
https://doi.org/10.1177/2041731417719170

Journal of Tissue Engineering
Volume 8: 1 –16 

© The Author(s) 2017
DOI: 10.1177/2041731417719170

journals.sagepub.com/home/tej

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License  
(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of  

the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages  
(https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction

There is a high need for smart off-the-shelf materials 
that are capable of confirming to the shape of tissues 
being replaced, modulating cellular function and pro-
moting tissue regeneration. These materials could poten-
tially provide morphological1–3 or biochemical cues4,5 
that guide cellular interaction which is essential for tis-
sue regeneration. Examples of these smart materials 
include bioactive glasses and ceramics that undergo spe-
cific surface reactions when incubated in simulated body 
fluid (SBF)6 or implanted in animal or human body7 
leading to the formation of hydroxyapatite (HA) layer 
that forms a strong bond with the host tissues. They are 
osteoinductive and osteoconductive; therefore, they 
attracted much interest in bone tissue engineering.8 They 
can also be used for soft tissue regeneration9 and drug 
delivery applications.10

Bioactive glasses

These glasses are amorphous and can be prepared either by 
melt–quench or sol–gel process.11 The sol–gel technology 

allows for incorporation of biomolecules, proteins or drugs 
that can be delivered in situ.12,13 Generally, these glasses 
can be tailored to release metallic ions that have antimicro-
bial14,15 or angiogenic potentials.16,17 They can also be pre-
pared as solid or nano-/micro-/macro-porous scaffolds18 
with highly ordered, controlled pore size and pores inter-
connectivity.19 The porous configuration is necessary for 
cell migration, angiogenesis and tissue infiltration; this fur-
ther enhances the bond to the host tissues.20 Functionalisation 
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of the scaffold with amino or carboxylic groups21 or load-
ing anti-osteoporotic drugs (e.g. ipriflavone)22 could also 
be achieved to further improve bone regeneration. 
Microspheres can also be prepared23 using different tech-
niques (flame spheroidisation,24 laser25 and thermally 
induced phase separation and/or oil-in water processing26) 
for various applications such as radiotherapy,27 drug deliv-
ery22 and tissue engineering.26

Under this category, silicate, phosphate and borate 
glasses will be discussed.

Silicate-based glasses. Silicate glasses are mainly based on 
SiO2 (the glass network former); other modifying oxides 
are also included as Na2O, CaO and P2O5 to adjust the 
properties of the produced glass. These oxides are usually 
included in specific molar ratios to produce a biologically 
active glass. To improve the bioactivity of these glasses, 
three important compositional features, including (1) SiO2 
content <60 mol%, (2) high Na2O and CaO content and (3) 
high CaO/P2O5 ratio,20 must be fulfilled. During the glass 
preparation, a spontaneous crystallisation is undesirable as 
it reduces the rate of HA formation on its surface.28 The 
rate of HA layer formation is highly dependent on the deg-
radation of glass. Accordingly, the presence of Na2O and 
other alkali or alkaline earth metals increases the rate of 
HA layer formation. The presence of high silica content or 
multivalent ions, for example, boron and aluminium, 
reduces the rate of glass breakdown and hence the apatite 
layer formation rate.29 Due to their texture (pore size/vol-
ume and high surface area), sol–gel-produced glasses 
showed higher bioactivity than the melt-quenched coun-
terparts.11 Furthermore, using the sol–gel technique, the 
silica content can be increased from 60 mol% in melt-
quenched to 85 mol% in sol–gel without reducing the 
bioactivity.30

A family of silicate-based glasses have been used for 
dental and orthopaedic applications29 since 1960s under 
the commercial name of 45S5 Bioglass™. This formula-
tion has been used as a benchmark for measuring the prop-
erties of new silicate glass compositions. When doped 
with boron, 45S5 Bioglass showed angiogenic potential 
caused by their ionic dissolution products.17,31 Boron32  
and silver14 also induced antibacterial action to bioactive 
silicate glasses.

Silicate-based glasses, however, require high melting 
temperature during their manufacture, and the addition of 
various metal oxides to reduce the melting temperature 
could adversely affect the glass bioactivity. The composi-
tional range and form of this glass is also limited. The deg-
radation of this glass often takes 1–2 years to totally 
degrade,11 and the long-term effect of silica is still question-
able.33 Fabrication of fibrous scaffold from this glass is also 
difficult. The search for new bioactive materials that could 
overcome the limitations of silicate-based glasses has led to 
the emergence of phosphate and borate-based glasses as 

alternatives. These glasses can be easily formed without 
significant crystallisation during their preparation.

Phosphate-based glasses. This class of glasses is mainly 
based on P2O5 (the glass network former), Na2O and CaO. 
Other modifying oxides, for example, CuO,15 ZnO,34 
Ag2O,35 Fe2O3,36 TiO2

37 and SrO,38 can also be included to 
induce a specific property, function or different biological 
response.39–41 Unlike silicate glasses, the phosphate tetra-
hedral has one terminal oxygen; this reduces the network 
connectivity and hence the rigidity but increases the com-
positional range of the produced glasses.42 Unlike vitreous 
silica, P2O5 is chemically unstable; addition of metal 
oxides improves its stability.43 The degradation of these 
glasses varies from hours to years according to the compo-
sition and intended applications.

