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Abstract

Aims The current definition of post ST-segment elevation myocardial infarction (STEMI) left ventricular (LV) remodelling is
purely structural (LV dilatation) and does not consider LV function (ejection fraction, EF), even though it is known to be a pre-
dictor of long-term post-STEMI outcome. This study aimed to reclassify LV remodelling after STEMI by integrating LV dilatation
and function (LVEF) and to investigate the prognostic implications.
Methods and results Data from an ongoing registry of STEMI patients who were treated with primary percutaneous coro-
nary intervention (PCI) were retrospectively evaluated. Four distinct remodelling subgroups were identified: (i) no LV dilata-
tion, no LVEF impairment,(ii) no LV dilatation but LVEF impairment, (iii) LV dilatation but no LVEF impairment, and (iv) LV
dilatation and LVEF impairment. The impact of functional LV remodelling on outcomes was analysed. A total of 2346 patients
were studied (mean age 60 ± 11 years, 76% men). During a median follow-up of 76 (interquartile range 52 to 107) months, 282
(12%) died, while the composite of death and heart failure hospitalization occurred in 305 (13%) patients. Those with LV re-
modelling and LVEF impairment had a significantly lower survival rate (P < 0.001) and event-free survival rate (P < 0.001)
compared with other functional LV remodelling groups.
Conclusions Employing a functional LV post-infarct remodelling classification has the potential to improve risk stratification
beyond structural LV remodelling alone. Identification of patients with the worst prognosis by using a functional LV remodel-
ling approach may allow institution of early preventative therapies.
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Introduction

Left ventricular (LV) dilatation after myocardial infarction
(MI) is defined as adverse LV remodelling.1 Such LV remod-
elling after ST-segment elevation MI (STEMI) is characterized
by a pathologic cascade comprising inflammation and fibro-
sis, cardiomyocyte loss leading to increased wall stress and
subsequent LV dilatation.2 Compared with the era before
primary percutaneous coronary intervention (PCI) and the
widespread use of angiotensin-converting enzyme inhibitors
(ACEi)/angiotensin-receptor blocker (ARB),3 the prevalence

of LV remodelling after STEMI has markedly declined.4,5

When LV remodelling does occur post-STEMI, it is still asso-
ciated with worse long-term prognosis4,5 although the im-
pact is less than that described in earlier series.6

Impairment of LV function after STEMI is less frequently ob-
served in patients treated with primary PCI as compared
with thrombolysis,7,8 but likewise, retains a robust link to
post-infarct outcomes including all-cause mortality and heart
failure (HF) readmissions.9 Both LV post-infarct remodelling
and LV function impairment are therefore associated with
adverse long-term outcomes (e.g. all-cause mortality and
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HF hospitalization4,5,9,10), but are usually considered in
isolation.

Whether ‘functional LV remodelling’, that is, remodelling
defined by integrating LV post-infarct remodelling and impair-
ment in LV function on two-dimensional (2D) echocardiogra-
phy, can provide superior prognostic information over LV
structural remodelling alone, is unknown. In this study, we
therefore investigated the association between functional
LV remodelling and all-cause mortality and the composite
endpoint of all-cause mortality and HF hospitalization by
using data from a large, contemporary registry of STEMI pa-
tients who were treated with primary PCI and optimal medi-
cal therapy.

Methods

Study population and data collection

Patients with STEMI who were treated with primary PCI and
optimal medical therapy at the Leiden University Medical
Centre from September 2004 to December 2019, were in-
cluded from an ongoing registry (MISSION!).11 All patients
were treated according to a standardized institutional proto-
col for management of patients with STEMI, which is based
on contemporary European Society of Cardiology (ESC)
guidelines.12 Previous comorbidities including hypertension,
hyperlipidaemia, family history of coronary artery disease
(CAD), diabetes mellitus (DM), and previous MI were col-
lected as last recorded in the MISSION! database before the
index event in the current study. Clinical and echocardio-
graphic data used in the current study were collected from
the departmental information system (EPD-Vision, Leiden
University Medical Centre, Leiden, The Netherlands) for rou-
tine clinical purposes and were retrospectively analysed.

The primary endpoint was all-cause mortality, while the
composite secondary endpoint comprised all-cause mortality
and HF hospitalization, analysed as the time to the first occur-
rence. Survival data were collected via municipal registries
and telephonic follow-up, while data on HF hospitalization
were acquired by review of medical records which were ar-
chived in the departmental information system (EPD-Vision,
EPD-Vision, Leiden University Medical Centre, Leiden, The
Netherlands). HF hospitalization was defined as admission
for worsening HF which required intensification of intrave-
nous diuretic or device therapy implantation specifically for
HF. Haemodynamically stable patients who were admitted
for elective CRT implantation were not included in the end-
point of ‘worsening HF’. Follow-up time was calculated from
the date of echocardiography at 6 months post-STEMI and
patients who died before 6 months after STEMI, or who were
lost to follow-up, were excluded because post-infarct LV re-
modelling could, by definition, not be diagnosed in them.

