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A B S T R A C T

Geographical regions profoundly influence the flavor characteristics of Congou black tea (CBT). In this study, 35
CBT samples from 7 geographical regions were comprehensively characterized by integrated multiple intelligent
sensory technologies and untargeted metabolomics analysis. A satisfactory discrimination was achieved through
the fusion of multiple intelligent sensory technologies (R2Y = 0.918, Q2 = 0.859). A total of 104 non-volatile and
169 volatile metabolites were identified by UHPLC-HRMS and GC–MS, respectively. Of these, 45 critical dif-
ferential non-volatile metabolites and 76 pivotal differential volatile metabolites were pinpointed based on
variable importance in projection >1 and p < 0.05. Moreover, 52 key odorants with OAV ≥ 1 were identified,
with hexanal, phenylacetaldehyde, linalool, β-cyclocitral, methyl salicylate, geraniol, α-ethylidene phenyl-
acetaldehyde, and trans-β-ionone being recognized as the common odorants across 7 geographical regions. The
results provide theoretical support for a comprehensive understanding of the effect of geographical regions on
the flavor of black tea.

1. Introduction

Black tea, recognized as the second most produced tea in China, has
gained widespread attention for its captivating aroma, sweet-mellow
taste, and appealing color. In 2023, the production and sales of black
tea in China reached 491.200 tons and 519.7 billions, respectively,
ranking second only to green tea. The processing of Congou black tea
(CBT) typically involves four fundamental steps: withering, rolling,
fermentation, and drying. The tea quality is influenced by numerous
factors such as geographical origin (Peng et al., 2022), cultivar (Li et al.,
2022), process technology (Feng et al., 2019), altitude (Zhang, Suen,
Yang, & Quek, 2018), and fertilizer (Zhao et al., 2023). Among these,
geographical origin serves as one of the pivotal factors that affect con-
sumers' choice. With the rapid development of agricultural trade glob-
alization, the authenticity of geographical origin of tea has become
increasingly prominent. Consumers generally believe that the quality of
tea from the core producing regions surpasses that from conventional
producing areas. However, this perception prompts businessmen to

confuse origins, adulterate products and misrepresent labels in the
pursuit of profitability. Thus, it is urgent to develop fast and accurate
methods to identify the geographical origins of CBT and explore the key
flavor compounds that influence their disparities.
Currently, traditional artificial sensory evaluation serves as the

predominant method for assessing the origins and defining the flavor
profile of tea, which mainly relies on subjective experience and pos-
sesses poor stability and low repeatability (Yang, Qian, Deng, Yuan, &
Jiang, 2022). In order to overcome these limitations, intelligent sensory
technologies have emerged as an effective solution. Representative
technologies such as electronic nose (E-nose), electronic tongue (E-
tongue), and electronic eye (E-eye), which mimic the human perception
system, have made significant advancements in recent years
(Gharibzahedi, Barba, Zhou, Wang, & Altintas, 2022; Vashisht, Pen-
dyala, Patras, Gopisetty,& Ravi, 2022). Without complicated treatments
and well-trained personnel, these advanced intelligent sensory tech-
nologies possess the capability to detect aroma, taste, and color attri-
butes by translating their distinct sensing signals into numerical data.
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Their extensive applications signify the effectiveness in compensating
for the inherent subjectivity and variability of human perception. For
instance, the identification of geographical origin of green tea has been
successfully achieved by utilizing E-nose and quantum neural network
(Fu, Liu, Chen, & Xing, 2023). Similarly, the Brazilian and Indian black
tea has been successfully distinguished through the integration of E-
tongue coupled withmultivariate statistical analysis (Raj et al., 2023). In
addition, the geographical origins of tea have been validated by
employing E-eye and soft independent modeling (Fernandes, Fernandes,
Diniz, & Pistonesi, 2023).
Metabolomics represents a groundbreaking methodology, enabling

