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ABSTRACT

Motivation: A typical PSI-BLAST search consists of iterative
scanning and alignment of a large sequence database during which
a scoring profile is progressively built and refined. Such a profile
can also be stored and used to search against a different database
of sequences. Using it to search against a database of consensus
rather than native sequences is a simple add-on that boosts
performance surprisingly well. The improvement comes at a price:
we hypothesized that random alignment score statistics would differ
between native and consensus sequences. Thus PSI-BLAST-based
profile searches against consensus sequences might incorrectly
estimate statistical significance of alignment scores. In addition,
iterative searches against consensus databases may fail. Here, we
addressed these challenges in an attempt to harness the full power
of the combination of PSI-BLAST and consensus sequences.
Results: We studied alignment score statistics for various types
of consensus sequences. In general, the score distribution
parameters of profile-based consensus sequence alignments
differed significantly from those derived for the native sequences.
PSI-BLAST partially compensated for the parameter variation.
We have identified a protocol for building specialized consensus
sequences that significantly improved search sensitivity and
preserved score distribution parameters. As a result, PSI-BLAST
profiles can be used to search specialized consensus sequences
without sacrificing estimates of statistical significance. We also
provided results indicating that iterative PSI-BLAST searches against
consensus sequences could work very well. Overall, we showed
how a very popular and effective method could be used to identify
significantly more relevant similarities among protein sequences.
Availability: http://www.rostlab.org/services/consensus/

Contact: dariusz@mit.edu

1 INTRODUCTION

PSI-BLAST achieves a remarkable compromise between speed and
quality. Ideally, an alignment method should accurately identify
related sequences in today’s rapidly growing databases within the
shortest possible time. While we want to simultaneously optimize
speed and reliability, in practice there is a tradeoff: very accurate
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alignment methods are relatively slow (e.g. profile—profile alignment
algorithms), while very fast methods are far less sensitive than
we might wish (e.g. BLAST; Altschul et al., 1990). PSI-BLAST
(Altschul et al., 1997) strikes an excellent compromise between
speed and sensitivity.

Consensus  sequences improve PSI-BLAST performance.
Consensus sequences were used early on to improve alignments
(Patthy, 1987). The initial approaches mimicked profile-sequence
alignments (Henikoff and Henikoff, 1997; Sonnhammer and Kahn,
1994). Many improvements followed (Finn et al., 2006; Kahsay
et al., 2005; Letunic et al., 2006; Marchler-Bauer et al., 2002;
Merkeev and Mironov, 2006; Schaffer et al., 1999; Schultz et al.,
1998; Servant et al., 2002; Thelen et al., 1999). However, none of
those methods approached the success of PSI-BLAST. We have
recently proposed a simple add-on to PSI-BLAST that substantially
improves its performance (Przybylski and Rost, 2007). The add-on
did not require any code change in PSI-BLAST. It consisted of
adding a final step of ‘freezing’ the profile after the standard,
iterative search against native sequences and then using it to search
a database with the native sequences replaced by their consensus
counterparts. This simple add-on improves the performance
throughout the entire sensitivity curve. However, it is not clear
how the underlying residue composition of database sequences
affects the statistics of alignment scores. This is an important issue
because users rely on the estimates of statistical significance to
judge retrieved alignments. In addition, incorrect scoring might
invalidate iterative searches against consensus sequences; a single
false alignment in one of the intermediate searches might pollute a
scoring profile and thereby all subsequent searches.

This study was motivated by the following three assumptions:
(1) For a given residue substitution scoring matrix, the statistical
significance of alignment scores depends on the residue composi-
tions of aligned sequences. Assume that a particular scoring
matrix highly rewards the alignment of tryptophan. This implies
that sequences rich in tryptophan will likely generate higher
alignment scores than those with average tryptophan content. (2)
In general, the composition of consensus sequences differs from
that of native sequences. Therefore, the distribution of alignment
scores is likely different for consensus and native sequences,
at least when using the same scoring matrix for both [such as
BLOSUMG62 (Henikoff and Henikoff, 1992) or the corresponding
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position-specific scoring matrices]. (3) PSI-BLAST is very popular,
well-maintained, and has a great impact on the community of
scientists that use sequence alignments. Therefore, it is desirable to
improve PSI-BLAST performance without changing its alignment
parameters (including scoring matrices and gap scores) with
which the community is already familiar. In order to accomplish
this, we have asked the following questions: how much do the
parameters of alignment score distribution change for various
types of consensus sequences? Can PSI-BLAST compensate for
compositional variations through its internal composition-based
adjustments (Schaffer et al., 2001)? Or, can we build consensus
sequences in a way that renders statistical significance reported
by PSI-BLAST as valid? Finally, can we apply PSI-BLAST to
iteratively search consensus sequence databases?

