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A B S T R A C T   

Coronavirus (COVID-19) is an enveloped RNA virus that is diversely found in humans and that has now been 
declared a global pandemic by the World Health Organization. Thus, there is an urgent need to develop effective 
therapies and vaccines against this disease. In this context, this study aimed to evaluate in silico the molecular 
interactions of drugs with therapeutic indications for treatment of COVID-19 (Azithromycin, Baricitinib and 
Hydroxychloroquine) and drugs with similar structures (Chloroquine, Quinacrine and Ruxolitinib) in docking 
models from the SARS-CoV-2 main protease (M-pro) protein. The results showed that all inhibitors bound to the 
same enzyme site, more specifically in domain III of the SARS-CoV-2 main protease. Therefore, this study allows 
proposing the use of baricitinib and quinacrine, in combination with azithromycin; however, these computer 
simulations are just an initial step for conceiving new projects for the development of antiviral molecules.   

1. Introduction 

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2, a 
novel coronavirus from the same family as SARS-CoV and Middle East 
respiratory syndrome coronavirus (MERS), has spread worldwide, 
prompting the World Health Organization to declare a pandemic (Pas-
carella et al., 2020). CoVs are a large family of RNA viruses that are 
found in various animal species. They are known to cause diseases of the 
respiratory, hepatic, nervous and gastrointestinal systems in humans, 
with the potential to cause severe and possibly fatal infections [1,2]. 

The novel coronavirus uses the same receptor as SARS-CoV [angio-
tensin-converting enzyme 2 (ACE2)], and mainly spreads through the 
respiratory tract. Human-to-human aerosol transmission is undoubtedly 
the main source of contagion, which happens mainly through contam-
inated droplets, hands or surfaces [3]. 

The symptoms of COVID-19 infection appear after an incubation 
period of approximately 5.2 days, ranging from 6 to 41 days from the 

onset of COVID-19 symptoms to death [3]. This period seems to be 
associated with age, biological sex, and other health conditions, such as 
cardiovascular disease, hypertension, diabetes mellitus [1,4]. The 
complete clinical manifestation is not clear yet, but the reported 
symptoms range from mild to severe. Common symptoms include fever, 
cough, myalgia or fatigue, pneumonia, and increased dyspnea. The less 
common symptoms reported include headache, diarrhea, hemoptysis, 
runny nose, and phlegm-producing cough [1,5]. 

At present, there is no single specific antiviral therapy for COVID-19 
and the main treatments are supportive [2]. However, drug reposi-
tioning has been a strategy adopted by several researchers to seek 
effective treatment in a short period. Besides that, a virtual screening 
based on molecular docking emerges as an important tool for obtaining 
new antiviral molecules, where researchers can use this tool as a com-
plementary approach so that the synthesis of new compounds or the 
repositioning of drugs can be assigned [9]. 

While traditional methods of drug discovery can take years, the 
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approach taken here to search for possible medications for the SARS- 
CoV-2 is docking of models from the SARS-CoV-2 main protease (M- 
pro) protein [4]. This protein is a vital target for drug discovery studies 
against the recent coronavirus epidemics, including Severe Acute Res-
piratory Syndrome CoV (SARS) and MERS CoV [5]. 

Also, in the face of a global economic recession scenario, infra-
structure requirements for experimental trials are out of reach for most 
researchers due to their high cost; thus, computational analysis allows 
that, through simulations, it is possible to develop new projects for the 
initial stages of discovering new antimicrobial agents [8,9]. Thus, this 
study aimed at evaluating the drugs’ interaction with other therapeutic 
indications that have been described for the treatment of COVID-19 
(Azithromycin, Baricitinib, and Hydroxychloroquine), and their 
similar structures (Chloroquine, Quinacrine, and Ruxolitinib) compared 
to the COVID-19 main protease in the complex through computer 
simulations. 