us to gain an in-depth understanding of the regulatory mechanisms
behind flavor characteristics in complex food frameworks. It is con-
cerned with the high-throughput identification and quantification of
small molecule (< 1500 Da) metabolites, facilitated by the recent
groundbreaking developments in small molecule isolation and charac-
terization techniques. Gas chromatography-mass spectrometry (GC–MS)
and liquid chromatography-mass spectrometry (LC-MS) are prevalent
techniques in metabolomics, and their applications have facilitated
substantial advancements in the field of tea flavor (Yang et al., 2024a).
Methyl salicylate, (E)-2-octenal, phenylacetaldehyde, linalool, and
linalool oxide have been identified as the pivotal odorants in four most
famous black teas (Kang et al., 2019). Epigallocatechin gallate (EGCG),
possessing astringent taste, has been pinpointed as a vital non-volatile
metabolite in distinguishing black teas from Kenya, Assam, Darjeeling,
and Nepal (Shevchuk, Jayasinghe, & Kuhnert, 2018). Present studies
focus on a particular aspect of flavor, such as aroma compounds or taste
components. To offer a multidimensional and comprehensive interpre-
tation of the effects of geographical region on CBT, intelligent sensory
technology integrated with untargeted metabolomics were employed to
uncover the effects of geographical region on the volatile and non-
volatile metabolites of CBT.
Herein, we integrated multiple intelligent sensory technologies

including gas chromatography E-nose (GC-E-Nose), E-tongue, and E-eye,
along with untargeted metabolomics such as GC–MS and ultra-high
performance liquid chromatography coupled to high-resolution mass
spectrometry (UHPLC-HRMS), to comprehensively characterize the
volatile and non-volatile metabolites of CBT originating from 7 primary
regions in China. The critical metabolites for discriminating different
geographical regions were screened out. The results provide a robust
theoretical basis for comprehensive and in-depth understanding of
geographical regions on the flavor substances of black tea.

2. Materials and methods

2.1. Materials and reagents

The 20-mL headspace vials sealed with magnetic PTFE/silicone (18
mm) were purchased from Agilent Technologies Inc. (Palo Alto, CA,
USA). Purified water was acquired from Wahaha Group Co., Ltd.
(Hangzhou, China). n-Alkane mixtures (C6-C16) were obtained from
Restek Co., Ltd. (Centre County, PA, USA). Hydrochloric acid, sodium
chloride, and monosodium glutamate were obtained from Alpha M.O⋅S.,
Co., Ltd. (Toulouse, France). Acetonitrile, methanol, and formic acid
were purchased from Thermo Fisher Scientific (Shanghai, China).
A total of 35 CBT samples from 7 different geographical regions were

used. Specifically, 5 samples were from Anhui (AH, 29◦41′-34◦38′ N,
114◦54′-119◦37′ E); 7 samples were from Fujian (FJ, 23◦31′-28◦18′ N,
115◦50′-120◦43′E); 4 samples were from Guangdong (GD, 20◦13′-25◦31′
N, 109◦39′-117◦19′E); 6 samples were from Hubei (HB, 29◦05′-33◦20′N,
108◦21′-116◦07′ E); 4 samples were from Jiangxi (JX, 24◦29′-30◦04′ N,
113◦34′-118◦28′ E); 4 samples were from Sichuan (SC, 26◦03′-34◦19′N,
97◦21′-108◦12′ E), and 5 samples were from Yunnan (YN, 21◦8′-29◦15′
N, 97◦31′-106◦11′ E).

2.2. GC-E-Nose analysis

The Heracles II GC-E-Nose system (Alpha M.O⋅S., Toulouse, France),
which was equipped with an automated headspace sampler, was
employed to gather the volatile profiles of CBT samples. Two capillary
columns of MXT-5 and MXT-1701 (20 m × 0.18 mm I.D. × 0.4 μm,
Restek, USA) in parallel were used. The experimental method was based
on our previous study (Wang et al., 2023a). Briefly, 0.5 g of CBT samples
and 3 mL of water were put into a 20-mL headspace vial, and subse-
quently transferred to the incubator. The incubation parameters were
set at 65 ◦C and 500 rpm, with the entire process lasting for 30min. After
incubation, 5000 μL of headspace gas was introduced into the separation
system by utilizing an airtight syringe at a flow rate of 250 μL/s for 50 s.
The volatiles were concentrated via a Tenax TA trap adjusted to 40 ◦C for
55 s, followed by thermal desorption at 240 ◦C for 30 s. Helium was
utilized as the carrier gas at a flow rate of 0.8 mL/min. The heating
protocol was as follows: the initial temperature was set at 50 ◦C for 5 s,
raised to 80 ◦C at a rate of 0.1 ◦C/s, and finally raised to 250 ◦C at a rate
of 0.4 ◦C/s and held for 10 s. The operational temperature for the two
flame ionization detectors (FIDs) was set at 260 ◦C. The volatile profiles
were analyzed by the built-in AlphaSoft software (version 17.0), and
were qualitatively evaluated by comparing the retention index calcu-
lated by C6-C16 with those in the AroChemBase database.