2 METHODS

2.1 Generation of consensus sequences

We derived the consensus sequences from position-specific scoring matrices
(PSSM, also known as scoring profiles) generated by iterative PSI-BLAST
(‘blastpgp’) (Altschul et al., 1997) searches of the redundancy-reduced
UniProt (Apweiler et al., 2004) database containing about 1.5 million
sequences. The sequence redundancy was reduced with CD-HIT (Li et al.,
2001) such that pairs of sequences had <80% identical residues (globally).
We allowed up to five PSI-BLAST iterations, i.e. the frozen profile was
computed based on the fourth iteration or the next to the last one for early
converging queries. The E-value threshold for inclusion in PSSMs was set
to 0.001 and we increased the maximum number of aligned sequences to
2000 [blastpgp options ‘-j 5 -h 0.001 —v 2000 —b 2000 -Q PSSM(ASCII)’].
Other options were left unchanged, including the default compositional
adjustment of alignment score statistics and gap scores of —(11+k) for
gaps of length k. The determination of consensus sequences was based on
ASCII PSSMs. For a given sequence and a residue position, we looked at
the corresponding column of its PSSM and/or the frequency profile also
present in the PSI-BLAST output. We explored three alternative ways for
computing consensus residues at a given position i of a sequence: (1) MF:
maximal frequency—the consensus residue j had the highest occurrence
frequency f;; in the profile column, (2) MET: maximal relative entropy term—
we chose the residue j with the highest relative entropy term fj;ln(f;/b;)
with respect to the background frequency b;, (3) MR: maximal ratio of
frequencies—we chose the residue with the highest frequency ratio f;;/b;.
In addition, we studied full (MF-full, MET-full, MR-full) and partial (MF-
partial, MET-partial, MR-partial) versions of consensus sequences. For
the (1) full consensus sequences, we computed the consensus residue at
each sequence position, and for the (2) partial consensus, we computed the
consensus in a constrained way, e.g. only for the more informative positions.
The more informative positions were those having profile frequency columns
with the relative entropy equal or above 0.6 (as reported in the PSI-BLAST
output).

2.2 Alignments

All of the alignments (except those used to estimate the asymptotic values
of the alignment score distribution parameters) were generated using
PSI-BLAST version 2.2.15. The frozen scoring profiles (PSSMs) for the
non-iterative profile-sequence alignments were generated in the same way
as those used for generation of consensus sequences, except that a file
containing the binary version of a PSSM was also stored [blastpgp option *-C
PSSM(binary)’]. Those binary PSSMs were used for a final (non-iterative)
PSI-BLAST search against the appropriate consensus or native sequence
databases [blastpgp options: ‘-j 1 -R PSSM(binary)’]. For the non-profile-
based sequence—sequence alignments the default BLOSUMG62 (Henikoff and
Henikoff, 1992) scoring matrix was used (blastpgp options: ‘-j 1’). When

studying iterative searches against consensus sequence databases, we
compared the performance for various number of iterations. The consensus
version of the redundancy-reduced UniProt database used in iterative
consensus searches was computed over a period of a few months using spare
CPUs of a large computing cluster.