These glasses can be prepared in different forms includ-
ing discs,44–46 microtubes,47 microspheres24,48 and 
fibres.36,41,49 Fibres can be used as cell transportation and 
expansion device,48 nerve conduit50 or as a scaffold for 
muscle regeneration.9 Fibres with antibacterial properties 
(e.g. copper-containing) can be produced as wound dress-
ing meshes for the treatment of leg ulcers and severe 
burns.15 The phosphate glass fibres have an intriguing abil-
ity to form microtubes; therefore, they can be incorporated 
within various polymers to help in diffusion of nutrients 
and ingrowth of vascularisation when used as scaffolds for 
soft and hard tissue regeneration.51

Phosphate glass microspheres were also prepared23 for 
radiotherapy27 applications. The morphology of micro-
spheres provides a stable surface for cells to attach and 
proliferate24 and prevent tissue damage and haemorrhage 
when used for radiotherapy.27 The spherical morphology 
would provide large interstitial spaces that can be consist-
ent and quantifiable for cell growth and proliferation than 
randomly shaped particles when packed into perfusion 
bioreactors.24

Borate-based glasses. Using borate ( )BO3
3−  in the glass 

network provides faster degrading glasses with rapid and 
complete conversion into HA than silicate-based 
glasses.8 Controlling the boron content tailors the degra-
dation rate of these glasses.52 Boron has also beneficial 
action on bone remodelling and repair.53 Furthermore, 
the presence of boron may reduce the possibility of bac-
terial infection through its antimicrobial action.32 An 
example of borate-based glasses is D-AlK-B (double 
alkali borate) glass, based on Na2O–K2O–MgO–CaO–
SiO2–P2O5–B2O3 system.54

These glasses supported in vitro cell proliferation55 and 
in vivo tissue formation;56 they could also be used as drug 
delivery vehicles.57 However, the main concern with these 
glasses is their potential toxicity.8 The degradation prod-
ucts of certain concentration produced an inhibitory effect 
on the growth of goat bone marrow stromal cells. Adjusting 
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the pH of the glass extract and reducing the concentration 
of boron to be less than 2.96 mM were observed to stimu-
late the cell proliferation. Adjusting the boron content to 
get a reasonable cellular response may jeopardise the bio-
activity of these glasses.54 The toxicity could also be 
reduced by dynamic culture conditions.58

Ceramics

Another class of bioactive materials include calcium phos-
phate (CaP)-based ceramics (i.e. crystalline materials), for 
example, HA, β-tricalcium phosphate (β-TCP) and bipha-
sic CaP (a mixture of HA and β-TCP).

HA can be produced as solid or porous materials. The 
porous configuration with pores <10 µm in diameter is 
essential for circulation of body fluids and those >100 µm 
are essential for colonisation of target cells.20 HA is nor-
mally sintered above 1000°C in a granular or block form; 
after sintering, it cannot be reshaped (if they are present in 
block form) to fit the defect and it is non-degradable. β-
TCP, however, is degradable. The degradation of biphasic 
CaP is highly dependent on the ratio of its components; the 
higher the β-TCP content, the faster the degradation. 
Generally, the degradation of CaP ceramics varies accord-
ing to their type, porosity, surface area (granular vs blocks) 
and degree of crystallinity (high crystallinity means low 
degradation).59

Injectable CaP ceramics are also available. They can be 
easily delivered through a minimally invasive method into 
the defect as aqueous-based paste. They then set, fill the 
defect and support tissue regeneration over time.60 This 
allows for their use as drug delivery vehicle61 or treating a 
defect in challenging areas, for example, craniofacial com-
plex59 or vertebroplasty.62 Examples of CaP ceramics that 
are commercially available include Norian® (Synthes 
Craniomaxillofacial, USA), BoneSource® (Stryker 
Leibinger, Germany) and Mimix® (Walter Lorenz Surgical, 
USA).59

Glass-ceramic materials

Glass-ceramics are partially crystallised glasses that are 
produced by heating the parent glass above its crystallisa-
tion temperature.63 Unlike spontaneous surface crystallisa-
tion, which is undesirable during glass manufacturing, the 
crystallisation process is controlled. As a result, the pro-
duced glass-ceramics contain one or more crystalline 
phases embedded in a residual glassy phase.64 The bioac-
tivity of glass-ceramics is highly dependent on proportion 
and type of crystals formed during crystallisation pro-
cess.65 Controlled crystallisation yields dense, strong 
materials with unusual combinations of properties when 
compared with their parent glasses.66 It is also possible to 
design glass-ceramics with nano- or micro-structure 
according to the end application.64

A common example of glass-ceramics is apatite/wol-
lastonite (A-W) that has improved mechanical properties 
than their parent glass.67 Due to their micro-nanostructure 
and improved mechanical properties, these glass-ceramics 
could be promising matrices for bone regeneration,68 for 
example, intramedullary plug in total hip replacement.69 
Surface functionalisation of glass-ceramics with lysine 
improved their cytocompatibility.70

Regardless of the most obvious advantages of these 
bioactive glasses and ceramics, their brittle nature remains 
a big challenge particularly with the production of porous 
scaffolds. The expected reduction in strength associated 
with the degradation of the scaffold is also another chal-
lenge that requires careful consideration during scaffolds’ 
designing.