2.3. Electronic eye analysis

The IRIS VA400 E-eye system (Alpha M.O.S, France) was employed
to collect the color information regarding CBTs. It was mainly composed
of a CMOS camera (5 mm aperture), light source, cabin, and computer.
Prior to image capture, it was imperative to preheat the light source,
adjust the camera settings and calibrate the color. Each sample was
firmly secured in the identical position within the cabin, and was
captured three times. All acquired images underwent consistent pre-
processing. The feature information extracted from a standardized
central circle included L*a*b* values, color codes and their corre-
sponding color regions. The L* value signifies the brightness of the
infusion on a scale of 0–100, with higher values indicating greater
brightness. The a* and b* values represent the redness/greenness and
yellowness/blueness of the infusion, respectively, with values ranging
from − 128 to 127. A higher a* value denotes more redness, whereas a
higher b* value signifies more yellowness.

2.4. Electronic tongue analysis

An ASTREE E-tongue system, armed with the sixth set of sensors
(Alpha M.O.S, France) was utilized to gather the taste information of
CBTs. This sensor array encompassed a standard reference electrode and
seven taste sensors inclusive of AHS (sour), ANS (sweet), SCS (bitter),
CTS (salty), NMS (umami), PKS (comprehensive taste), and CPS
(comprehensive taste). Prior to measurement, the sensors were required
to be activated, pre-equilibrated, calibrated, and diagnosed with the
assistance of the following solutions: hydrochloric acid, sodium chlo-
ride, and sodium glutamate. During a collection sequence, a mandatory
cleaning (30 s) and testing (120 s) cycle was performed. Each sample
underwent a repetition of 3 times. The average value of the signal
response in the period of 110th–120th s was selected as the output value,
where the signal displayed consistency.

2.5. GC–MS analysis

The analysis of the volatile compounds was carried out using an
Agilent 7890B–7000C GC–MS equipment (Agilent Technologies, Palo
Alto, CA, USA), and the experimental method was based on our previous
study (Wang et al., 2023a). Initially, 0.5 g of samples, 5 mL of water, and
2 μL of internal standard (100mg/L, ethyl decanoate) were incorporated
into a 20-mL headspace vial. A 50/30 μm divinylbenzene/carboxen/
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polydimethylsiloxane (DVB/CAR/PDMS) fiber (Supelco, Bellefonte, PA,
USA) was employed to extract the volatile compounds, which under-
went an incubation period of 60 min at 60 ◦C. Each sample was prepared
in triplicate. After extraction, the fiber was inserted into the injector for
thermal desorption (approximately 5 min). The volatile compounds
were separated via a HP-5 ms capillary column (30 m × 0.25 mm in-
ternal diameter × 0.25 μm film thickness; Agilent Technologies, Palo
Alto, CA, USA). The heating protocol for the GC column was established
as follows: the initial temperature was set at 40 ◦C (maintaining for 2
min), subsequently elevated to 160 ◦C at a rate of 4 ◦C/min (holding for
2 min), and finally progressed to 270 ◦C at a rate of 10 ◦C/min (holding
for 2 min). Mass spectrometry was conducted under electron ionization
mode at 70 eV. The temperatures of the injector port and transmission
line were 250 ◦C and 270 ◦C, respectively. The temperature of the ion
source was set at 230 ◦C and the mass scan range was 40–450 m/z.
The volatile compounds in CBTs were qualitatively assessed by the

Agilent MassHunter Workstation Software, followed by a search and
identification using the NIST 11 library. The volatile compounds were
further confirmed with retention indices (RI), calculated through a ho-
mologous series of n-alkanes (C7-C40), and cross-referenced with the
data available in the scientific literatures (https://webbook.nist.gov/ch
emistry/ and https://www.flavornet.org/flavornet.html). Each volatile
was quantified employing the internal standard method.

2.6. Odor active value (OAV) analysis

Odor active value (OAV) is defined as the ratio of the concentration
of volatile compound to its threshold value (Bi et al., 2019). OAV is
commonly employed to assess the contribution to the overall aroma.
Volatiles with an OAV ≥ 1 are recognized as the fundamental contrib-
utor to tea aroma. Moreover, the higher the OAV, the greater the
contribution.