2. Materials and methods 

2.1. Enzyme collection and preparation 

Using the data filed in the Protein Data Bank (https://www.rcsb. 
org/) database, the structure of the COVID-19 virus main protease 
(Mpro) was obtained, identified in the repository as The crystal structure of 
COVID-19 main protease in complex with an inhibitor N3 PDB ID: 6LU7, 
composed of three domains, domain I (residue 8–101), domain II 
(102–184), domain III (201–303), and a long loop (185–200) binding 
domain II to domain III; its structure was filed in the Protein Data Bank 
with a resolution of 2.16 Å, determined from X-ray diffraction, classified 
as viral protein, Bat SARS-like coronavirus organism, and Escherichia coli 
BL21(DE3) expression system [6]. In the process of preparing the 
SARS-CoV-2 main protease, all residues were removed and polar hy-
drogens were added [7,8], producing favorable protonation states for 

molecular docking [9]. 

2.2. Binders collection and preparation 

Redirecting approved drugs and drug candidates is an alternative 
approach to quickly identifying potential drugs to manage viral in-
fections that arise quickly [6]. Thus, the chemical structures of the in-
hibitors Azithromycin (CID447043), Baricitinib (CID44205240), 
Chloroquine (CID2719), Hydroxychloroquine (CID3652), Quinacrine 
(CID237), and Ruxolitinib (CID25126798) were selected from the Pub-
chem repository (https://pubchem.ncbi.nlm.nih.gov/) (Fig. 1), and 
optimized from energy minimization protocol using the steepest descente 
algorithm, with cycles of 50 interactions and MMFF94 (Merck Molecular 
Force Field 94) force field [10,11], established in the Avogadro code 
(version 1.2.0) [12]. 

2.3. Molecular docking 

The docking simulations between inhibitors and the SARS-CoV-2 
main protease were performed using the AutoDock Vina code (version 
1.1.2), employing 3-ways multithreading, Lamarkian Genetic Algorithm 
[13], and the feasible region center_x = − 26.734, center_y = 13.009, 
center_z = 56.185, size_x = 94, size_y = 112, size_z = 108, spacing =
0.642, and exhaustiveness = 8. Between ten and forty molecular docking 
executions were performed, the most favorable ones being represented 
by the lowest free-bond energy (ΔG) [14], and number of simulations 
that were repeated in the same region of the biological receptor, i.e., 
preference of the molecule for the same bond site. Figures were drafted 
using the Discovery Studio Visualizer [15] and UCSF Chimera viewers 
[16]. 

Fig. 1. Chemical structures of the ligands.  
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3. Results and discussion 

For the understanding of receptor-binder interactions, the study of 
molecules employing molecular docking has become increasingly rele-
vant to predict bond modes and elucidate experimental results [17]. 
Based on this, the molecular docking routines generated values of RMSD 
(Root Mean Square Deviation) [18] and bond-free energy [19] for com-
plexes formed with variations in RMSD values from 1060 to 1978 Å, and 
bond-free energy of − 6.6 to − 4.7 kcal/mol (Table 1). 

Analysis of the molecular anchoring simulations showed that all in-
hibitors are linked in the same enzyme site, more isolated in domain III 
of the main SARS-CoV-2 protease, but they are distant in the binding site 
of the N3 protease inhibitor, located between domains I and II (Fig. 2). 
Comparing the calculated distances between inhibitors and residues 
from the N3 binding site (Table 2), it was identified that all ligands were 
at a greater distance than the N3 complexed in the main protease of the 
COVID-19 virus (Mpro), highlighting what shows Fig. 2. 

Analysis of the interactions showed that azithromycin (Fig. 3A) 
exhibited six interactions with COVID-19, one of the conventional 
hydrogen bond type with Leu272 (2.62 Å) and five of the alkyl type, two 
with Leu286, two with Leu287 and one with Met276. Although azi-
thromycin showed a hydrogen bond with the enzyme, the inhibitor 
showed no interactions with the binding site compared to N3. Regarding 
the receptor-ligand complex formed with baricitinib (Fig. 3B), the ligand 
has ten interactions with the amino acid residues of the enzyme, three of 
the conventional hydrogen bond type; one with Lys137 (2.66 Å), one 
with Asp197 (2.42 Å) and one with Leu287 (2.48 Å); one van der Waals 
interaction with Thr199; two of the carbon hydrogen bond type, one 
with Leu287 and the other with Aps289; two interactions of the Pi- 
Cation type with Arg131; a Pi-Anion interaction with Asp289 and an 
interaction of the Amide-Pi stacked type with Thr198. 