2.3 Evaluation of similarity search capability

We evaluated the ability to identify remotely related proteins using SCOP
(Murzin et al., 1995) (release 1.69). We used the usual, descending
hierarchy levels of ‘fold’, ‘superfamily’ and ‘family’ to define true and
false relationships. Our positives consisted of pairs of protein domains from
the same SCOP superfamily, but different SCOP families (i.e. the relatively
easy pairs from the same family were not counted). However, for the more
sensitive iterative searches against consensus sequences, we also counted
pairs from the same SCOP-fold as positives. The negatives belonged to
different SCOP-folds. We removed domains with: discontinuous sequences,
missing coordinates in their three-dimensional structures, NMR and low-
resolution structures (>2.5 A), and the short ones (<50 residues). Next, we
reduced the sequence redundancy of the set so that no pair of sequences could
be aligned by BLAST with E-values better than 10~> (when computed on
UniProt database of ~2 000 000 sequences), or at levels of sequence identity
and alignment length that corresponded to homology-derived structures of
proteins (HSSP)-values above 0 (Rost, 1999; Sander and Schneider, 1991)
(whichever of the two criteria applied). This yielded a dataset of 2476
sequences for which we applied the all-against-all test.

2.4 Score statistics

PSI-BLAST provides statistical significance of alignment scores in terms of
expectation values (E-values) that are given by:

E%Kmnef)»*smre (1)

where m and n are the effective lengths (Altschul and Gish, 1996) of aligned
sequences (query and database), score is a raw alignment score (as given
by the values in scoring matrix and gap penalties), and K and XA are the
parameters of the score distribution that depend on a scoring system and
the residue composition of aligned sequences. Note that the computation of
the E-value primarily depends upon a proper estimate of A and much less so
on that for K.

2.5 Determining parameters of alignment score
distributions

The problem of estimating the statistical significance of alignment scores
has been studied extensively (Altschul and Gish, 1996; Karlin and Altschul,
1990; Mott, 1992; Waterman and Vingron, 1994). We computed A and K
parameters [Equation (1)] with our implementation of the ‘island’ approach
(Altschul et al., 2001; Olsen et al., 1999) for a case of scoring profiles. This
approach is appropriate as the primary methods studied in this article rely
on searching databases of consensus sequences with precomputed PSSMs.
We have also estimated the score distribution parameters for profile-based
searches against native sequences to relate our results to the earlier studies.
First, we obtained the initial PSSMs for hundreds of thousands of randomly
selected UniProt sequences. Most of them were too short to study the score
distribution in the asymptotic limit of very long sequences. Therefore, we
concatenated them in random order and then cut them into final long PSSMs,
each composed of 7000 columns. We ended up with 75000 of such long
PSSMs. To generate corresponding long random consensus sequences, we
first computed consensus sequences from each of the long PSSMs and
used them to compute consensus residue background frequencies. Those
background frequencies were used to generate random sequences used for
studying asymptotic alignment score distribution parameters. For partial
consensus sequences, we computed two separate sets of backgrounds—
inside and outside of consensus regions and used them accordingly for
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generation of random partial consensus sequences (with the informative
positions indicated by the original PSSM relative entropy values at each
sequence position).

2.6 Studying the compositional adjustment of
alignment score statistic in PSI-BLAST

The newer versions of PSI-BLAST can adjust alignment score statistics based
on varying residue compositions of query and database sequences (‘-t” option
in PSI-BLAST). In particular, we looked at the performance of the default
adjustment implemented in the 2.2.15 version of the software. We have
generated random sequence databases based on the native and consensus
background residue frequencies. The numbers of random sequences and
their sizes were the same as those found in the non-redundant UniProt
database. We queried those databases with about 20000 randomly chosen
native sequences and the corresponding PSI-BLAST profiles (PSSMs). We
recorded the average cumulative numbers of alignments per query that had
E-values better than a given threshold value.