2.7. UHPLC-HRMS-based metabolomics analysis

The analysis of the non-volatile metabolites was performed utilizing
an Ultimate 3000-Q-Exactive UHPLC-MS system (Thermo Fisher, CA,
USA). The pre-processing approach was implemented according to
previous study with minor adjustments (Han et al., 2022). Initially, 0.1 g
of pre-milled tea powder was weighed and transferred into a 5-mL
centrifuge tube, subsequently assorted with 3 mL methanol. After ul-
trasonic extraction (at 25 ◦C for 10 min) and centrifugation (at 4 ◦C for
10 min), the extracts were transferred into a centrifuge tube, and
adjusted to 10 mL using methanol. Ultimately, each extract was filtered
through a 0.22 μm Millipore filter for subsequent analysis.
The non-volatile metabolites were separated on an ACQUITY UPLC

HSS T3 column (2.1 mm × 150 mm, 1.8 μm, Waters, MA, USA) under a
temperature of 35 ◦C and a flow rate of 3 μL/min. The mobile phase was
constituted of 0.1% vol/vol formic acid aqueous solution (mobile phase
A) and 0.1% vol/vol acetonitrile formic acid solution (mobile phase B),
and characterized by a gradient elution protocol: at 0–3 min, 2% B; 15
min, 100% B; 17 min, 100% B; 17.5 min, 2% B; 20 min, 2% B. The
operating parameters of mass spectrometry were defined as follows:
both the positive and negative ion modes were undertaken via electro-
spray ionization, with the ion transfer tube temperature of 320 ◦C and
spray voltage of 3.5 kV. The temperature of auxiliary gas was main-
tained at 400 ◦C. The flow rate ratios of sheath gas and auxiliary gas
were set at 40 arb and 10 arb, respectively. The scanning range was
60–900 m/z. Throughout the data acquisition process, quality control
samples (QC) were employed to ensure the validity and consistency of
acquired data. Metabolic identification was facilitated through precise
mass measurements (≤ 5 ppm), retention time correction (≤ 0.2 min),
peak response intensity (≥ 200,000), comparison with self-established
standard databases and online database inquiries (such as HMDB 5.0).

2.8. Statistical analysis

The datasets of the GC-E-Nose, E-tongue, and E-eye were subjected to
preliminary processing via their built-in workstation. Prior to modeling,
the fused dataset underwent standardization through unit variance
scaling (UV). Orthogonal partial least squares discrimination analysis
(OPLS-DA) was performed by SIMCA 14.1 (Umetrics, Sweden). One-way
analysis of variance (ANOVA) was implemented utilizing SPSS 20.0
(SPSS Inc., USA). The correlation heat map, bar plot, and bubble plot
were generated using ChiPlot (https://www.chiplot.online/). The venn
diagramwas sketched using Omicstudio (https://www.omicstudio.cn/).

3. Results and discussion

3.1. Characterization of CBTs from different geographical regions based
on multiple intelligent sensory technologies

In this study, 35 CBT samples from 7 geographical regions were
characterized using GC-E-Nose, E-tongue, and E-eye. A total of 91
characteristic variables were acquired, comprising 44 variables from
GC-E-Nose, 7 variables from E-tongue, and 40 variables from E-eye
(Table S1). To facilitate data mining and analysis, OPLS-DA analysis was
performed. The spatial distribution of these CBT samples from seven
geographical regions, as determined by independent GC-E-Nose, E-
tongue, and E-eye, was intuitively presented via the score plot. As
illustrated in Fig. 1A, the distribution of samples from the AH, FJ, GD,
JX, and YN regions were overlapped except for HB and SC regions,
indicating a challenge in efficiently distinguishing CBT samples from
diverse regions based on independent GC-E-Nose. The samples from FJ,
GD, HB, JX, and YN regions could be effectively distinguished by E-
tongue, yet an overlap persisted between AH and SC regions, suggesting
that independent E-tongue was also insufficient in accomplishing this
requirement (Fig. 1B). A considerable segregation was observed based
on independent E-eye (Fig. 1C). Nonetheless, the aggregation degree of
each region was not as satisfactory as anticipated. The permutation tests
confirmed the absence of potential overfitting in the aforementioned
OPLS-DA models (Fig. 1D, E and F). In conclusion, independent GC-E-
nose, E-tongue, and E-eye techniques exhibit limitations in the
discriminating CBT samples from distinct geographical regions. The
application of fusion strategy provides a novel perspective (Xu, Wang,&
Zhu, 2019).
The OPLS-DA model based on fusion of GC-E-Nose, E-tongue, and E-