All patients were followed up until occurrence of the end-
point, loss of follow-up or December 2019. All data used in
the current study were collected for routine clinical purposes
and handled anonymously. Written informed consent was
waived by the Institutional Review Board on a patient level.
The investigation conforms with the principles outlined in
the Declaration of Helsinki.13

Echocardiographic data acquisition

According to the institutional protocol, all patients
underwent transthoracic echocardiography within 48 h of ad-
mission, as well as at 3, 6, and 12 month follow-up visits. Pa-
tients were imaged in the left lateral decubitus position using
a commercially available echocardiography system (Vivid 7,
E9 and E95, GE Vingmed Ultrasound, Horten, Norway).
M-mode and 2D images were obtained and saved in
cine-loop format. Echocardiographic loops were digitally ar-
chived for off-line analysis (EchoPac 202 and 203, GE
Vingmed Ultrasound, Horten, Norway).

The LV end-diastolic volume (LVEDV) and end-systolic vol-
ume (LVESV) were measured on the apical, two-chamber
and four-chamber views using Simpson’s biplane method
and LVEF was derived.14 LV mass was calculated with the lin-
ear method and indexed for body surface area.14

Pulsed-wave Doppler of the mitral valve inflow was obtained
by placing the Doppler sample volume between the tips of
the mitral leaflets. Peak early (E) and late (A) diastolic veloc-
ities and deceleration time (DT) were recorded from the
transmitral spectral trace. The e0 was measured on tissue
Doppler traces from the basal septal and lateral segments
and the E/e0 ratio was calculated. Mitral regurgitation
was evaluated and graded according to current
recommendations.15,16

Functional classification of left ventricular
remodelling pattern

We developed a novel classification system for the interac-
tion of LV post-infarct remodelling and LV systolic function,
comprising changes in LVEDV and LVEF from baseline to
6 months post-STEMI. LV post-infarct remodelling was de-
fined as LV dilatation (LVEDV increase of ≥20%),4,5 while a sig-
nificant change in LVEF was identified with a penalized spline
curve analysis investigating the hazard ratio (HR) change for
individual study endpoints across the range of absolute
change in LVEF (Figure 1). An absolute reduction of 5% in
LVEF at 6 months post-STEMI, derived from spline curve anal-
ysis, represents the value where the lower limit of the 95%
confidence interval (CI) of the HR is greater than unity and
was therefore considered as cut-off value to identify a signif-
icant LVEF reduction. Four distinct functional LV remodelling
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groups were defined as follows: (i) no LV dilatation, no LVEF
impairment that included patients without LVEDV increase
of ≥20% and no absolute reduction in LVEF of >5%; (ii) no
LV dilatation but LVEF impairment that included patients
without LVEDV increase of ≥20% but with absolute reduction
in LVEF of >5%; (iii) LV dilatation but no LVEF impairment,
comprising patients with LVEDV increase of ≥20% and no ab-
solute reduction in LVEF of >5%; and (iv) LV dilatation and
LVEF impairment that consisted of patients with LVEDV in-
crease of ≥20% and absolute reduction in LVEF of >5%.

Statistical analysis

Continuous variables are presented as mean ± standard de-
viation when normally distributed (assessed by the
Shapiro–Wilk test and distribution histograms) and as me-
dian [and interquartile range (IQR)] when not normally dis-
tributed. Categorical variables are presented as frequencies
and percentages. Differences in continuous variables across
the LV remodelling groups were evaluated using one-way
ANOVA with Bonferroni correction (Jonckheere–Terpstra
trend tests when indicated), while differences in categorical
variables were compared by χ2 tests (Fisher’s exact test
when indicated). Survival analysis, including estimation of
mean survival time and event-free survival time, was per-
formed with the Kaplan–Meier method and differences
across the functional LV remodelling groups were compared
with log-rank tests, including pairwise comparisons.
Univariable and multivariable Cox proportional hazard re-
gression analyses were used to determine the relationship
between individual variables and the study endpoints. All
continuous variables were assessed per one unit change in
each variable. Multivariable analysis included variables,
which showed significant association on univariable analysis.
Because the definition of functional LV remodelling groups
was predicated on LVEDV and LVEF, conventional echocar-
diographic parameters were excluded from multivariable
analysis to avoid co-linearity. Incremental value of the func-
tional classification of LV remodelling over the baseline clin-
ical model (which comprised variables associated with
primary and secondary endpoints in univariable Cox regres-
sion analysis) was investigated using the likelihood ratio
test. Global χ2 values were computed and compared. Addi-
tional receiver-operating characteristic curves and Harrell’s
concordance index analysis were conducted to assess the in-
cremental model discriminative value.

