. The dish was incubated anaerobically for 4 to 7 days to induce sporulation. The spores

were washed off the plates with phosphate-buffered saline (PBS). The spore suspension was

then heated at 60˚C for 20 min to kill vegetative cells. The spore suspension was stored at 4˚C,

and the spore concentration was determined by serial dilution and plating on BHIS agar sup-

plemented with 1% sodium taurocholate.

Four groups of 10 C57Bl/6 mice (Jackson Laboratories) were pretreated with a cocktail of

five antibiotics designed to generate the following approximate daily doses: kanamycin (40

mg/kg), gentamicin (3.5 mg/kg), colistin (4.2 mg/kg), metronidazole (21.5 mg/kg), and vanco-

mycin (4.5 mg/kg). Antibiotics were administered in sterile drinking water for 3 days, followed

by 2 days of sterile drinking water without antibiotics. Mice were then given one dose of clin-

damycin (20 mg/kg weight) intraperitoneally one day prior to infection by oral gavage with

104 or 105 spores of C. difficile strains UK1 or UK1 codY (LB-CD16). After infection, mice

were monitored daily for weight loss, diarrhea, and mortality. At a dose of 105 spores, one

mouse died after exposure to strain UK1 and two mice died after exposure to LB-CD16. At a

dose of 104 spores, no mice died after exposure to either strain. A weight loss of 20% required

that the mice be euthanized by carbon dioxide asphyxiation followed by cervical dislocation.

At the end of each experiment (7–9 days after infection), mice were euthanized using the same

methods.

Ethics statement

Animal studies followed the Guide for the Care and Use of Laboratory Animals of the

National Institutes of Health and were approved by the Tufts University Institutional Ani-

mal Care and Use Committee under the protocol #G2012-70. All researchers doing animal

studies were required to pass Mandatory Animal Care and Use (MACU) training at Tufts

University.

Quantification of toxin by ELISA

C. difficile strains were grown in BHIS medium in an anaerobic chamber. Samples (1 ml)

were collected after 24 hrs of incubation, and were adjusted to an identical OD650 to

ensure equal concentrations of cells in each sample. Samples were then filtered and cul-

ture fluid was added to Costar 96-well microplates that had been coated with 100 μl of

anti-TcdA antibody (PCG 4.1; Novus Biologicals) (1 μg/ml) or anti-TcdB antibody

(5A8-E11; GeneTex) (10 μg/ml) and incubated overnight in phosphate-buffered saline

(PBS) at 4˚C. The samples were then blocked for 1 hr with 5% (wt/wt) skim milk diluted

in PBS. Standards (TcdA and TcdB purified as previously described [102]) and samples

(100 μl) were added to each well in duplicate and the microplates were incubated for 90

min at 25˚C. After another set of washes, HRP-chicken anti-C. difficile toxin A or B

(1:5,000 dilution in PBS, Gallus Immunotech) was added to the wells for 30 min at 25˚C.

A final set of three washes preceded the addition of TMB Microwell Peroxidase Substrate

and incubation for 20 min at 25˚C in the dark. The reaction was stopped with 2 N H2SO4.

Absorbance was measured using a plate reader at 450 nm, and the ELISA was analyzed

spectrophotometrically utilizing BioTek Gen5 Version 2.0 Data Analysis Software.

Determination of the crystal structure of C. difficile CodY

See Supplementary Materials and Methods.
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Quantitative reverse transcription-PCR (qRT-PCR) analysis

The levels of tcdA and tcdB RNA displayed in Fig 3 were assayed in cultures of C. difficile grown

in CDMM medium and harvested after 8 and 24 hrs (i.e., in stationary phase). DNA-free RNA

(500 ng), prepared as previously described [16,103], was quantitated by absorbance (A260 and

A260/A280 ratio) using a NanoDrop ND-1000 spectrophotometer (Thermo Scientific) and sub-

jected to cDNA synthesis using a QuantiTect Reverse Transcription Kit (Qiagen) following the

manufacturer’s recommendation. To control for contamination by DNA, mock cDNA synthe-

sis reactions containing no reverse transcriptase were used as negative controls in subsequent

amplifications. Primers for qRT-PCR were designed using the online PrimerQuest tool from

Integrated DNA Technologies (http://www.idtdna.com/Scitools/Applications/Primerquest),

and amplification efficiencies for each primer set were determined prior to use. cDNA samples

were used as templates for quantitative PCR of rpoA (defined as that of R20291_0096) (primers

oLB273/oLB274), tcdA (primers oLB131/oLB132) and tcdB (primers oND32/oND33) using

Roche SYBR Green I PCR mix and a Roche LightCycler 480 II thermocycler. Reactions were

performed in a final volume of 20 μl using 4 μl of cDNA (25 ng) and 1 μM of each primer.

Amplification included 45 cycles of the following steps: 10 s at 95˚C, 10 s at 53˚C, 15 s at 72˚C.

Results were calculated using the comparative cycle threshold method [104], in which the

amount of target mRNA is normalized to that of an internal control transcript (rpoA). Reactions

were performed in triplicate using cDNA extracted from three biological replicates, and results

are presented as the means and standard deviations of the data obtained.