eye exhibited good explanatory and fitting ability (R2Y = 0.918, Q2 =
0.859), and the samples from 7 geographical regions were effectively
separated (Fig. 2A). The AH samples were situated on the positive half of
the Y-axis, whereas the FJ samples were positioned on the positive half
of the X-axis. The GD and YN samples were distributed in the second
quadrant and partially overlapped, potentially due to the prevalence of
large leaf species in these two origins (Zheng et al., 2023). The JX
samples were positioned in the fourth quadrant neighboring the nega-
tive half of the Y-axis. The SC and HB samples were stationed in the third
and first quadrants, respectively. The permutation test with 200 in-
teractions generally helps to assess the robustness of the current OPLS-
DA model. The criteria for validity are that all Q2-values to the left are
lower than the original points to the right or the regression line of the
Q2-points intersects the vertical axis (on the left) at, or below zero. As
illustrated in Fig. 2B, the results demonstrated that the model was
reliable and not overfitted (R2 = 0.26, Q2 = − 0.526). Additionally, a
total of 29 variables were identified to play a critical role in the classi-
fication of CBTs from 7 regions based on variable importance in pro-
jection (VIP) > 1 (Fig. 2C). Among them, 15 variables were from GC-E-
Nose, 7 variables were from E-tongue, and the remaining variables were
from E-eye. In summary, the model based on the fusion strategy was
more robust than that based on independent GC-E-Nose, E-tongue, and
E-eye. This pioneering methodology enables the amalgamation of data
from diverse sensory techniques, thereby enhancing the precision and
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dependability of the discrimination. The fusion strategy of integrating
GC-E-Nose, E-tongue, and E-eye has been demonstrated as a promising
methodology for distinguishing geographical regions of CBT samples.
Despite intelligent sensory technologies offering the benefits of speed

and objectivity, it is essential to highlight that these intelligent sensory
technologies have stringent environmental requirements. Maintaining
consistent environmental conditions is vital for ensuring consistent de-
vice performance. Moreover, as time progresses, sensors may encounter

Fig. 1. OPLS-DA models based on independent GC-E-Nose, E-tongue, and E-eye. (A) Score plots of GC-E-Nose (R2Y = 0.641, Q2 = 0.551); (B) Score plots of E-tongue
(R2Y = 0.643, Q2 = 0.616); (C) Score plots of E-eye (R2Y = 0.72, Q2 = 0.673); (D) Permutation test of GC-E-Nose (R2 = 0.129, Q2 = − 0.271); (E) Permutation test of
E-tongue (R2 = 0.022, Q2 = − 0.216); (F) Permutation test of E-eye (R2 = 0.177, Q2 = − 0.335). AH represents Anhui; FJ represents Fujian; GD represents Guangdong;
HB represents Hubei; JX represents Jiangxi; SC represents Sichuan, and YN represents Yunnan.
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performance degradation and contamination, necessitating regular
replacement of the sensor or rigorous cleaning protocols to maintain the
sensor cleanliness. Nevertheless, they remain a convenient method for
evaluating the quality of black tea.

3.2. Characterization of the non-volatile metabolites in CBTs from
different geographical regions based on UHPLC-HRMS analysis

An untargeted metabolomics analysis based on UHPLC-HRMS was
performed to characterize the non-volatile metabolites of CBTs from 7
geographical regions. In total, 104 non-volatile metabolites classified
into 10 categories were identified, including 6 alkaloids, 19 amino acids
and derivatives, 8 catechins, 9 dimeric catechins, 29 flavonol and
flavonol/flavone glycosides, 5 carbohydrates, 6 nucleosides and nucle-
otides, 3 organic acids, 14 phenolic acids and derivatives and 5 other
compounds (as detailed in Table S2).
To explore the differences of non-volatile metabolites, an OPLS-DA

analysis was conducted. As illustrated in Fig. 3A, the score plots
exhibited a distinct clustering tendency of CBT samples from various
geographical regions, particularly exhibiting a high degree of intra-
group aggregation across all groups (R2Y = 0.923, Q2 = 0.869). The
AH, SC, and JX samples were grouped jointly in the 1st quadrant; FJ and
HB samples were distributed within the 3rd quadrant; whereas GD and
YN samples were located in the 4th quadrant. Notably, the close dis-
tribution of GD and YN samples was also evident in Fig. 2A, which
corroborated the aforementioned results. Permutation test with 200
interactions validated the reliability of this model (R2 = 0.305, Q2 =