The chloroquine inhibitor (Fig. 3C) showed two interactions with the 
main protease of the COVID-19 virus, a conventional hydrogen bond 
with Tyr239 (1.92 Å) and a Pi-Pi T-Shaped type with Tyr237. The 
hydroxychloroquine (Fig. 3D) and chloroquine docking did not exhibit 
adequate binding energy with the enzyme (− 5.0 kcal/mol), higher than 
the value of free binding energy considered in the literature as standard 
(− 6.0 kcal/mol or less), which might have interfered with the interac-
tion of hydroxychloroquine with the binding site of the N3 inhibitor 
complexed in the target enzyme. However, four interactions of 
hydroxychloroquine were found with the main SARS-CoV-2 protease, a 
Pi-Cation with Arg131, a Pi-Anion with Asp289 and two of the con-
ventional hydrogen bond type, one with Lys137 (2.61 Å) and the other 
with Tyr237 (2.99 Å). 

The quinacrine molecular docking routines (Fig. 3E) showed the 
formation of three interactions with the target protein, one of the con-
ventional hydrogen bond type with Tyr239 (2.46 Å), one of the carbon 
hydrogen bond type with Thr199 and a Pi-Sigma with Leu272. Analysis 
of interactions with ruxolitinib showed that the molecular fitting 
simulation of the inhibitor (Fig. 3F) resulted in the formation of six in-
teractions with the enzyme, one of the alkyl type with Leu287, a con-
ventional hydrogen bond with Lys137 (3.07 Å), a carbon hydrogen bond 
with Leu287, an unfavorable acceptor-acceptor interaction with Tyr239 
and a Pi-Anion with Asp289. Hydrogen bonds play an important role in 
macromolecular recognition, folding and stability [20]. 

Thus, the formation of nine hydrogen bonds with the analyzed in-
hibitors was identified in the molecular docking simulations, classified 
as hydrogen bonds strongly covalent with baricitinib (Asp197 and 
Leu287), chloroquine (Tyr239) and quinacrine (Tyr239), because they 
have bond length up to 2.5 Å and care classified as moderate and mostly 
electrostatic hydrogen bonds with baricitinib (Lys137), azithromycin 
(Leu272), hydroxychloroquine (Lys137 and Tyr237) and ruxolitinib 
(Lys137), by presenting a connection length up to 3.2 Å according to the 
parameters described in the literature [21–26]. Hydrogen bonds play an 
important role in macromolecular recognition, folding and stability 
[20]. According to classical studies [27,28], hydrogen bonds are 
essential in several biological processes, so the amount of these bonds 
can play a fundamental role in determining the molecule’s interaction 
specificity with the pharmacological receptor. 

The description of the NAK inhibitors (numb-associated kinase) ef-
fects, such as baricitinib and ruxolitinib, compared to SARS coronavirus 
2, were initially described by Ref. [29]. According to the authors, these 
molecules would act by blocking clathrin-mediated endocytosis. Our 
computer tests demonstrate that the NAK inhibitors, mentioned previ-
ously, also seem to interact with the domain III of COVID-19 main 
protease (Fig. 2). It should be noted that, according to Ref. [6], this 
protein performs a primordial activity in the viral replication and 
transcription processes. As a comparison, ruxolitinib only showed a 
bond classified as moderate and mostly electrostatic hydrogen bonds in 
the Lys137 amino acid. According to Ref. [29,30], the selective in-
hibitors of JAK are potential molecules for the treatment of COVID-19. A 
study performed in Italian hospitals [31] indicated that the se of therapy 
with baricitinib enabled an improvement in the clinical characteristics 
and parameters of respiratory function in 12 patients suffering from 
pneumonia caused by COVID-19. Furthermore [32], found that the se-
lective inhibitors of JAK can be effective in the treatment of 
SARS-CoV-2, by blocking viral endocytosis or reducing the presence of 
pro-inflammatory molecules (IFN-γ and IL-6). 

