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Abstract

Introduction: The presence of motor signs and symptoms in Parkinson’s disease (PD) is the result of a long-lasting
prodromal phase with an advancing neurodegenerative process. The identification of PD patients in an early phase
is, however, crucial for developing disease-modifying drugs. The objective of our study is to investigate whether
Diffusion Tensor Imaging (DTI) of the Substantia nigra (SN) analyzed by machine learning algorithms (ML) can be
used to identify PD patients.

Methods: Our study proposes the use of computer-aided algorithms and a highly reproducible approach (in
contrast to manually SN segmentation) to increase the reliability and accuracy of DTI metrics used for classification.

Results: The results of our study do not confirm the feasibility of the DTI approach, neither on a whole-brain level,
ROI-labelled analyses, nor when focusing on the SN only.

Conclusions: Our study did not provide any evidence to support the hypothesis that DTI-based analysis, in
particular of the SN, could be used to identify PD patients correctly.
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Background
Diffusion tensor imaging (DTI) has been proposed for
analyzing microstructural integrity not only of white but
also grey matter. However, the use of DTI to observe, e.
g., subcortical grey matter changes is currently under de-
bate [15]. Whether microstructural alterations of the
whole brain, regions of interests (ROI)-labeled grey mat-
ter, or the substantia nigra (SN) can be detected apply-
ing diffusion metrics in Parkinson’s disease patients (PD)
is still unclear. The significance of several previous DTI
studies in PD is limited due to small sample sizes and by
the fact that specific regions of interests were delineated
manually for the extraction of diffusion metrics. Besides,

studies that were able to demonstrate significant group
differences have also shown a relevant overlap of diffu-
sion metrics between PD patients and healthy controls,
which undermines the potential diagnostic use. Machine
learning-based (ML) models might help to detect subtle
alterations of diffusion metrics, by their multivariate na-
ture and by the integration of different imaging modal-
ities, and to improve their diagnostic use subsequently.
The aforementioned practice also hindered the transla-
tion into clinical practice [19]. Our study hypothesizes
that ML algorithms and the application of a suitable
sub-cortical atlas for the elderly population can be used
to distinguish between PD patients and age- and gender-
matched healthy controls in a standardized and there-
fore potentially more sensitive manner [5]. Computing
algorithms like binary support vector machines (bSVM)
or multiple-kernel learning (MKL) provide suitable and
promising tools to address classification problems based
on neuroimaging data [18]. Advancements in the
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multivariate interpretation of neuroimaging data have
already been proven useful in a plethora of neuropsychi-
atric [16] and neurodegenerative diseases [11, 12]. Be-
sides, the employment of machine-learning algorithms
to Parkinson’s disease datasets has offered unique ad-
vancements in interpreting distinct neuroimaging mo-
dalities [3, 4, 20, 23]. MKL also yields the opportunity to
concatenate different imaging modalities. This is of par-
ticular interest as distinct diffusion metrics are meant to
resemble different histopathological hallmarks of neuro-
degeneration [22].