− 0.574) (Fig. 3B). Subsequently, a VIP plot was developed to screen the

potential key non-volatile metabolites responsible for quality differences
between regions. A total of 45 non-volatile metabolites were selected
based on the criterion of VIP> 1 and p< 0.05 (Fig. 3C). The top five non-
volatile metabolites with VIP > 1.3 were kynurenic acid (L1),
(− )-asparagine (L10), procyanidin B1 (L35), naringenin (L51), and
adenine (L75), contributing substantially to the differences. Conse-
quently, these pivotal differential non-volatile metabolites were high-
lighted in the loading plot to elucidate their specific contribution to the
quality differences between regions (Fig. 3D). The closer the metabolite
resided to the cluster, the more sensitive it was to the classification.
(− )-Asparagine (L10), imparting an umami taste, was closer to the YN
and GD groups while L-isoleucine (L19) were proximate to the HB and
FJ groups (Yang et al., 2018). Fumaric acid (L84) was located near the
GD and YN samples. It contributed to form a mellow and thick flavor,
and was reported to exhibit a considerable distinction between large-
leaf black tea and medium-small-leaf black tea (Song et al., 2020).
Furthermore, a heat map was utilized to visualize the distribution

patterns of key differential metabolites across 7 geographical regions
(Fig. 4). Each circle represents a region, while each column represents a
compound. The orange box indicates a higher level than the average,
whereas the cyan box signifies a lower level. The CBT samples could be
categorized into two dominant categories: the medium-small-leaf spe-
cies group encompassed AH, FJ, HB, JX, and SC; the large-leaf species
group included YN and GD. It is worth mentioning that, the former
group could be further subdivided into two subcategories: AH, JX, and
SC; FJ and HB. The results demonstrate the potential of UHPLC-HRMS in
elucidating the quality differences between diverse regions.
Upon scrutinizing the non-volatile metabolites, there existed seven

Fig. 2. OPLS-DA model based on fusion of multiple intelligent sensory technologies. (A) Score plots (R2Y = 0.918, Q2 = 0.859); (B) Permutation test (R2 = 0.26, Q2

= − 0.526); (C) VIP plot. AH represents Anhui; FJ represents Fujian; GD represents Guangdong; HB represents Hubei; JX represents Jiangxi; SC represents Sichuan,
and YN represents Yunnan.
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distinct metabolite clustering blocks that played an important role in
discriminating different regions of CBTs. Cluster I was primarily con-
sisted of amino acids and dimeric catechins with umami and astringent
tastes, such as (− )-asparagine and procyanidin B1 (Wu et al., 2022).
These metabolites predominantly exhibited higher levels in the YN

samples. Cluster II was consisted of four carbohydrates and one phenolic
acid, displaying greater levels in the GD samples. These carbohydrates
not only significantly contribute to the sweet taste of black tea, but they
also act as substantial contributors to the mouth feel of the infusion
(Zhang et al., 2023a). Three organic acids in cluster III displayed higher

Fig. 3. OPLS-DA model based on UHPLC-HRMS. (A) Scores plot (R2Y = 0.923, Q2 = 0.869); (B) Permutation test (R2 = 0.305, Q2 = − 0.574); (C) VIP plot; (D)
Loading plot. AH represents Anhui; FJ represents Fujian; GD represents Guangdong; HB represents Hubei; JX represents Jiangxi; SC represents Sichuan, and YN
represents Yunnan.
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levels in the FJ samples compared to other groups. Cluster IV was
composed of 4-hydroxybenzaldehyde, shikimic acid, 5-aminosalicylic
acid, cytarabine, and raffinose. In addition, kynurenic acid, theobro-
mine, procyanidin B4, ellagic acid, pyrogallol, and 3-hydroxy-2-methyl-
pyridine were categorized within cluster V, demonstrating higher levels
in the AH samples. Flavonol/flavone and their glycosides were the pri-
mary substances in clusters VI and VI, predominantly exhibiting
astringent taste and contributing greatly to the formation of black tea
flavor (Ito & Yanase, 2022).

3.3. Characterization of the volatile metabolites in CBTs from different
geographical regions based on GC–MS

In this study, GC–MS was employed to investigate the volatile me-
tabolites in CBTs from different geographical regions. A total of 169
volatile metabolites were identified within 7 geographical regions of
CBT samples (as detailed in Table S3). Based on their chemical struc-
tures, these volatile metabolites could be sub-grouped into 12 cate-
gories, consisting of 27 alcohols, 30 aldehydes, 28 ketones, 30 esters, 19
heterocyclic compounds, 15 alkenes, 9 aromatic hydrocarbons, 5 acids,
2 alkanes, 2 sulfides, 1 phenol, and 1 ether. With respect to individual
region, there were 60, 71, 48, 88, 58, 73, and 47 volatile metabolites
identified in the AH, FJ, GD, HB, JX, SC, and YN, respectively (Fig. S1).
Moreover, the contents of volatile metabolites varied across diverse
regions (Fig. S2). High levels of alcohols, aldehydes, and esters were
detected in all regions, corroborating previous study (Xiao et al., 2017).