Mechanism of apatite formation

Glass composition, surface charge, types of the medium 
(supersaturated solutions) and test conditions are the most 
influencing factors that affect the nucleation of apatite onto 
bioactive materials.71 The mechanisms of bioactivity for 
various bioactive materials (such as silicate, borate glasses 
and some metals) have been described in detail else-
where.52,71–75 Among them, the mechanism of hydroxycar-
bonate apatite (HCA) layer formation on the surface of 
silicate-based glass (especially, 45S5 bioglass) implant has 
been most widely investigated. As the bioactivity of glasses 
mainly depends on the compositions of bioactive materials, 
a bone-bonding compositional diagram of silicate glass 
system (SiO2–CaO–Na2O–P2O5) has been proposed by 
Hench and colleagues76,77 (as presented in Figure 1). The 
diagram suggested that the glasses with composition fall 
within the region A are bioactive and hence can induce 
bonding with the bone, whereas compositions in region B 
are nearly bioinert. Compositions in region C are highly 
resorbable (10–30 days) and those fall within the region D 
do not form glass. Therefore, selection of proper composi-
tions which in turn regulates the surface activity of the glass 
materials is important to understand the mechanism of apa-
tite formation when tested in vitro to evaluate the in vivo 
bone-bonding capacity of bioactive materials. For example, 
a comparative study between in vivo bone ingrowth and in 
vitro apatite formation in SBF was investigated using 
Na2O–CaO–SiO2 glass system which reported that the 
induction period for apatite formation on the glass surface 
in SBF increased with increasing SiO2 content (from 50 to 
70 mol%) which was well correlated with the results 
obtained from the in vivo bone ingrowth study.78

Apatite formation on the surface of bioactive glasses 
occurs through a sequence of chemical reactions when 
immersed in SBF. A schematic illustration of the reaction 
sequence leading to HCA formation according to Hench 
and colleagues79,80 has been described in Figure 2.81 First 
two stages involve the ion exchange reactions between the 
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modifier ions of glass network (like Ca2+ and Na+) and H+ 
ions from the medium (SBF) which promote the hydroly-
sis of silica groups and followed by formation of silanol 
(Si–OH) groups on the glass surface. At stage 3, condensa-
tion and polymerisation of SiO2-rich layer take place on 
the surface, whereas stage 4 implies migration of Ca2+ and 
PO4

3−  ions from the glass network and also from SBF 
medium to the SiO2-rich layer leading to the formation of 
amorphous calcium phosphate (ACP) layer. At the final 
stage, uptake of additional ions from medium such as OH−, 
CO3

2−  and Na+ into the ACP layer promotes the conversion 
of ACP into HCA via crystallisation.

The release of calcium ions in combination with phos-
phorous ions was reported to help in deposition of apatite 
layer on the glass surface according to the mechanism 
mentioned above.82,83 For example, large amount of Ca2+ 

ion released from CaO–SiO2–TiO2 glass was found to 
form apatite layer on its surface within a day of immersion 
in SBF which was suggested to be due to increase of ionic 
activity during the apatite nucleation process.84 Several 
researchers also investigated the effect of Mg2+ ions on the 
bioactivity study and suggested that trace amounts of Mg2+ 
ions could enhance in vivo bone formation and adhesion of 
osteoblast cells on the glass surface.85–91 For example, 
MgO content up to ~17 wt% in MgO–3CaO·P2O5–SiO2 
glass system was reported to promote CaP-rich layer for-
mation and rapid mineralisation on the surface when 
immersed in SBF.91

Borate-based bioactive glasses (e.g. 46.1B2O3–
24.4Na2O–26.9CaO in mol%) follow the same mechanism 
of HA layer formation as described for silicate-based 
glasses except for the formation of SiO2-rich layer.73,74 The 
faster dissolution rate of the borate glass when compared to 
the silicate glass (due to their lower chemical durability) is 
considered as the main reason behind the fast deposition 
rate of HA-like material on surfaces of borate glasses.52,74 
The conversion mechanisms of borate glass into HA in 
phosphate solution are illustrated in Figure 3.74 When 
borate glasses are immersed in a dilute phosphate solution, 
dissolution of Na+ and BO3

3−  ions from the glass structure 
into the solution occurs first. Then, PO4

3−  ions from the 
medium are assumed to react with Ca2+ ions leading to 
nucleation and growth of HA. The process is supposed to 
be continued until the glass is completely converted to HA.