To assess the impact of codY mutations on gene expression during growth, three inde-

pendent cultures of the wild-type, the null mutant and various codY point mutant strains

were grown in TY medium to a culture density of A600 = 0.4–0.6. Purified RNA was ana-

lyzed by qRT-PCR using primers (S10 Table) specific for the genes encoding a peptidase

(R20291_2712), chloromuconate cycloisomerase (R20291_1235), ilvC (R20291_1413), a

cell surface protein (R20291_1698), and glgC (R20291_0812), with rpoA as a standard for

comparison.

RNA-sequencing library construction, sequencing and analysis

RNA was extracted from two independent cultures of the wild-type strain and two indepen-

dent cultures of each of the mutant C. difficile strains grown in TY medium to OD600 = 0.4 to

0.6 (mid-exponential phase) using the RNeasy kit (Qiagen) and treated with TURBO DNA-

free DNase (Ambion). Removal of DNA was considered successful if no PCR product was

detected after 30 cycles of amplification using oND52/53 primers specific for genes encoding

16s rRNA. DNA-free RNA quality was assessed using a Bioanalyzer and RNA Pico Chips

(both from Agilent Technologies). Only RNA samples with an RNA integrity number >8 were

used for library construction. rRNA was depleted from DNA-free RNA preparations using the

RiboZero Magnetic kit (Gram-positive kit; Epicentre). mRNAs were fragmented using the

NEB Next RNA Fragmentation Module (New England Biolabs) and further assessed using the

Bioanalyzer and RNA Pico Chip. Fragmented RNA was purified and concentrated using the

RNA Clean & Concentrator-5 kit (Zymo Research Corporation). First-strand cDNA was syn-

thesized using SuperScript III reverse transcriptase (Life Technologies, Inc.); actinomycin D

(8 μg) was included in each reaction to prevent spurious second-strand synthesis. The first-

strand cDNAs were purified using the RNA Clean & Concentrator-5 kit and subjected to sec-

ond-strand cDNA synthesis with 13.3 units of DNA polymerase I and 3.3 units each of E. coli
DNA ligase and RNase H using dUTP in place of dTTP in the reaction mixture. The double-

stranded cDNAs were blunted using the Quick Blunting Kit (New England Biolabs) and A-

tailed using Klenow fragment (30-to-50 Exo minus), to which the universal adaptor Olj331/
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Olj543 (S10 Table) was ligated in a 10:1 (adaptor/fragment) molar ratio. The libraries were

purified and size-selected using AMPure XP SPRI beads (Agencourt), as directed, with elution

in 1× low TE buffer [10 mM Tris�Cl (pH 8), 0.1 mM EDTA]. Quantifluor dsDNA dye (Pro-

mega) was used to quantify double-stranded cDNA and DNA. The second strand was selec-

tively degraded using 1 unit of USER enzyme (New England Biolabs) before library

enrichment and barcoding using Phusion HiFi polymerase (New England Biolabs) and oligo-

nucleotides containing unique 6-bp barcodes. Final library size distributions were determined

using a fragment analyzer before pooling samples. Samples were loaded into single lanes of a

HiSeq 2500 instrument (Illumina) in the Tufts University Genomics Core and sequenced in

multiplex (single-end 50-bp reads) using v3 chemistry. Reads were aligned to the reference

genome of the C. difficile ribotype 027 strain R20291 using Burrows–Wheeler Aligner version

5.9 [105]; the genome sequence and gene annotations for this strain were obtained from

RefSeq (www.ncbi.nlm.nih.gov/refseq/). The overall read coverage of genomic regions corre-

sponding to features such as ORFs and rRNAs was conducted as described [51, 106]. Differen-

tial expression analysis was conducted using DESeq (50). The primary data from the RNA-seq

experiments have been uploaded by the NIH Sequence Read Archive for public access as Bio-

Project PRJNA438155, accessible at https://www.ncbi.nlm.nih.gov/sra?linkname=bioproject_

sra_all&from_uid=438155 with accession numbers SRX4158084-SRX4158093.

Metabolomic analysis

Cultures of C. difficile strain UK1 and mutant derivatives were grown anaerobically in TY

medium to mid-exponential phase (A600 = 0.5–0.6). A sample of 13 ml was rapidly collected

under vacuum on a nitrocellulose membrane (2 m; Millipore). The membrane was quickly

washed with 5 ml of PBS, pH 7.5, to remove excess medium and non-cellular material, and

then immersed in 1 ml of a mixture of acetonitrile, methanol and water (40:40:20) supple-

mented with 0.1 M formic acid pre-cooled at -20˚C and stored at -80˚C.

Metabolites were extracted from duplicate samples and analyzed by LC-MS as described in

de Carvalho et al. [107], Pesek et al. [108] and Brinsmade et al. [30]. Data analysis was as out-

lined in Brinsmade et al. [30].

Supporting information

S1 File. Supplementary materials and methods.