Remarkably, elevated levels of esters and alkenes were detected in FJ
samples, which emitted floral and fruity aromas. The SC samples con-
tained higher levels of ketones, aldehydes, and alcohols. Interestingly,
sulfides, phenols, and ethers were exclusively observed in the HB
samples.
An OPLS-DA analysis was carried out to investigate the key volatile

metabolites that contributed to the quality differences in geographic
regions. As depicted in Fig. 5A, 7 geographical regions of CBT samples
were well distinguished, exhibiting commendable explanatory power
and predictive potential (R2 Y = 0.928, Q2 = 0.902). The FJ and HB
samples were distributed in the third and fourth quadrants, respectively.
The remaining five regions (i.e., AH, GD, JX, SC, and YN) were located in
the first quadrant near the positive half of the Y-axis, indicating similar
volatile metabolites across these five regions. Permutation testing for
200 interactions confirmed the model's reliability devoid of overfitting
(Fig. 5B). According to the criteria of VIP >1 and p < 0.05, 76 volatile
metabolites were recognized as key contributors towards discriminating
CBTs from 7 geographical regions (Fig. 5C). Subsequent assessment of
specific volatile metabolites interpreting the diversity across seven
geographical regions was performed via the corresponding loading plots
(Fig. 5D). The separation distance between individual variables and the
primary cluster positively correlates with their contribution to classifi-
cation. For instance, (Z)-3-hexen-1-ol acetate (G48), (E)-linalool oxide
(pyranoid) (G93), β-ocimene (G61), geraniol (G115), β-myrcene (G41),
and hexadecanoic acid ethyl ester (G169) were closer to the FJ region.
Geraniol, possessing a rose-like aroma, was one of the typical volatile

Fig. 4. Heat map of key differential non-volatile metabolites in CBTs from 7 geographical regions. AH represents Anhui; FJ represents Fujian; GD represents
Guangdong; HB represents Hubei; JX represents Jiangxi; SC represents Sichuan, and YN represents Yunnan.
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metabolites of fresh black tea. It was hydrolyzed from β-D-glycosides
(Polat, Şat, & Ilgaz, 2018). Hexanoic acid ethyl ester (G46), terpinolene
(G71), nerol (G117), and thymol (G128) were adjacent to the HB region,
while 1-hexanol (G19), 2-ethyl-pyrazine (G29), 2-pentyl-furan (G40),
benzeneacetaldehyde (G57), and (E)-2-octenal (G63) were distributed
around the remaining regions. Esters typically impart a fruity or floral
aroma to black tea. As a typical representative, hexanoic acid ethyl ester
was generated through lipid oxidation and degradation, and was the
primary aroma compound of Yingde black tea (Liu et al., 2021; Wang

et al., 2023b). 2-Pentyl-furan, derived from the Maillard reaction via
Strecker degradation, was reported as an important aroma-active
component in black tea, green tea, and white tea (Hao et al., 2023;
Ouyang et al., 2022; Su, He, Zhou, Li, & Zhou, 2022).
Typically, aroma is shaped by diverse volatile compounds through

comprehensive and complex interaction. OAV analysis was performed to
identify the key aroma compounds in CBT samples from 7 geographical
regions. A total of 52 volatile compounds with OAV ≥ 1 were screened
out in all regions (Table S4). Specifically, there were 21, 31, 21, 24, 22,