A comparative study on bioactivity of a borate (45B5) 
and silicate (45S5) glasses was carried out by Liang et al.,92 
where borate glass was found to react faster (more than 
five times) than silicate glasses in a solution of 0.25 M 
K2HPO4 (pH = 9). HA layer was seen to form on borate 
glass within 24 h, whereas HA layer was not visible on 

Figure 2. Schematic illustration of the reaction mechanism of HCA formation on the surface of silicate based bioglass according to 
Hench and colleagues.79, 80 Adapted with permission from Gunawidjaja et al.81

Figure 1. Compositional diagram representing the bone-
bonding properties of bioactive glasses. Adapted with 
permission from Hench.76
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silicate glass even after 7 days of immersion in the same 
medium. In addition, the conversion of borate glass into 
HA layer was reported to be completed within 4 days (in 
20 mM K2HPO4 solution), while silicate glass (45S5) was 
seen to convert to HA partially (~50%) after 70 days of test 
period.74 For example, HA reaction product formed on the 
surface of silicate (SiO2-46.1, CaO-26.9, Na2O-24.4, P2O5-
2.6 in mol%) and borate (B2O3-46.1, CaO-26.9, Na2O-
24.4, P2O5-2.6 in mol%) glasses after immersion in dilute 
K2HPO4 solution (20 mM) had a layered structure (as pre-
sented in Figure 4(a) and (b)).

Bioceramics such as wollastonite and pseudowollas-
tonite have been revealed faster apatite formation in SBF 

compared to other bioglasses and glass-ceramics.93–96 The 
mechanism of apatite formation on wollastonite in SBF 
was suggested to be due to the negative surface charge of 
the functional group (=Si–O–) on the ceramic surface 
rather than the dissolution of calcium ions into SBF.97 
Various types of sintered bioceramics such as HA and 
α-tricalcium phosphate (α-TCP) were seen to form apatite 
layer on their surface after 24 h when immersed in SBF.98 
The effect of pH (6.5 and 7.4) and the concentration of 
HCO3

−  ions (4.2 and 27 mM) in modified SBF (m-SBF) 
were also reported to have influence on the bioactivity 
response of bioceramics (e.g. commercial HA Captal®).99 
No mineralisation was detected on the HA surface when 
tested in m-SBF at the pH of 6.5. However, HCA layer was 
seen to form on the HA surface in m-SBF at pH 7.4 and a 
thicker HCA layer was observed on the HA substrate that 
immersed in m-SBF containing higher HCO3

−
 ions.

In case of metal substrate (e.g. bioinert titanium, Ti), 
the surface charge and the pH of the medium play the vital 
role in the apatite formation.72,100,101 It has been previously 
reported that Ti and its alloys were found to form apatite 
when treated with basic (NaOH)101,102 or acidic (H2SO4/
HCl) solution.72 Ti and its alloys display a certain level of 
positive and negative zeta potential when exposed to a 
strong acidic or basic solution, followed by a subsequent 
heat treatment. A schematic illustration of apatite forma-
tion mechanism on the positively and negatively charged 
Ti metal is described in Figure 5.100 When the positively 
charged Ti substrate is immersed into SBF, the negatively 
charged phosphate ions from the medium are assumed to 
first accumulate on its surface leading to creation of nega-
tively charged surface. As a result, positively charged cal-
cium ions (from medium) are migrated to the negatively 
charged surface in order to form a CaP layer prior to crys-
tallisation into apatite layer, as shown in Figure 5(a). On 
the other hand, the Ti surface is expected to form a sodium 
titanate layer after alkali (in NaOH) and heat treatments. 
Afterwards, the sodium titanate exchanges Na+ ions with 

Figure 3. Schematic illustration of the mechanisms of 
conversion of borate (3B: B2O3-46.1, CaO-26.9, Na2O-24.4, 
P2O5-2.6 in mol%) glass and 45S5 (0B: SiO2-46.1, CaO-26.9, 
Na2O-24.4, P2O5-2.6 in mol%) glass to HA in a dilute phosphate 
solution. Adapted with permission from Huang et al.74

Figure 4. SEM images showing the reaction products for (a) silicate and (b) borate glasses after immersion in dilute K2HPO4 
solution (20 mM). Adapted with permission from Huang et al.74
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the H3O+ ions (from SBF) to form Ti–OH on the surface 
which leads to an increase in pH due to the consumption of 
H3O+ ions from medium and releasing Na+ ions to the 
medium. Consequently, Ti metal that carries a negative 
charge would initially attract calcium cations followed by 
phosphate anions to form CaP layer, as shown in Figure 
5(b). Therefore, Ti–OH on the surface seems to induce 
apatite nucleation.101,103 For example, the bone-like apatite 
layer was reported to form on the NaOH (5M) and heat 
(600°C for 1 h)-treated Ti metal after immersion in SBF 
for 10 days. Likewise, alkali-treated titanium-based alloys 
such as Ti-6Al-4V, Ti-6Al-2Nb-Ta and Ti-15Mo-SZr-3Al 
were also reported to promote bone-like apatite deposition 
on their surfaces in SBF following the same mechanism 
(see Figure 5).102,104 Apatite formation on the surface of 
titanium has also been enhanced after acid treatment105,106 
as well as by producing a negative surface charge via the 
light illumination of SBF with mercury lamp.8 Ti sub-
strates without any treatment possess no surface charge; 
therefore, when exposed to SBF, they can only form a CaP 
layer on their surface which does not bond to the bone.107