3 RESULTS AND DISCUSSION

3.1 Alignment score parameters depended on
consensus type

The variation of A with the alignment score [Equation (1)] for
gapped alignments has been described before (Altschul ez al., 2001).
Low-scoring alignments usually have fewer gaps and their score
distribution differs from those obtained for high-scoring alignments
with gaps. Here, we have focused mostly on asymptotic values of
X for high scores because they correspond to statistically significant
alignments originating from searches of large sequence databases. In
particular, we looked at A for PSSMs generated with five iterations
of PSI-BLAST. We observed that A depended on the sequence
types (Fig. 1). Computing consensus residues for the full sequence
produced largest changes in A (open symbols in Fig. 1, i.e. MR-full,
MET-full and MF-full). For each one of them, the asymptotic value
of A was less than 0.2 (more data points would be needed to establish
a precise limit). The value of A for the profile-sequence alignments
of the native sequences was about 0.255 (Fig. 1; green squares).
This is rather close to a value of 0.267 previously established for
the sequence-sequence alignments with the BLOSUMS62 scoring
matrix (Altschul ez al., 2001). For the partial consensus sequences, A
appeared to follow the value obtained for the native sequences (filled
symbols in Fig. 1, i.e. MF-partial and MET-partial). To some extent
this result is not surprising because partial consensus substitutions
are more restricted than the full ones, i.e. change fewer residues
(Table 1). As a result, we established that one could use PSI-BLAST
without any modifications to perform profile-based search against
partial consensus sequence databases and maintain proper estimates
of E-values.

We have also estimated the location parameter K used for
computing E-values [Equation (1)]. For example, we found it to
be ~0.015 for the full consensus sequences (MF-full), 0.030 for the
partial consensus sequences (MF-partial) and 0.032 for the native
sequences.

3.2 Search performance similar for all consensus types

Do some types of consensus sequences retrieve related sequences
from a database better than others? For each type of consensus, we
ordered all query alignments by PSI-BLAST E-values. Next, we
computed the cumulative numbers of true positive relations (same
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Fig. 1. Estimating . Score distribution parameter A [Equation (1), y-axis]
varies with alignment scores (x-axis). In practice, we are interested in the
asymptotic value of A for higher scores. Full consensus sequences affected
A significantly (open symbols) when compared to native sequences (green
squares). In contrast, partial consensus did not significantly affect A (filled
black and blue symbols). Red error bars estimate the SD (for clarity only
shown for native sequences). Note that high alignment scores were attained
by few alignments.

Table 1. Pairwise residue identities of native and consensus sequences

Native  Full consensus Partial consensus

native MR MF MET MR MF MET

Native native 100
Full consensus MR 65 100
MF 54 76 100
MET 51 80 90 100
Partial consensus MR 86 79 64 63 100
MF 83 72 71 67 93 100
MET 82 73 69 69 94 98 100

Shown are average percentages of pairwise residue identities between different types
of sequences of a test set.

SCOP superfamily but different family) for increasing cumulative
numbers of false positive pairs (different SCOP-folds). For any
number of false positives (i.e. at any error rate), the profile-sequence
searches against the databases of full consensus sequences yielded
most true positives (Fig 2; top three curves: MET-full, MF-full,
MR-full). Interestingly, it did not matter much how we compiled
the full consensus (three top lines with open symbols in Fig. 2 are
almost indistinguishable). The profile-based searches against partial
consensus sequences (only most informative positions replaced by
consensus) were somewhat less efficient, especially when more
false hits were allowed (Fig 2; MET-partial). Nevertheless, they
were significantly better than standard profile-sequence searches
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Fig. 2. Comparison of search performance. All-against-all alignments of
the test set sequences were ordered by their PSI-BLAST E-values. The
cumulative numbers of non-trivial true relations (same SCOP superfamily
but different SCOP family) were plotted against the cumulative numbers
of false positives (different SCOP-folds). The profile-sequence searches
against the full consensus sequences performed best (top three curves:
MET-full, MF-full, MR-full). Profile-sequence searches against partial
consensus sequences were slightly less efficient (MET-partial), but they were
still significantly better than standard profile-sequence (native). Sequence—
sequence searches (one cycle of PSI-BLAST with BLOSUMG62 matrix) were
clearly inferior (MET-full-1, MET-partial-1, native-1).

of PSI-BLAST (Fig 2; native). For comparison, we also included
the performance of sequence—sequence searches with pairwise
BLAST against the native and consensus sequences (Fig. 2; MET-
full-1, MET-partial-1, native-1). As expected, pairwise searches
fared much worse than profile-sequence searches. The relative
performance difference between the full and partial consensus
sequences appeared larger for the sequence-sequence (Fig. 2;
MET-full-1, MET-partial-1) than for profile-sequence searches.