Fig. 5. OPLS-DA model based on GC–MS. (A) Score plots (R2Y = 0.928, Q2 = 0.902); (B) Permutation test (R2 = 0.243, Q2 = − 0.399); (C) VIP plot; (D) Loading plot.
AH represents Anhui; FJ represents Fujian; GD represents Guangdong; HB represents Hubei; JX represents Jiangxi; SC represents Sichuan, and YN represents Yunnan.
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31, and 18 key odorants identified in AH, FJ, GD, HB, JX, SC, and YN,
respectively (Fig. 6). For instance, theaspirane (OAV = 17,000) and 2,3-
diethyl-5-methyl-pyrazine (OAV = 25.8) were exclusively found in AH
region; (Z)-3-Hexen-1-ol acetate (OAV = 1.2), β-ocimene (OAV = 2.5),
1,3,8-p-menthatriene (OAV = 37), dihydro-5-pentyl-2(3H)-furanone
(OAV = 1.2), and cedrol (OAV = 8.8) were exclusively found in FJ re-
gion; Hexanoic acid, ethyl ester (OAV = 1.5), dimethyl trisulfide (OAV
= 5), 2-ethyl-furan (OAV = 4.5), and 3-methyl-butanal (OAV = 53.1)
were exclusively found in HB region; 1-Hexanol (OAV = 2.8) was
exclusively found in JX region; α-Phellandrene (OAV = 23) and 2-ethyl-
5-methyl-pyrazine (OAV = 2) were exclusively found in SC region; 2,6-
Dimethyl-2,4,6-octatriene (OAV = 9860) was exclusively found in YN
region. The aforementioned volatile compounds potentially contributed
to the differing aroma qualities of CBTs from 7 geographical regions.
Teaspirane was considered as a potential marker for distinguishingWuyi
rock tea cultivars (Zhang et al., 2023b). 2,6-Dimethyl-2,4,6-octatriene,
contributing to a floral aroma, was documented to exhibit a higher
level in high-quality Bao-Chung tea (Chen, Liu, & Chen, 2023). It is
noteworthy that 1-octen-3-ol (excluding AH), (E)-linalool oxide (pyr-
anoid) (excluding HB), and β-damascenone (excluding HB) were
detected in almost all regions. 1-Octen-3-ol and β-damascenone could be
regulated through distinct withering methods, and significantly influ-
enced the formation of black tea aroma (Huang et al., 2022). trans-
Linalool oxide (pyranoid) was reported to have a positive impact on
the aroma profile of Yunnan CBTs, and was an essential indicator to
distinguish diverse roasting periods (Mei et al., 2022).
In addition, 8 volatile compounds including hexanal, phenyl-

acetaldehyde, linalool, β-cyclocitral, methyl salicylate, geraniol, α-eth-
ylidene phenylacetaldehyde, and trans-β-ionone were identified as
common odorants in CBT samples from 7 geographical regions (Fig. S3).
Notably, trans-β-ionone and methyl salicylate were recognized as the
constructors of the fundamental aroma of black tea. Their contents did

not exhibit considerable disparity across the seven regions, suggesting
that they merely contribute to the foundational aroma rather than
serving as the determinant of the aroma distinction. Linalool and gera-
niol were reported to impart a floral aroma, whereas phenyl-
acetaldehyde emitted a honey-like aroma. Both of them were identified
as highly associated with the sweetness and floral aromas of CBTs.
Hexanal exhibited a grassy odor, and its content was relatively low in
high-quality black tea (Gao et al., 2022). β-Cyclocitral, exhibiting a
fruity fragrance, was regarded as potential aroma-active component
responsible for sweet aroma black tea (Yang et al., 2024b). α-Ethylidene
phenylacetaldehyde was reported to be closely linked to the honey-like
attribute (Sun et al., 2024).

4. Conclusions

This study comprehensively assessed the characteristic quality of
CBTs from seven diverse geographical regions by employing multiple
intelligent sensory and untargeted metabolomics analysis. Exceptional
differentiation was accomplished via amalgamation of multiple intelli-
gent sensory techniques encompassing GC-E-Nose, E-tongue, and E-eye
(R2Y = 0.918, Q2 = 0.859). A total of 45 non-volatile metabolites were
identified as the key differential metabolites for distinguishing CBTs
from 7 distinct regions, with screening criterion of VIP> 1 and p < 0.05.
Both OPLS-DA and cluster analysis of non-volatile metabolites under-
scored the distinct disparities of CBTs between large-leaf species (GD
and YN) and medium-small-leaf species (AH, FJ, HB, JX, and SC).
Furthermore, 52 key odorants with OAV ≥ 1 were identified, with AH,
FJ, GD, HB, JX, SC, and YN region containing 21, 21, 21, 24, 22, 31, and
18 odorants, respectively. These volatiles played a crucial role in
shaping the distinctive aroma profiles of CBTs from diverse regions.
Among them, hexanal, phenylacetaldehyde, linalool, β-cyclocitral,
methyl salicylate, geraniol, α-ethylidene phenylacetaldehyde, and trans-

Fig. 6. Bubble plot of volatile compounds with OAV ≥ 1. AH represents Anhui; FJ represents Fujian; GD represents Guangdong; HB represents Hubei; JX represents
Jiangxi; SC represents Sichuan, and YN represents Yunnan.
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β-ionone were considered as the fundamental aromas across seven re-
gions. Our results provide a thorough comprehension of the formation of
CBT quality differences from various regions. In the future, we aim to
explore the application of advanced data fusion methods and intelligent
classification algorithms to improve the accuracy of origin classification.
In addition, aroma recombination and omission testing will be con-
ducted to gain a comprehensive understanding of the contributions of
individual aroma compound.
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