(DOCX)

S1 Fig. The quaternary structure of the GAF domain of C. difficile CodY. A. The hexamer

formed by the six molecules of the asymmetric unit of the CdCodY(1–156) crystals. The view

is down the three-fold symmetry axis with the three intersecting 2-fold symmetry axes in the

plane of the page. The chains are coloured A (ice blue) B (gold) C (coral) D (blue) E (pink) and

F(red). The isoleucine ligands are shown as spheres with carbon, nitrogen and oxygen atoms

coloured green, blue and red respectively. B. The dimer formed by the GAF domains of CodY

from B. sutbilis. The two chains are coloured gold and blue respectively and the isoleucine

effector is shown as spheres. C. The A (ice blue) and B (gold) subunits from the CdCodY GAF

domain hexamer shown in A. It is evident that the these two moleculesare juxtaposed in a very

similar manner to the subunits in B. subtilis CodY, the obvious difference being that helices α1

have been displaced from the AB dimer interface so that they instead pack with neighbouring

dimer interfaces in the hexamer. D. Superposition of GAF domain dimer of B. subtilis CodY

(white) with a ‘hybrid’ GAF domain dimer of CdCodY (ice blue) formed by substituting the

α1 helices of chains A and B with those from chains F (red) and C (coral) respectively.
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Following least squares superposition of 238 Cα atoms from the GAF domain dimers from the

two species, the positional rmsΔ is 1.6 Å. The carbon atoms of the effectors are colored green

and grey for CdCodY and BsCodY respectively.

(TIF)

S2 Fig. Quantification of codY copy number in the different mutant strains. DNA was

extracted from C. difficile wild-type and codY mutant strains harboring codY variants with sin-

gle amino acid substitutions and quantified by real time PCR (qPCR). The numbers indicate

different isolates of the same codY variant. Only clones having a single, full-length, uninter-

rupted copy of codY, indicated with an asterisk (�), were used in subsequent studies.

(TIF)

S3 Fig. Verification of stability of mutant CodY proteins. Crude lysates of C. difficile strains

carrying both a codY null mutation and a version of the codY gene with a point mutation were

assayed by Western blotting using rabbit anti-CodY antibodies. Proteins of each lysate (4 μg)

were separated by SDS-PAGE. The proteins were electrotransferred and immunoblotted with

a polyclonal CodY antibody. Lane 1 contains purified B. subtilis CodY protein. Lanes 2–10 dis-

play extracts of various codY point mutants. (Each one is a derivative of strain LB-CD16

(codY::erm) in which a point mutant form of codY has been integrated into the chromosome.)

Lanes 11 and 12 display lysates from the strain LB-CD6 with (lane 11) or without (lane 12) the

empty vector pBL26. Lane 13 displays the lysate from wild-type cells.

(TIF)

S1 Table. X-ray data collection and refinement statistics.

(PDF)

S2 Table. Sites of Tn916 insertion in codY mutant strains. The chromosomal sites of Tn916-

codY insertion were determined by sequencing and by analysis of RNA-seq data. See Materials

and Methods for details.

(DOCX)

S3 Table. RPKMO values for all genes of the parental strain UK1, the codY null mutant

and three point mutants. Two samples were assayed and averaged for each strain.

(XLSX)

S4 Table. Genes overexpressed (A) or underexpressed (B) >3-fold in the codY null mutant

strain. The average RPKMO values for two samples of strains UK1 (codY+) and LB-CD16

(codY::intron::erm) were determined (columns D and G). The ratios of the LB-CD16/UK1

averages are presented in column H.

(XLSX)

S5 Table. Genes overexpressed (A) or underexpressed (B) >3-fold in the codY mutant

strain ND-CD13. The average RPKMO values for two samples of strains UK1 (codY+) and

ND-CD13 (codY::intron::erm Tn916::codY (E99D)) were determined (columns D and G). The

ratios of the ND-CD13/UK1 averages are presented in column H.

(XLSX)

S6 Table. Genes overexpressed (A) or underexpressed (B) >3-fold in the codY mutant

strain ND-CD17. The average RPKMO values for two samples of strains UK1 (codY+) and

ND-CD17 (codY::intron::erm Tn916::codY (F101W)) were determined (columns D and G).

The ratios of the ND-CD17/UK1 averages are presented in column H.

(XLSX)
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S7 Table. Genes overexpressed (A) or underexpressed (B) >3-fold in the codY mutant

strain ND-CD12. The average RPKMO values for two samples of strains UK1 (codY+) and

ND-CD12 (codY::intron::erm Tn916::codY (F74Y)) were determined (columns D and G). The

ratios of the ND-CD12/UK1 averages are presented in column H.

(XLSX)

S8 Table. Expression of ethanolamine metabolism genes in codY mutant strains. The aver-

age RPKMO values for each of the genes is shown for the wild-type and the codY mutant

strains.

(XLSX)

S9 Table. Sporulation genes regulated by CodY. CodY-repressed genes (>3-fold) in strain

UK1 (annotated as R20291 genes) that were found to be Spo0A-dependent in strain JIR8074, a

derivative of strain 630 (A. Shen, personal communication) are listed with their 630 analogs.

(XLSX)

S10 Table. List of oligonucleotides.

(XLS)
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