3.3 Composition of consensus sequences varied

The search performance appeared not to differ between various
types of full consensus sequences, although their average residue
compositions were quite different (Fig. 3A). The consensus based
on the maximum ratio of target and background frequencies
(MR-full) weighed more heavily rare residues such as tryptophane
(W). The consensus based on the most frequent residue (MF-full)
weighed more heavily the more ubiquitous ones such as leucine
(L). Finally, the consensus based on relative entropy (MET-full)
produced the composition that appeared to be more balanced (Fig.
3A, blue bars). The average percent differences in residue identity
(and SDs) between native and full consensus sequences were: 65
(£14) for MR-full, 54 (£16) for MF-full and 51 (£17) for MET-full
consensus sequences. The partial consensus calculations resulted
in average compositions that were much closer to the native ones
(Fig. 3B). The corresponding residue identities with respect to
native sequences were: 86 (£7)%, 83 (£8)% and 82 (£8)%. Thus,
the consensus calculation (MR) that changed sequences the least
in terms of the average residue identity has changed the score

distribution parameters the most. Other pairwise residue identities
are given in Table 1. All calculations were performed on our
non-redundant SCOP test set.

3.4 PSI-BLAST compositional adjustments were
partially successful

When compositions of aligned sequences differ from a standard
one, PSI-BLAST can attempt to correct the estimates of statistical
significance accordingly (Schaffer et al., 2001; Yu and Altschul,
2005). We studied how well the default adjustments perform on
consensus sequences (non-default adjustments are not available for
profile-based searches). Using PSI-BLAST profiles we searched
against the consensus and native sequence databases (Section 2). For
the comparison, we also searched with the BLOSUMG62 substitution
matrix (standard, non-profile BLAST search). In the latter case,
the estimates of statistical significance were not very sensitive
to compositional differences and the statistic adjustments worked
well (Table 2, observed and expected counts similar; adjustments
were conservative). However, for the profile-based searches the
compositional differences played a significant role, particularly for
the full consensus sequences (especially pronounced for MR-full,
Table 3). The compositional adjustment of scores attempted by
PSI-BLAST (-t option set to 1) failed to satisfactorily correct for
the differences. In contrast, the E-value estimates were good for
partial consensus sequences. For both native and partial consensus
sequences, the compositional score adjustment sometimes resulted
in slightly increased numbers of random alignments with significant
E-values.

3.5 Little additional CPU needed for add-on

In this study, we used separate databases for the iterative derivation
of PSSMs (non-redundant UniProt) and for the final search and
alignment against consensus sequences. On average, the entire
iterative PSI-BLAST search took about 10min per query (about
2 min per iteration on a single 3.2 GHz CPU with 2 GB of RAM
using query sequences with average length of 415 residues).
The additional time consumed by the add-on to search against a
consensus sequence database of the same size depended on the
sequence types. It took about 7 min to search MR-full and 4.5 min
for MF-full consensus sequence databases. In the case of partial
consensus it took about 2.5 min to search the MR-partial and about
2.2 min for MF-partial (compared to about 2 min needed to search
native one with PSI-BLAST profile).

3.6 Iterative searches against consensus sequences
yielded further improvements

We made the first attempt at analyzing iterative PSI-BLAST
searches against consensus sequence databases. For this analysis,
we pushed the envelope by running up to 20 iterations. We
counted hits belonging to the same SCOP-fold but to different
families as positives to reach deeper into remote protein—domain
relationships. The iterative PSI-BLAST searches against the native
sequence database resulted in near saturation of performance at
about 10 iterations. Only a small improvement was observed in
the subsequent 10 iterations (Fig. 4; top two green lines). The
iterative searches against consensus sequences (MF-full) produced
significantly more true hits with just three iterations. Five consensus
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idue compositions for consensus and native sequences in our test set. Full

consensus sequences (A) differed more from native than partial consensus sequences (B). Choosing the consensus residue corresponding to the highest relative
entropy term (blue bars) resulted, on average in smaller deviations from the native composition.