All statistical tests were two-sided, and a P value of <0.05
was considered to be statistically significant. Statistical analy-
sis was performed using SPSS for Windows version 25.0 (IBM
Corporation, Armonk, New York, USA) and R version 4.0.0
(survival package v3.1-12, splines2 package v0.3.1, Greg pack-
age v1.3.4, R Foundation for Statistical Computing, Vienna,
Austria).

Results

Baseline patient characteristics

A total of 2346 patients were included (mean age
60 ± 11 years, 76% men). Baseline characteristics of the over-
all population and functional LV remodelling pattern groups
are summarized in Table 1. The baseline characteristics of pa-
tients who survived up to 6 months and beyond post-STEMI,

Figure 1 Spline curves for all-cause mortality (A) and the composite of
all-cause mortality and HF hospitalization (B) across a range of absolute
change in LVEF, plotted as a hazard ratio with overlaid 95% confidence
intervals. CI, confidence interval; HF, heart failure; LVEF, left ventricular
ejection fraction.
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and those who did not are presented in Supporting informa-
tion, Table S1.

At 6 months follow-up, 1485 (63%) patients demonstrated
no LV remodelling and no impairment in LVEF (Group I), while
173 (7%) experienced no LV remodelling but impairment in
LVEF (Group II). LV remodelling without impairment in LVEF
was observed in 594 (25%) patients (Group III), whereas 94

(4%) patients showed LV remodelling and impairment in LVEF
(Group IV).

Myocardial damage, as assessed by the troponin rise dur-
ing the acute event, increased from Groups I to IV
(P < 0.001). Patients in Groups I, III, and IV were more likely
to have the left main coronary artery or left anterior descend-
ing coronary artery as the culprit vessel (45%, 47%, and 53%,

Table 1 Baseline patient characteristics

Overall population
(n = 2346)

Group I
(n = 1485)

Group II
(n = 173)

Group III
(n = 594)

Group IV
(n = 94) P value

Age (years) 60 ± 11 60 ± 11 60 ± 11 61 ± 12 63 ± 11 0.129
Male, n (%) 1793 (76) 1127 (76) 134 (78) 462 (78) 70 (75) 0.768
BMI (kg/m2) 26.6 ± 3.9 26.6 ± 4.0 26.3 ± 3.5 26.6 ± 3.9 26.9 ± 4.3 0.776
BSA (m2) 1.99 ± 0.21 1.99 ± 0.21 2.00 ± 0.20 1.99 ± 0.21 2.00 ± 0.21 0.809
Current smoker, n (%) 1076 (46) 683 (46) 79 (46) 272 (46) 42 (46) 0.998
Ex-smoker, n (%) 291 (12) 190 (13) 18 (10) 71 (12) 12 (13) 0.807
Hypertension, n (%) 832 (35) 510 (34)d 72 (42) 202 (34)d 48 (51)a,c 0.003
Hyperlipidaemia, n (%) 479 (20) 302 (20) 30 (17) 125 (21) 22 (23) 0.676
Family history of CAD, n (%) 1009 (43) 648 (44) 75 (44) 256 (44) 30 (33) 0.223
DM, n (%) 218 (9) 137 (9) 10 (6) 58 (10) 13 (14) 0.173
Previous MI, n (%) 152 (6) 98 (7) 10 (6) 37 (6) 7 (7) 0.945
Admission heart rate (bpm) 74 ± 18 73 ± 18 72 ± 18 75 ± 19 77 ± 18 0.161
Admission SBP (mmHg) 135 ± 25 134 ± 24 137 ± 26 136 ± 25 135 ± 26 0.409
Admission DBP (mmHg) 81 ± 16 81 ± 15 82 ± 17 81 ± 16 81 ± 16 0.559
Killip class, n (%) 0.403

I 2241 (95) 1424 (96) 164 (95) 566 (95) 87 (93)
II 64 (3) 40 (3) 6 (3) 13 (2) 5 (5)
III 10 (1) 3 (<1) 1 (1) 5 (1) 1 (1)
IV 31 (1) 18 (1) 2 (1) 10 (2) 1 (1)