Phosphate-based glasses (PBGs) have attracted huge 
interest in the field of biomaterials and tissue engineering 
due to their chemical similarity with the inorganic compo-
nent of the natural bone and controllable degradation pro-
file.108 However, very few literatures have examined the 
bioactivity of PBGs.109–112 The presence of TiO2 in  
phosphate glasses is reported to induce CaP nucleation  
and improve their bioactivity.113 Ti-doped PBGs were 

investigated for bioactivity and an intermediate hydrated 
titania layer (0.5–2 µm Ti–OH layer/gel) was observed to 
form in SBF which played an important role in the forma-
tion of apatite.111 Another bioactivity study on xCaO–
(90-x)P2O5–10TiO2 glasses was suggested that the 
formulations containing 35 and 40 mol% of P2O5 did not 
support any apatite layer deposition even after 30 days of 
immersion in SBF. On the other hand, apatite layer was 
found to form on the phosphate invert glasses, containing 
30 mol% of P2O5, after 20 days of immersion in SBF.114 
This was suggested to be due to the release of relatively 
small amount of phosphate ions from lower P2O5 contain-
ing glasses which promoted the apatite nucleation.109

Apatite formation also depends on the basicity of the gel 
layer formed on the glasses and the amount of the func-
tional groups present for HA nucleation in the layer.114 The 
basicity of the gel layer can be enhanced via the addition of 
Na2O.109 The high amount of Na2O and CaO as well as the 
relatively higher ratio of CaO/P2O5 would provide highly 
reactive surface of bioactive glasses in physiological envi-
ronment which would eventually facilitate apatite forma-
tion.115 Hydrated gel layers such as Si–OH, Ti–OH, Ta–OH, 
Zr–OH, Nb–OH, –COOH and PO4H2 groups are proved to 
provide nucleation sites for HA in SBF.116

Apart from apatite formation, several other possible 
phases of calcium orthophosphates such as ACP, brushite 
CaHPO4·2H2O (DCPD), monetite CaHPO4(DCPA) or oct-
acalcium phosphate (OCP) can be formed in SBF depend-
ing on the experimental conditions of formation and state 

Figure 5. Schematic of ion adsorption on (a) positively charged and (b) negatively charged Ti metal in SBF medium. Adapted with 
permission from Pattanayak et al.100
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of ageing.117 These calcium orthophosphates except ACP 
are more stable than HA in acidic conditions118 and at the 
later stages, all of the phases would be converted into HA 
in various pathways.119

Test protocols for in vitro bioactivity 
experiment

In vivo bioactivity of a material can be predicted from its 
ability to form apatite in SBF and/or other similar types of 
supersaturated medium.6 A vast number of work have been 
focused so far on the effect of composition and morphol-
ogy of glass and ceramic materials on their in vitro disso-
lution rate and apatite-forming ability. Various protocols 
with respect to the types of medium (e.g. SBF, phosphate-
buffered saline (PBS), TRIS, K2HPO4, Dulbecco’s 
Modified Eagle’s Medium (DMEM)), morphology of 
materials (powder, pellets, discs), surface area to volume 
ratio and the test condition (static, dynamic) have been 
considered for the in vitro bioactivity experiment (sum-
marised in Table 1).

The effect of different solutions on dissolution of bio-
active materials has been studied.137–141 In the early 
1980s, TRIS buffer was used to evaluate the apatite-
forming ability of glass and glass-ceramic materi-
als.142–144 Later, in 1990, Kokubo et al.121 developed the 
simulated solution which reproduced in vivo surface 
structure changes of glass-ceramics A-W more precisely 
than TRIS. The pH of simulated solutions is maintained 
using TRIS of HEPES buffers. However, these buffers 
were seen unable to maintain the neutral pH of SBF dur-
ing in vitro test.140 SBF is a supersaturated solution con-
taining similar ionic concentrations of inorganic parts of 
human blood plasma (presented in Table 2).145 However, 
it has higher Cl− ions and lower HCO3

−  ion concentration 
than those of the blood plasma. In 2001, Helebrant 
et al.120 investigated the apatite formation on 45S5 bio-
glass using a series of SBF solutions with increasing 
HCO3

−  ion concentration up to the value close to blood 
plasma and suggested that the SBF with increased amount 
of HCO3

−  ions is more appropriate for in vitro bioactivity 
testing of biomaterials. Oyane et al.146 also prepared the 
revised SBF (r-SBF) and modified SBF (m-SBF) which 
contained the ion concentrations equal or close to those 
in blood plasma (except for HCO3

−  ion concentrations in 
m-SBF).147 In terms of stability, r-SBF and m-SBF were 
seen to remain stable, no change in ion concentrations 
and pH value, up to 2 and 8 weeks, respectively, when 
stored in sealed containers at 36.5°C.