In Brazil, the Ministry of Health recently introduced a new scheme 
for patients infected with SARS-CoV-2 in severe condition, which is 
based on the use of hydroxychloroquine [33]. In a study published by 
Ref. [34], a significant decrease in viral load was demonstrated in pa-
tients with COVID-19 after being treated with hydroxychloroquine 
associated with azithromycin. According to Ref. [35], hydroxy-
chloroquine stops SARS-CoV-2 replication and invasion. On the other 
hand, the hydroxychloroquine docking, as well as chloroquine, did not 
show adequate bond energy with the enzyme. Moreover [36], presented 
evidence that hydroxychloroquine is ineffective for direct inhibition of 
the SARS-CoV-2 spike-ACE2 interaction. The weak correlation between 
the proposed target and the molecules does not preclude therapeutic 
success; however, a recent study proposed by Ref. [2] at the Shanghai 
Public Health Clinical Center showed that 30 patients treated with 
hydroxychloroquine did not show significant differences in relation to 
the untreated group. Besides this, chloroquine and hydroxychloroquine 
can lead to heart problems, associated with high doses or due to com-
bination with antibiotics [37,38]. Another structure similar to the 
hydroxychloroquine analyzed was quinacrine. Our molecular docking 
routines demonstrated that this molecule led to the formation of three 
interactions with the protein target, one of the Conventional Hydrogen 
Bond type (Tyr239 (2.46 Å)). Quinacrine has long been described in the 
literature for human use as an oral antiprotozoal and anti-rheumatic 
agent. In a study performed by Ref. [39], it was suggested that quina-
crine may suppress the translation directed by the Internal ribosome 
entry sites (IRESs) of the encephalomyocarditis virus (EMCV) and the 
poliovirus, indicating that this molecule may inhibit the replication of 
several RNA viruses. In a recent study published by Ref. [40], it was 
observed that quinacrine hydrochloride was able to protect 70% of mice 
from a lethal challenge with the Ebola virus (EBOV). From a chemical 
point of view, quinacrine, hydroxychloroquine, and chloroquine are 
lysosomotropic amines. Substances with this profile are known as 
endosomal acidification inhibitors, so these molecules can spread 

Table 1 
RMSD and affinity energy values calculated in molecular docking simulations.  

Inhibitor Affinity (kcal/mol) RMSD (Å) 

Azithromycin − 6.3 1.060 
Baricitinib − 6.3 1.432 
Chloroquine − 4.7 1.687 
Hydroxychloroquine − 5.0 1.978 
Quinacrine − 6.0 1.728 
Ruxolitinib − 6.6 1.238  
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quickly through the organelles; however, in the presence of an acid pH, 
they become protonated and tend to accumulate in the organelles [41, 
42]. In the same study performed by Ref. [34], the use of hydroxy-
chloroquine in combination with azithromycin has been proposed. 
Therefore, we set out to assess whether there would be any molecular 
interaction between this macrolide and the aforementioned target. Ac-
cording to Refs. [36], azithromycin presented high affinity for 

SARS-CoV-2 spike-ACE2 interaction. Some research points to the anti-
viral effects of the macrolides class. In a study performed by Ref. [43], 
the anti-rhinovial potential of azithromycin was observed, where this 
molecule significantly reduced the replication and release of rhinovirus. 
According to Ref. [44], the mechanism by which macrolides act against 
viruses is not well understood, but the versatility of these molecules 
allows their application in medical clinics. However, in a recent cohort 

Fig. 2. The ligands (Azithromycin, Baricitinib, Chloroquine, Hydroxychloroquine, Quinacrine e Ruxolitinib) binding the Mpro COVID-19 residues compared to N3.  

Table 2 
Distances between the Mpro COVID-19 residues and the ligand.  