Peak TnI (ng/mL) 3.4 (1.3–7.1) 3.0 (1.2–6.1) 4.3 (1.4–7.3) 4.6 (1.7–9.0) 6.3 (3.2–13) <0.001
eGFR (mL/min/1.73 m2) 86.4 ± 17.6 86.8 ± 17.4 87.2 ± 16.7 85.4 ± 18.3 83.4 ± 18.0 0.125
LM/LAD culprit vessel, n (%) 1054 (45) 663 (45)b 61 (35)a,c,d 280 (47) 50 (53) 0.016
Multivessel disease, n (%) 1242 (53) 789 (53) 91 (53) 308 (52) 54 (57) 0.780
Discharge heart rate (bpm) 70 ± 12 69 ± 12c 69 ± 12 71 ± 12a 72 ± 12 0.005
Discharge SBP (mmHg) 115 ± 16 116 ± 16 116 ± 15 114 ± 17 113 ± 12 0.037
Discharge DBP (mmHg) 69 ± 11 70 ± 11 69 ± 11 69 ± 10 69 ± 10 0.475
DAPT, n (%) 2272 (97) 1446 (97) 168 (97) 569 (96) 89 (95) 0.144
ACEi/ARB, n (%) 2282 (97) 1445 (97) 168 (97) 579 (97) 90 (96) 0.787
Statin, n (%) 2331 (99) 1474 (99) 172 (99) 591 (99) 94 (100) 0.890
Beta-blocker, n (%) 2218 (94) 1409 (95) 163 (94) 557 (94) 89 (95) 0.720
LV mass (g) 202 ± 59 201 ± 60 208 ± 62 202 ± 57 213 ± 57 0.180
LVMI (g/m2) 101 ± 27 101 ± 28 104 ± 26 102 ± 27 106 ± 27 0.166
LVEDV (mL) 102 ± 32 108 ± 33c,d 113 ± 34c,d 87 ± 25a,b 96 ± 33a,b <0.001
LVESV (mL) 53 ± 23 56 ± 24e 50 ± 22e 48 ± 18e 48 ± 22e <0.001
LVEF (%) 49 ± 10 48 ± 9e 57 ± 10e 46 ± 9e 51 ± 10e <0.001
E/A 0.99 ± 0.39 0.99 ± 0.38 0.98 ± 0.29 0.96 ± 0.39 1.05 ± 0.58 0.096
DT time (ms) 209 ± 70 212 ± 70d 212 ± 80 204 ± 69 189 ± 67a 0.005
E/e0 11.9 ± 4.8 11.7 ± 4.7 12.1 ± 4.9 12.2 ± 4.7 12.9 ± 6.2 0.024
MR severity, n (%) 0.635

None 1373 (58) 851 (58) 110 (64) 357 (60) 55 (58)
Mild 711 (30) 452 (31) 46 (27) 182 (31) 31 (33)
Moderate to severe 237 (10) 160 (11) 17 (10) 52 (9) 8 (8)

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; BMI, body mass index; BSA, body surface area; CAD,
coronary artery disease; DAPT, dual-antiplatelet therapy; DBP, diastolic blood pressure; DM, diabetes mellitus; DT, deceleration time; E/
A, mitral valve early and late inflow velocity ratio; E/e0, mitral valve early inflow and annular early velocity ratio; eGFR, estimated glomer-
ular filtration rate; LAD, left anterior descending coronary artery; LM, left mainstem; LVEDV, left ventricular end-diastolic volume; LVEF,
left ventricular ejection fraction; LVESV, left ventricular end-systolic volume; LVMI, left ventricular mass index; MI, myocardial infarction;
MR, mitral regurgitation; SBP, systolic blood pressure; TnI, troponin I.
Values are mean ± SD, n (%), or median (interquartile range).
aP < 0.05 vs. Group I,
bP < 0.05 vs. Group II,
cP < 0.05 vs. Group III,
dP < 0.05 vs. Group IV,
eP < 0.05 vs. other groups.
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respectively), compared with Group II (35%, P < 0.05 vs.
other groups).

Baseline LVEDV was similar for patients in Groups I and II,
but significantly larger in Groups III and IV (P < 0.05 vs.
Groups III and IV). LVEF at baseline was significantly lower
for patients in Groups I and III compared with patients in
Groups II and IV (P < 0.05). There were no significant differ-
ences in discharge medication between functional LV remod-
elling groups.

Functional left ventricular remodelling pattern
and all-cause mortality

During a median follow-up of 76 (IQR 52 to 107) months, 282
(12%) patients died (primary endpoint). Patients in Group IV
(LV remodelling and impairment in LVEF) experienced a

higher mortality (29%) compared with the other functional
LV remodelling groups (P < 0.05 vs. other groups)
(Figure 2A). Cumulative event rates for all-cause mortality
at 120 months were 16%, 16%, 20%, and 32% for Groups I,
II, III, and IV, respectively (Figure 3A). Patients in Group IV
had a significantly lower survival rate compared to other
functional LV remodelling groups (log-rank test with pairwise
comparisons, P < 0.001 vs. Group I, P = 0.003 vs. Group II,
P < 0.001 vs. Group III). Additional survival analysis with
Kaplan–Meier curves for all-cause mortality and the compos-
ite of all-cause mortality and HF hospitalization, stratified ac-
cording to functional LV remodelling group when using a
threshold of 10% absolute change in LVEF was performed
(Figure S1).