Table 2. Accuracy of BLAST E-values®

Observed Native Full consensus Partial consensus

Expected native native-adj. MR MR-adj. MF MF-adj. MET  MET-adj. MR MR-adj. MF MF-adj. MET  MET-adj.
0.001 0.0014 0.0010 0.0010 0.0002  0.0007 0.0006 0.0009 0.0003 0.0014 0.0008  0.0018 0.0008 0.0012 0.0009
0.01 0.010  0.007 0.006  0.004 0.006  0.005 0.008  0.004 0.011  0.006 0.012  0.005 0.011  0.006

0.1 0.09 0.07 0.07 0.04 0.03 0.06 0.08 0.06 0.09 0.07 0.11 0.07 0.10 0.07

1 0.9 0.7 0.7 0.5 0.2 0.7 0.9 0.6 0.9 0.7 1.1 0.7 1.0 0.7

10 9 7 7 6 18 7 9 7 9 8 11 8 10 8

aShown are the expected and observed numbers of random alignment scores per query for ~20 000 sequence queries on randomly generated databases (of UniProt size) of native
and consensus sequences. Appendix ‘-adj.” indicates results obtained with the use of compositional adjustment of E-values with BLAST option ‘-t’ set to 1.

iterations produced almost twice as many true hits as the native
PSI-BLAST search produced with 20. For comparison, we showed
the results of the profile-sequence search (profile obtained from
10 iterations of PSI-BLAST on a native database) against a final
database of consensus sequences (Fig. 4; blue line, mixed). These
results remain to be compared to the performance of profile—profile
methods (Bujnicki et al., 2001; Fischer et al., 2003).

4 CONCLUSIONS

PSI-BLAST is an excellent, well-known, well-maintained
and trusted resource for searching and aligning sequence databases.

A simple add-on consisting of searching with a PSI-BLAST
generated scoring profile against a database of consensus sequences
significantly improved the performance in finding related sequences.
Here, we specified in detail how different strategies of compiling
consensus residues affected the estimates of statistical significance
and performance. Profile-based PSI-BLAST searches against full
consensus sequences improved the most over searches against native
sequences. However, they sometimes suffered from problems in the
estimates of statistical significance. The partial consensus sequences
improved significantly over native sequences without sacrificing
estimates of statistical significance. Our initial results for iterative
searches against consensus sequences were very promising: a lower
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Table 3. Accuracy of PSI-BLAST? E-values®

Observed Native Full consensus Partial consensus

Expected native native-adj. MR MR-adj. MF MF-adj. MET MET-adj. MR MR-adj. MF MF-adj. MET  MET-ad;j.
0.001 0.0013 0.0033 66.4912 1.6637  0.0024 0.0008 0.0215 0.0093 0.0053 0.0040 0.0014 0.0028 0.0013 0.0038
0.01 0.008  0.020 98.880 43162 0.018 0.028 0.086  0.036 0.022  0.026 0.010 0.021 0.009  0.022
0.1 0.08 0.18 159.83  12.83 0.170  0.22 0.51 0.26 0.17 0.17 0.10 0.20 0.10 0.20

1 0.8 1.6 259.1 349 1.6 1.8 32 2.1 14 14 1.0 1.7 1.0 1.7

10 8 13 405 102 14 14 22 16 12 12 9 13 10 14

4Shown are the expected and observed numbers of random alignment scores per query for a set of about 20 000 profile (PSSM) queries on randomly generated databases (of UniProt
size) of native and consensus sequences. Appendix ‘-adj.’ indicates results obtained with a use of compositional adjustment of E-values with PSI-BLAST option ‘-t” set to 1.

YPSI-BLAST scarch was restarted from a stored profile.
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Fig. 4. Iterative PSI-BLAST searches against native and consensus
sequences. Iterative PSI-BLAST searches and PSSM refinements on native
sequence database (green lines) resulted in near saturation of performance at
about 10 iterations (top two green lines). The corresponding searches on the
database of consensus sequences (black lines) found significantly more true
hits (same SCOP-fold but different family) with just three iterations (black
triangles), while five iterations (black circles) retrieved almost twice as many
true hits as the maximum for the native PSI-BLAST. For comparison, a
result of the frozen profile-based search against a final database of consensus
sequences (MF-full) is presented (blue line).

number of iterations used less CPU overall and yielded about twice
as many correct hits at the same error rates as standard PSI-BLAST
searches did. Hence, the fusion of PSI-BLAST and consensus
sequences promises another leap in database searches.
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