In addition to SBF, cell culture medium (DMEM) were 
also used for bioactivity testing, and it has been found that 
the non-buffered DMEM solution containing an organic 
phase was not suitable for bioactivity test.148 DMEM con-
tains lower concentration of Ca2+ ions but higher concen-
tration of HCO3

−  ions compared to blood plasma which 

leads to formation of CaCO3 instead of apatite.148 However, 
recently Popa et al.149 studied the in vitro bioactivity of BG 
films (SiO2 38.5, CaO 36.1, P2O5 5.6, MgO 15.2, ZnO 4, 
and CaF2 0.6 in mol%) in different medium (namely SBF, 
DMEM, DMEM supplemented with 10% foetal bovine 
serum) and found that bioactivity test in DMEM supple-
mented with proteins under homeostatic conditions was 
more appropriate than that in SBF. They also suggested an 
unique bioactivity testing protocol utilising specific sur-
face area to medium volume ratio (Sa/V = 0.5 cm2/mL) for 
the materials with different shapes and dimensions includ-
ing bulk objects, thin films, powder and scaffolds.149

PBS medium was also used in in vitro studies for bioac-
tive glass (45S5) containing polymer (poly-l-lactic acid, 
PLLA and polylactic-co-glycolic acid, PLGA) compos-
ites.150,151 It was found that the formation of apatite on the 
glass surface was faster in PBS than SBF or TRIS.139 
Fagerlund et al.139 investigated the dissolution of bioactive 
glasses (45S5, S53P4, 13-93) in PBS and reported that pH 
of the solution increased when alkaline and alkaline earth 
ions dissipated from the glasses. The release of silica ions 
and CaP precipitation also increased at higher pH. They 
also found that the CaP layer formed quickly due to the 
higher concentration of phosphorus ions in PBS.139 In vitro 
bioactivity of glasses especially for borate glasses has been 
evaluated in aqueous K2HPO4 medium.57,92,131,152 This 
medium was used to save the experimental time through 
the reaction of available HPO4

2−  and OH− ions in K2HPO4 
solution with glasses.92

Apart from the use of various media, other factors such as 
geometry of the test specimen, surface area to volume ratio 
and test conditions are also key to justify the test protocol. 
Therefore, an ISO standard (ISO/23317:2014(E): Implants 
for surgery – In vitro evaluation for apatite-forming ability of 
implant materials) has been proposed to conduct the in vitro 
bioactivity test.135 The ISO standard suggested to use acel-
lular and protein-free SBF solution buffered with TRIS. The 
standard also suggested the dimension and shape of test 
specimen only for bulk compact inorganic materials (solid 
disc and rectangular block) with a defined sample surface 
area to SBF volume ratio (VSBF = 100 × Sa; where VSBF is the 
volume of SBF and Sa is the surface area of glass). However, 
this ratio is not defined for the materials in other forms of 
biomaterials such as powder and porous scaffolds. Moreover, 
the ISO standard stated the static testing condition, whereas 
some literatures conducted dynamic condition to mimic the 
in vivo environment.153–156

Recently, the members of the Technical Committee 4 
(TC04) of the International Commission on Glass (ICG) 
have been proposed unified method (modified version of 
ISO standard) for testing the bioactivity of glass parti-
cles (45–90 µm), particularly those of high surface 
area.136 The modified method suggested use of fixed 
mass per solution volume ratio (75 mg in 50 mL) with 
agitation (120 r/min).
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Biomedical applications of CaP

Earlier in section ‘Mechanism of apatite formation’, it has 
been mentioned that during the initial stage of the in vitro 
bioactivity study, the ACP layer formed onto the surface of 
bioactive materials followed by crystallisation into apatite 
(HA), which is nucleated by the interaction of ions and pH 
of the medium. However, some biomaterials can be lim-
ited to release of the desirable ions (due to their composi-
tions) and also may be unable to produce favourable pH 
environment for ACP layer to be crystallised into apatite at 
the late stages of the in vitro study. Therefore, the biomedi-
cal applications of both ACP and apatite will be discussed 
in this section.

Similar to apatite (i.e. HA), ACPs have excellent bio-
logical, osteoconductivity and no cytotoxicity responses; 
therefore, they have been introduced to orthopaedics and 
dentistry.157 ACPs have been investigated for a range of 
biomedical applications in different forms: powders, gran-
ules, composites, self-setting cements or coatings.158 
Examples of biomedical applications of CaP-based materi-
als can be seen in Figure 6.