To investigate the association between the functional LV
remodelling pattern and all-cause mortality, univariable and
multivariable Cox proportional hazards models were

Figure 2 The occurrence of all-cause mortality (blue circles) (A), the composite of all-cause mortality and HF hospitalization (green circles) (B) and
patients without events (grey circles) across the functional LV remodelling groups. Horizontal dashed line corresponds to the LVEF threshold used
for the definition of remodelling groups, while the vertical dashed line corresponds to the LVEDV value used in the definition of remodelling groups.
HF, heart failure; LV, left ventricular; LVEF, LV ejection fraction; LVEDV, LV end-diastolic volume.
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constructed (Table 2). All continuous variables (including the
relative change in LVEDV and the absolute change in LVEF),
which were used in the multivariable analysis, were formally
tested for adherence to the assumption of linearity (Table
S2). When testing this assumption with penalized spline esti-

mation, all the continuous variables that were selected for
multivariable analysis met the linearity assumption of Cox
proportional hazard regression. The functional LV remodel-
ling Group IV was significantly associated with higher risk of
all-cause mortality compared with Group I (HR = 1.90, 95%

Figure 3 Kaplan–Meier curves for all-cause mortality (A) and the composite of all-cause mortality and HF hospitalization (B), stratified according to
functional LV remodelling group. HF, heart failure; LV, left ventricular.
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CI 1.22–2.96, P = 0.004). In contrast, the other functional LV
remodelling groups were not significantly associated with
higher risk of mortality as compared with Group I. Additional

analyses were performed to investigate the interaction be-
tween a relative change in LVEDV and an absolute change
in LVEF as a continuous variable (Table 4 and Figure 3). In this

Table 2 Univariable and multivariable Cox regression analyses for all-cause mortality

Univariable analysis Multivariable analysis

HR 95% CI P value HR 95% CI P value

Age 1.09 1.07–1.10 <0.001 1.07 1.06–1.09 <0.001
Male 0.87 0.66–1.13 0.294 — — —

BMI (kg/m2) 0.98 0.95–1.01 0.162 — — —

BSA (m2) 0.30 0.17–0.52 <0.001 0.98 0.52–1.87 0.962
Current smoker 0.86 0.68–1.08 0.198 — — —

Ex-smoker 1.28 0.91–1.80 0.161 — — —

Hypertension 1.30 1.03–1.65 0.031 0.93 0.71–1.21 0.566
Hyperlipidaemia 0.99 0.74–1.32 0.917 — — —

Family history of CAD 0.61 0.47–0.78 <0.001 0.97 0.74–1.28 0.848
DM 2.25 1.66–3.06 <0.001 1.77 1.28–2.44 0.001
Previous MI 2.41 1.73–3.35 <0.001 1.75 1.22–2.50 0.002
Killip class ≥2 2.66 1.82–3.91 <0.001 1.27 0.83–1.93 0.266
Peak TnI (ng/mL) 1.04 1.02–1.06 <0.001 1.03 1.01–1.04 0.013
eGFR (mL/min/1.73 m2) 0.97 0.97–0.98 <0.001 1.00 0.99–1.01 0.519
LM/LAD culprit vessel 0.95 0.75–1.20 0.667 — — —

Multivessel disease 1.70 1.34–2.17 <0.001 1.10 0.85–1.43 0.467
Discharge heart rate (bpm) 1.02 1.01–1.03 <0.001 1.01 1.00–1.02 0.007
Discharge SBP (mmHg) 1.00 0.99–1.01 0.596 — — —

Discharge DBP (mmHg) 0.98 0.97–0.99 0.003 0.99 0.98–1.00 0.042
DAPT 0.61 0.37–1.03 0.067 — — —

ACEi/ARB 0.39 0.23–0.65 <0.001 0.86 0.46–1.60 0.625
Statin 0.61 0.15–2.43 0.478 — — —

Beta-blocker 0.87 0.53–1.42 0.576 — — —

Functional LV remodelling Group I (reference)
Group II 1.18 0.75–1.87 0.470 1.05 0.65–1.68 0.852
Group III 1.29 0.99–1.69 0.059 1.14 0.87–1.51 0.343
Group IV 2.71 1.79–4.09 <0.001 1.90 1.22–2.96 0.004

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; BMI, body mass index; BSA, body surface area; CAD,
coronary artery disease; CI, confidence interval; DAPT, dual-antiplatelet therapy; DBP, diastolic blood pressure; DM, diabetes mellitus;
eGFR, estimated glomerular filtration rate; HR, hazard ratio; LAD, left anterior descending coronary artery; LM, left mainstem; LV, left ven-
tricular; MI, myocardial infarction; SBP, systolic blood pressure; TnI, troponin I.

Figure 4 Interaction between change in LVEDV and change in LVEF for all-cause mortality (A) and the composite of all-cause mortality and HF hospi-
talization (B). HF, heart failure; LV, left ventricular; LVEDV, LV end-diastolic volume; LVEF, LV ejection fraction. The interaction between these two var-
iables is confirmed by the non-parallel nature of the curves.
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additional analysis, we identified a significant interaction be-
tween the change in LVEDV and the change in LVEF for all-
cause mortality (HR = 0.97, 95% CI 0.94–0.99, P = 0.013)
(Table 4). The risk of all-cause mortality was greater when
LVEDV increase was accompanied by LVEF reduction of 5%
or more (red line in Figure 4A).