COVID-19 (Mpro) residue Azithromycin Baricitinib Chloroquine Hydroxychloroquine Quinacrine Ruxolitinib N3 

His41 25.0 Å 23.9 Å 25.8 Å 24.9 Å 26.5 Å 24.1 Å 3.8 Å 
Ser46 31.7 Å 30.8 Å 32.5 Å 31.3 Å 32.9 Å 32.1 Å 6.7 Å 
Met49 27.5 Å 26.3 Å 27.9 Å 26.8 Å 28.6 Å 28.0 Å 3.9 Å 
Tyr54 28.2 Å 26.5 Å 28.1 Å 27.5 Å 28.9 Å 27.6 Å 4.1 Å 
Phe140 16.4 Å 15.7 Å 17.3 Å 15.8 Å 18.3 Å 14.2 Å 3.2 Å 
Leu141 20.2 Å 20.1 Å 21.5 Å 20.2 Å 22.5 Å 18.8 Å 3.9 Å 
Asn142 23.0 Å 22.9 Å 24.5 Å 23.2 Å 25.0 Å 21.9 Å 3.2 Å 
Gly143 25.3 Å 24.9 Å 26.6 Å 25.2 Å 27.3 Å 23.8 Å 2.9 Å 
Cys145 23.1 Å 22.2 Å 24.3 Å 23.0 Å 25.0 Å 21.9 Å 1.8 Å 
His163 17.5 Å 16.7 Å 18.7 Å 17.3 Å 19.5 Å 16.2 Å 2.4 Å 
His164 20.7 Å 19.2 Å 21.1 Å 20.0 Å 21.8 Å 19.0 Å 2.8 Å 
Met165 17.3 Å 15.9 Å 18.2 Å 17.1 Å 18.6 Å 16.2 Å 3.2 Å 
Glu166 15.3 Å 14.9 Å 17.0 Å 15.8 Å 17.2 Å 15.2 Å 2.8 Å 
Leu167 13.2 Å 12.0 Å 13.4 Å 12.6 Å 14.2 Å 13.8 Å 4.3 Å 
Pro168 13.0 Å 13.7 Å 15.2 Å 13.5 Å 15.2 Å 15.3 Å 3.5 Å 
His172 12.2 Å 11.3 Å 13.4 Å 12.2 Å 14.0 Å 11.6 Å 3.7 Å 
Phe185 14.0 Å 12.4 Å 13.5 Å 13.1 Å 14.3 Å 14.2 Å 7.2 Å 
Asp187 23.6 Å 22.1 Å 23.5 Å 23.0 Å 24.3 Å 23.6 Å 4.0 Å 
Gln189 24.7 Å 23.1 Å 24.6 Å 23.3 Å 25.3 Å 24.8 Å 2.9 Å 
Thr190 20.7 Å 20.0 Å 21.3 Å 19.9 Å 22.0 Å 21.9 Å 2.8 Å 
Ala191 19.4 Å 19.0 Å 20.0 Å 18.5 Å 21.0 Å 21.1 Å 3.8 Å 
Gln192 15.6 Å 15.1 Å 16.2 Å 14.7 Å 16.8 Å 17.1 Å 3.7 Å  
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study [45] in the New York metropolitan region indicated that treatment 
with hydroxychloroquine and azithromycin did not show significant 
differences regarding mortality rates. 

4. Conclusion 

The analysis of the results identified that the six inhibitors tested did 
not show significant distances compared to the N3 complexed in the 
SARS-CoV-2 main protease (Mpro). Although azithromycin, baricitinib, 
quinacrine, and ruxolitinib present bond-free energy within the stan-
dards described in the literature for affinity energy, no interactions were 
found with the amino acid residues from the bond site of the co- 
crystallized inhibitor in the enzyme, located in domains I and II. All 
the inhibitors analyzed showed affinity and interactions with domain III 
of the biological receptor. Finally, we can propose that from the results 
obtained from computer simulations, baricitinib, quinacrine, and azi-
thromycin can be used alone or in combination. 
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