Dental applications

Due to good osteoconductivity and tuneable degradation rate 
of ACPs, they have been added to mouthwashes, chewing 
gums, toothpastes and also to ionomer cements as a filler for 
carious lesions. Complexes of casein phosphopeptides (CPP) 
and ACP have been used as abrasive pastes for treatment of 
tooth sensitivity after root canal repair, scaling or bleaching 
procedures. Clinical trial revealed an increase in the content 
of inorganic phosphate and calcium in supragingival plaque 
after 3 days’ use of mouthwash containing CPP-ACP com-
plexes. This product is commercially known as GC Tooth 
Mousse. CPP-ACP complexes can be also incorporated into 
food, drinks and confectionary for potential prevention of the 
dental caries due to their natural origin (milk derivative). 
ACP has also been explored as a filler for bioactive polymer 
composites to be used for tooth repair. Tooth repair can be 

stimulated through the released ions (calcium and phosphate) 
and form the breakdown of ACP particles. Effect of ACP 
addition to orthodontic adhesives has also been evaluated 
and demonstrated satisfactory bracket bonding strength in 
clinical trials.157 Toothpastes containing CaP can be used to 
reduce tooth sensitivity, to promote remineralisation of the 
demineralised enamel and for whitening and polishing pur-
poses. Toothpastes containing HA have shown a significant 
positive effect on sensitivity and whitening of tooth, and it 
was found that the whitening effect increased as the amount 
of HA within the toothpaste increased. Both ACP and HA 
have been added to toothpaste and are available commer-
cially. Examples of HA-containing toothpastes are Sensitive 

Figure 6. Examples of biomedical applications of CaP based 
materials (e.g. β-tricalcium phosphate, dicalcium phosphate, 
dicalcium phosphate dehydrate, tricalcium phosphate and 
calcium apatite) used in form of coating for hip prostheses and 
dental screws, porous bone graft, bone cements and pastes. 
Adapted with permission from Dorozhkin et al.159

Table 2. Ionic concentration in human blood plasma in comparison with various developed SBF medium.145

Ion Human blood 
plasma (pH 7.2–7.4)

Ion concentration (10−3 mol) in

SBF (pH 7.4) Revised-SBF (r-SBF) Modified-SBF (m-SBF)

Na+ 142.0 142.0 142.0 142.0
K+ 5.0 5.0 5.0 5.0
Mg2+ 1.5 1.5 1.5 1.5
Ca2+ 2.5 2.5 2.5 2.5
Cl− 103.0 147.8 103.0 103.0
HCO3

− 27.0 4.2 27.0 10
HPO4

2− 1.0 1.0 1.0 1.0
SO4

2− 0.5 0.5 0.5 0.5

SBF: simulated body fluid.
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Reminx (Pharma Jenistec Co., Ltd, Korea), Triple Denta 
(TripleLife Co., Ltd, Korea), Kalident – calcium hydroxyapa-
tite (Kalichem Italia S.r.l.), DIO (DIO Co., Ltd, Korea), 
Coolin Bubble (Canavena Co., Ltd, Korea) and YP Dental 
(You Co., Ltd, Japan). There are also toothpastes containing 
ACP such as Enamelon, Arm and Hammer’s Enamel Care 
and Premier Dental’s Enamel Pro.160

Bone repair

Human bone contains 70% of CaP minerals; hence, CaP-
based materials have been considered as the best choice 
for repairing the damaged bone post trauma.161 CaP has 
been thoroughly studied in various forms for repairing 
hard tissue because of their excellent biocompatibility, 
composition similarity with the bone mineral, inexpen-
siveness and easy to produce.161 It has been reported that 
the rate of new bone formation was well correlated with 
the rate of ACP resorption. Moreover, ACP revealed sig-
nificantly better osteoconductivity response compared to 
TCP in vivo study. Therefore, ACP has been incorporated 
within biodegradable polymers (e.g. PLLA, PLGA) for 
manufacturing porous scaffolds for bone and cartilage tis-
sue engineering. It was also found that ACP particles 
within the polymer composites transferred after a short 
period of immersion in PBS into bone-like apatite which 
would potentially facilitate the formation of new bone in 
vivo and clinical trials.157 Recently, CaP powder was man-
ufactured into three-dimensional (3D) porous scaffolds 
with the aid of additive manufacturing techniques (robo-
casting; see Figure 7).

Bioactive coatings

Metallic implants are still commonly used for load-bearing 
applications such as hip-joint replacement, bone fixation 
devices (i.e. nails, plates and screws) and tooth sockets.158 

The lack of the bioactivity and poor bonding with the host 
bone of the metals had been a challenge for their clinical 
use. Therefore, coating with bioactive materials such as 
ACP, HA or other CaPs have been conducted to overcome 
the bioactivity and biocompatibility complications. HA 
coating of metallic implants was found to enhance their 
rate of clinical success to be more than 98%.163 Numerous 
coating methods have been utilised, for example, thermal 
spray, plasma spraying, electrophoretic and biomimetic 
deposition.164 The presence of ACP was reported in 
plasma-sprayed HA coating; however, the quantity could 
not be well controlled.158

Since magnesium alloys are biodegradable metals, non-
toxic and have similar mechanical properties of the corti-
cal bone, they have been considered as attractive candidates 
for load-bearing biomedical applications. The main com-
plication associated with the use of magnesium implant is 
the fast degradation in physiological environment. Thus, 
CaP coatings have been applied to magnesium alloys to 
enhance their bioactivity, biocompatibility and control 
their degradation rates. A significant reduction in degrada-
tion rates of magnesium alloys was obtained after surface 
coating with CaP materials.165