Functional left ventricular remodelling pattern:
implications for all-cause mortality and heart
failure hospitalization

During a median follow-up of 75 (IQR 51 to 106) months, the
composite of all-cause mortality and HF hospitalization (sec-
ondary endpoint) occurred in 305 (13%) patients, and was
observed more frequently (31%) in the functional LV remod-
elling Group IV, compared with the other groups (P< 0.05 vs.
other groups) (Figure 2B). The cumulative event rate for the
composite of all-cause mortality and HF hospitalization at
120 months was 16%, 19%, 21%, and 34% for Groups I, II,
III, and IV, respectively (Figure 3B). Patients in Group IV had
a significantly lower event free survival rate compared with
other remodelling groups during follow-up (log-rank test with
pairwise comparisons, P < 0.001 vs. Group I, P < 0.01 vs.
Group II, P < 0.001 vs. Group III).

Group IV was the only functional LV remodelling group,
which was significantly associated with higher risk of
experiencing the composite endpoint of all-cause mortality
and HF hospitalization, compared with patients in Group I
(HR = 1.80, 95% CI 1.17–2.78, P = 0.007) (Table 3). Analysis
of interaction between the change in LVEDV and the change
in LVEF showed a significant association with the composite
of all-cause mortality and HF hospitalization (HR = 0.97,
95% CI 0.94–0.99, P = 0.007) (Table 4) and the risk was in-
creased when LVEDV increase was accompanied with by a re-
duction in LVEF of 5% or more (red line in Figure 4B).

Incremental prognostic value of functional
classification of left ventricular remodelling

In order to demonstrate the incremental value of the func-
tional classification of LV remodelling, we tested the predic-
tive value of this model using a likelihood ratio test. LVEDV,
when added to a comprehensive baseline model (including
age, body surface area, hypertension, family history of CAD,
DM, previous MI, Killip Class ≥2, peak troponin I, estimated
glomerular filtration rate, multivessel disease, discharge
heart rate, discharge diastolic blood pressure, and use of an
ACEi/ARB) did not add significant incremental value for either

Table 3 Univariable and multivariable Cox regression analyses for the composite of all-cause mortality and HF hospitalization

Univariable analysis Multivariable analysis

HR 95% CI P value HR 95% CI P value

Age 1.08 1.07–1.09 <0.001 1.07 1.06–1.09 <0.001
Male 0.87 0.68–1.13 0.303 — — —

BMI (kg/m2) 0.99 0.96–1.02 0.381 — — —

BSA (m2) 0.34 0.20–0.58 <0.001 1.06 0.58–1.96 0.843
Current smoker 0.83 0.66–1.05 0.116 — — —

Ex-smoker 1.27 0.92–1.77 0.152 — — —

Hypertension 1.25 0.99–1.57 0.059 — — —

Hyperlipidaemia 0.97 0.73–1.28 0.822 — — —

Family history of CAD 0.65 0.51–0.82 <0.001 1.02 0.79–1.32 0.890
DM 2.22 1.65–2.98 <0.001 1.71 1.25–2.33 0.001
Previous MI 2.49 1.81–3.42 <0.001 1.80 1.28–2.54 0.001
Killip class ≥ 2 2.55 1.74–3.72 <0.001 1.26 0.83–1.91 0.280
Peak TnI (ng/ml) 1.05 1.03–1.07 <0.001 1.04 1.02–1.05 <0.001
eGFR (mL/min/1.73 m2) 0.98 0.97–0.98 <0.001 1.00 0.99–1.01 0.735
LM/LAD culprit vessel 0.99 0.79–1.24 0.935 — — —

Multivessel disease 1.70 1.34–2.14 <0.001 1.11 0.86–1.42 0.432
Discharge heart rate (bpm) 1.02 1.01–1.03 <0.001 1.02 1.01–1.03 0.002
Discharge SBP (mmHg) 1.00 0.99–1.00 0.441 — — —

Discharge DBP (mmHg) 0.98 0.97–0.99 0.004 0.99 0.98–1.00 0.035
DAPT 0.61 0.37–1.00 0.051 — — —

ACEi/ARB 0.40 0.24–0.66 <0.001 0.79 0.43–1.44 0.440
Statin 0.40 0.13–1.25 0.116 — — —

Beta-blocker 0.95 0.58–1.55 0.840 — — —

Functional LV remodelling Group I (reference)
Group II 1.37 0.90–2.09 0.144 1.20 0.78–1.86 0.407
Group III 1.35 1.05–1.75 0.021 1.18 0.90–1.54 0.230
Group IV 2.72 1.82–4.06 <0.001 1.81 1.17–2.78 0.007