Drug and gene delivery

CaP-based nanoparticles have been explored for targeted 
drug and gene delivery due to their unique characteristics; 
similarity to inorganic component of bone, excellent 
adsorption capability to many biomolecules and proteins 
and biodegradability in moderate acidic medium (similar 
to the pH inside lysosome). CaP nanoparticles, with size 
less than 200 nm, can enter into the cells via endocytosis 
mechanism and may end up in lysosomes. Consequently, 
CaP can break down at acidic conditions into phosphate 
and calcium ions. Phosphate ions are not harmful and 
amount of calcium ions can be tolerated using moderate 

Figure 7. Examples of additive manufactured implants based on CaP; (a) 3D scaffolds of DCPA/monetite (scale bar: 5 mm), 
Adapted with permission from Butscher et al.162 (b) implant made of DCPA for treatment of cranial bone defects (Craniomosaic). 
DCPA is dicalcium phosphate. Adapted with permission from Habraken et al.161
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quantities of the nanoparticles. Dissolution of CaP nano-
particles after cellular uptake made them a promising com-
petitor to conventional nanoparticles (silica, gold and 
polymers). CaP nanoparticles loaded with vascular 
endothelial growth factor (VEGF) and bone morphoge-
netic proteins (BMPs) were produced in a water-based 
paste for bone repair purposes through direct injection into 
the defect (see Figure 8(a)).161 CaP nanoparticles can also 
be used to deliver drugs and biomolecules by producing 
them with multi-shells architecture (see Figure 8(b)).

Soft tissue engineering

Due to their ease of preparation into fibres, CaP glass 
fibres (in particular, phosphate based) were studied  
for their potential use in muscle and nerve regeneration. 
A 3D fibrous construct, having the composition of 
(P2O5)62.9(Al2O3)21.9ZnO15.2, supported the proliferation 
and differentiation of human masseter muscle–derived 
cell cultures.9 CaP glass fibres, based on (P2O5)50(CaO)30 
(Na2O)20-x(Fe2O3)x composition where x = 1–5, sup-
ported high level of attachment of immortal muscle pre-
cursor cell line.36

Phosphate glass fibres containing 5–22.5 wt% Fe2O3 
have been used as reinforcing agents in the development 
of bioabsorbable composites designed for orthopaedic 
applications. A cortical plug method was used to test the 
biocompatibility of these glasses; the results showed that 
no inflammation was observed over periods of up to 
5 weeks.168 Due to the intriguing ability of phosphate 
glass fibres to form capillary-like channels during their 
degradation,47 they were used for in situ formation of 
continuous aligned channels of 30–40 µm in diameter 
within 3D dense collagen scaffolds to allow for proper 
diffusion of nutrients and waste products through the 
constructs.51 These constructs therefore maintained an 
excellent viability of human oral fibroblasts that formed 
a 3D network.51

Summary

This article aimed to review the various types of biomate-
rials (i.e. silicate-, borate- and phosphate-based glasses; 
glass-ceramics; bioceramics; and metals) investigated for 
in vitro bioactivity evaluation. CaP formation route on the 
surface of these biomaterials are dependent on the surface 
activity of the materials (in test medium) and test environ-
ment (i.e. ionic concentrations of medium and pH). 
Materials geometry (i.e. powder, pellets, discs, cubes, 
blocks), material to medium volume ratio and experimen-
tal condition (static or dynamic) are also crucial factors 
that require consideration during bioactivity test. For 
example, ISO 23317:2014(E) standard suggests the sam-
ple surface area (solid disc/block) to SBF volume ratio 
(VSBF = 100 × Sa) to be used at static condition, whereas 
recently a unified method (modified form of ISO) has been 
suggested to use of fixed mass (45–90 µm particles) per 
medium volume ratio (75 mg in 50 mL) with agitation dur-
ing the bioactivity testing. Apart from these various test 
parameters, adequate physico-chemical characterisation is 
necessary to draw conclusive understanding of the nature 
of deposited CaP phase. Although plenty of ACPs and 
bone-like apatite materials have already shown their 
potential in biomedical applications (dental, bone repair, 
gene and drug delivery) and also some of them are already 
available in the market, some factors such as possible 
experimental mistakes including evolution of the substrate 
in medium, contamination within medium by microorgan-
isms and residual presence of precursor phases are respon-
sible for experimental failure of apatite formation when 
investigating a new bioactive material, which still warrant 
further research and validation.
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Figure 8. CaP nanoparticles for drug and gene delivery applications; (a) CaP nanorods paste containing DNA encoding fro 
BMP-7 and VEGF-A for repairing bone defect, Adapted with permission from Chernousova et al.166 (b) multi-shell design of CaP 
nanoparticles loaded with antigen and TLR ligand. Adapted with permission from Sokolova et al.167
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