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; BMI, body mass index; BSA, body surface area; CAD,
coronary artery disease; CI, confidence interval; DAPT, dual-antiplatelet therapy; DBP, diastolic blood pressure; DM, diabetes mellitus;
eGFR, estimated glomerular filtration rate; HF, heart failure; HR, hazard ratio; LAD, left anterior descending coronary artery; LM, left
mainstem; LV, left ventricular; MI, myocardial infarction; SBP, systolic blood pressure; TnI, troponin I.
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the primary endpoint (χ2 difference = 3.2, P = 0.083) (Figure 5)
or the secondary endpoint (χ2 difference = 3.2, P = 0.083)
(Figure 4,5) (Model 2). In contrast, adding the functional clas-
sification of LV remodelling to the baseline model (Model 3)
demonstrated clear incremental benefit in risk-stratifying
post-infarct patients for mortality (χ2 difference = 5.5,
P = 0.031) (Figure 4,5) and all-cause mortality and HF hospi-
talization (χ2 difference = 6.1, P = 0.024) (Figure 4,5). Model
discriminative values were also compared by
receiver-operating characteristic curve analysis (Figure S2)
and Harrell’s concordance index of model discriminative
value (Table S3). Receiver-operating characteristic analysis
does not take into account follow-up time when calculating
the sensitivity and specificity and is therefore less suitable
for analysis of time-to-event data. Harrell’s concordance in-
dex is a good descriptor of predictive discrimination for a sin-
gle model but not generally suited to the comparison of
separate models. Therefore, those analyses were not a first
choice to compare model discriminative values in the present
study.

Discussion

The main findings from the current study of STEMI patients
who were treated with primary PCI and optimal medical ther-
apy, are as follows: (i) 6 months post-infarct, patients who ex-
perienced both LV remodelling and LV function impairment,
comprised only a relatively small percentage (4%) of the over-
all population; and (ii) LV dilatation accompanied by LV dys-
function is associated with the worst prognosis.

Definition and outcome implications of LV
post-infarct remodelling

A 20% increase in the LVEDV (compared to baseline) is a
commonly-used definition of post-infarct adverse LV
remodelling,4 and has been validated in various studies by
demonstrating an association with outcomes.5,17 The use of
primary PCI and the widespread use of ACEi/ARB in STEMI

management have led to a substantial decline in the inci-
dence of LV remodelling, and more recent series demon-
strate LV remodelling rates of 30–40%.5 In some studies, an
even lower incidence (<30%) of post-STEMI LV remodelling
was documented when primary PCI was used as a revascular-
ization strategy.18,19

Despite the declining incidence of post-STEMI LV remodel-
ling with the use of primary PCI and guideline-directed medi-
cal therapy, the occurrence of LV remodelling is still associated
with worse clinical outcomes. Bolognese et al. demonstrated
the association of LV post-STEMI remodelling with cardiac
death, nonfatal acute MI and HF hospitalization.4 Van der Bijl
et al. also linked LV remodelling at 6 months post-infarct to
higher rates of HF hospitalization during long-term follow-up.5

The current definition of post-STEMI LV remodelling is
purely structural and does not take LV function into account,
even though it is known to be a potent predictor of long-term
post-STEMI outcome.9

Left ventricular function: incidence and
prognostic impact post-STEMI

Due to its importance as a prognostic marker, echocardio-
graphic measurement of LVEF is recommended in all STEMI
patients.12 In earlier studies from the era before thrombolysis
or primary PCI, an LVEF <40% was recorded in one third of
STEMI patients20 and represented a major determinant of
mortality.20,21 Because the use of primary PCI has become
widespread over the past two decades, the incidence of
post-STEMI LV functional impairment has decreased dramat-
ically. In a previous analysis of the MISSION! cohort from
2004 to 2013, the prevalence of LV functional impairment
(LVEF <40%) during the index admission was only 13%, when
receiving guideline-based therapy.7 Investigators of the Har-
monizing Outcomes With Revascularization and Stents in
Acute Myocardial infarction (HORIZONS-AMI) Trial reported
an even lower incidence of LVEF <40% in STEMI patients
treated with primary PCI (<10%).22

It is therefore clear that LV function has a significant impact
on outcome post-STEMI, and because the primary objective of

Table 4 Interaction between change in LVEDV and change in LVEF for all-cause mortality and the composite of all-cause mortality and HF
hospitalization

HR 95% CI P value

All-cause mortality
Relative change in LVEDV (10-unit change) 1.05 1.02–1.08 0.004
Absolute change in LVEF (10-unit change) 0.97 0.86–1.10 0.598
Interaction between relative change in LVEDV and absolute change in LVEF 0.97 0.94–0.99 0.013

The composite of all-cause mortality and HF hospitalization
Relative change in LVEDV (10-unit change) 1.05 1.02–1.09 0.001
Absolute change in LVEF (10-unit change) 0.93 0.82–1.04 0.203
Interaction between relative change in LVEDV and absolute change in LVEF 0.97 0.94–0.99 0.007

CI, confidence interval; HR, hazard ratio; LV, left ventricular; LVEDV, LV end-diastolic volume; LVEF, LV ejection fraction.
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identifying post-STEMI LV remodelling is prognostication, the
integration of LV function with post-STEMI LV remodelling is
logical.

Functional left ventricular remodelling post-
STEMI

Rodriguez-Palomares et al.23 explored post-STEMI LV remod-
elling and function with cardiac magnetic resonance (CMR) in

374 STEMI patients. CMR imaging was performed after
1 week, as well as 6 months post-infarct. Optimal thresholds
of LVEDV increase and LVEF decrease for predicting outcome
were identified by HR curves, and the primary endpoint,
which was a composite of cardiovascular death, HF hospital-
ization, and ventricular arrhythmias, occurred most fre-
quently in the patients with an increase in LVEDV >15%
and a decrease in LVEF >3%. In summary, the investigators
demonstrated that by integrating CMR-derived LVEDV and
LVEF, post-STEMI patients could be risk stratified more pre-

Figure 5 Likelihood ratio test for the incremental value of functional classification of LV remodelling for all-cause mortality (A) and the composite of
all-cause mortality and HF hospitalization (B). BSA, body surface area; CAD, coronary artery disease; DM, diabetes mellitus; EDV, end-diastolic volume;
ESV, end-systolic volume; MI, myocardial infarction; TnI, troponin I; MVD, multivessel disease; DBP, diastolic blood pressure; ACEi,
angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; LV, left ventricular.
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cisely than with an LVEDV-based approach alone.23 In a large
population of post-STEMI patients, where LVEDV and LVEF
were measured with 2D echocardiography, we similarly
found a functional LV remodelling approach superior to a
structural definition alone when performing outcome
analysis.

A corollary of our data is that not all LV dilatation (clas-
sic LV post-STEMI remodelling) is associated with poor
prognosis, but only that accompanied by LV functional
impairment.

Left ventricular functional post-infarct
remodelling: clinical implications

The application of LV functional remodelling to post-infarct
patients may allow more accurate risk stratification of pa-
tients with STEMI. We are entering the era of precision
medicine, which will require a greater amount of granular
data in order to accurately phenotype an individual
patient.24 Because LV remodelling with impairment in LVEF
at 6 months post-STEMI is associated with poor long-term
outcome despite primary PCI and the use of guideline-di-
rected medical therapy, considering additional/alternative
therapeutic options, for example, angiotensin
receptor-neprilysin inhibitors25 or oral soluble guanylate cy-
clase stimulators26 might be reasonable for this group of pa-
tients. Such strategies however will require prospective
evaluation.

Study limitations

The current study data originate from a single centre and
were retrospectively analysed. The data do however repre-
sent real world data from a large, ongoing STEMI registry.
Clinical events were not adjudicated by a central committee,
and echocardiographic data were not analysed by a core lab-
oratory. Different PCI techniques could not be accounted for
in our analysis, and we were unable to integrate information
on change in medication during follow-up. Mortality data
were only available for all-cause mortality and not for cardiac
mortality. Also, HF hospitalization data were only available
for patients who were readmitted to the LUMC with decom-
pensated HF. If a patient was admitted to a secondary hospi-
tal, this event would not have been captured by the LUMC
database. If a patient died or was lost to follow-up within
6 months post-infarct, LV remodelling could not be diagnosed
in such an individual. The relation between adverse LV re-
modelling and long-term outcomes could therefore not be in-
vestigated for such patients.

Conclusions

A functional LV post-infarct remodelling classification, rep-
resenting changes in LVEDV and LVEF at 6 months post-in-
farct, has the potential to improve risk stratification beyond
a purely structural definition of LV remodelling. In addition,
LV dilatation accompanied by LV dysfunction is associated
with the worst prognosis. Identification of patients after
STEMI with the worst prognosis (i.e. increased LVEDV
and impaired LV function at 6 months post-STEMI)
may allow preventative therapies to be directed at this
group.
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Figure S1. Kaplan-Meier curves for all-cause mortality (A) and
the composite of all-cause mortality and HF hospitalization
(B), stratified according to functional LV remodelling group,
when using a threshold of 10% absolute change in LVEF. EF,
ejection fraction; HF, heart failure; LV, left ventricular.

Figure S2. Discriminative value of predictive models for
all-cause mortality (A) and the composite of all-cause mortal-
ity and HF hospitalization (B). HF, heart failure; LV, left ven-
tricular; LVEDV, LV end-diastolic volume; LVEF, LV ejection
fraction.
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