Methods
DTI datasets of 162 PD patients (age: 63.9 ± 9.3 years;
gender: 34.2% female; disease duration: 6.5 ± 4.1 months;
mean MDS-UPDRS-III: 13.9 ± 2.1; mean Hoehn and
Yahr stadium: 1.2 ± 0.3) and 70 age and gender-matched
healthy controls (HC) (age: 62.1 ± 10.1 years; gender:
34.9% female) were analyzed. This study used human
subject recordings chosen from the Parkinson’s Progres-
sion Marker Initiative (PPMI) database. The PPMI data-
set was published open-access with a positive ethics
statement of the responsible authorities. Therefore, add-
itional ethics committee approvals do not apply to this
study. DTI-MR sequences were acquired on a Siemens
3 T TIM Trio scanner using a 12-channel matrix head
coil and a two-dimensional echo-planar DTI sequence
(TR/TE = 900/88 ms, flip angle = 90°, voxel size = 2 × 2 ×
2mm3, 72 slices, 64 gradient directions with a b-value of
1000 s/mm2). In addition, a non-gradient volume (b = 0
s/mm2) was acquired as well. Further details of the
PPMI image acquisition protocol can be seen online
(http://www.ppmi-info.org/wp-content/uploads/2017/
06/PPMI-MRI-Operations-Manual-V7.pdf). We per-
formed pre-processing by using the PANDA-toolbox
(v1.3.1) in Matlab 2018b, including normalization to
standard space (via FMRIB58_FA template, 2 mm × 2
mm× 2mm voxel size) [6]. In addition to conventional
diffusion metrics (FA, MD, AD, and RD), we calculated
local diffusion homogeneity (LDH) as another measure
of microstructural white matter integrity. For the inter-
pretation of DTI images, we calculated the following
standard diffusion metrics based on the three-
dimensional diffusion of water as a function of spatial lo-
cation: Fractional Anisotropy (FA) is a summary meas-
ure for interpreting microstructural integrity. Mean
Diffusivity (MD) is a measure of the cell membrane
density. It is, therefore, sensitive for cellularity, edema,
and necrosis of investigated tissue. Axial Diffusivity (AD)
decreases in axonal injury. Radial Diffusivity (RD) in-
creases in de- or dysmyelination of axons. A concise re-
view article on the interpretability of diffusion metrics to
investigate microstructural grey and white matter
changes are described in a review article by Alexander

et al. [1]. Local diffusion homogeneity (LDH) is another
diffusion metric that is specifically relevant to assess tis-
sue homogeneity based on neighboring voxels [9]. We
computed LDH for 6, 18, and 26 neighboring voxels
using Spearman’s Rank Correlation coefficient (06LDHs,
18LDHs, and 26LDHs) and Kendall’s coefficient con-
cordance (06LDHk, 18LDHk, and 26LDHk) [9]. Voxel-
wise whole-brain analysis was performed using the FM-
RIB58_FA template. We performed ROI-labeled analyses
based on the well-established AAL atlas [21]. To further
increase the signal-to-noise ratio, we additionally per-
formed classification after masking of the SN using the
ATAG atlas for the elderly population [10]. The datasets
were classified through bSVMs (for single modalities) as
well as MKL (for concatenated modalities). Ten-fold
cross-validation (CV) and nested (leave one subject out)
hyperparameter optimization as implemented in the
PRoNTo-Toolbox (v2.1) [18]. The determination of rele-
vant bSVM and MKL parameters (such as the applied
L1 regularization method or the nested hyperparameter
optimization) is following standard practice and is exten-
sively described in the publications of Schrouff et al. [17,
18]. Age, gender, and total intracranial volume were
used as covariates. Balanced Accuracy (BA) and area
under the curve of the receiver-operating characteristic
curve (ROC-AUC) were calculated to assess classifica-
tion performance and were compared to random permu-
tation testing (against 10.000 permutations).

Results
The application of the bSVM on the various types of
diffusion metrics revealed that there are no significant
differences concerning the BA or the ROC-AUC for
voxel-wise whole-brain or AAL-based ROI-labeled
analyses (data not shown here). As most studies sug-
gest, diffusion metrics are most likely altered in the
SN of PD patients, making the SN the region of high-
est interest to increase the signal-to-noise ratio for
classification [19]. Therefore, further analyses focused
on the diffusion metrics of the masked SN and will
be reported in the following (see Fig. 1). Again, there
were no significant differences regarding BA or ROC-
AUC: FA (BA: 47.83% ROC-AUC: 0.42); MD: (BA:
50.00%, ROC-AUC: 0.54); AD: (BA: 50.00%, ROC-
AUC: 0.44); RD: (BA: 50.00%, ROC-AUC: 0.56);
06LDHs: (BA: 49.47%, ROC-AUC: 0.54); 18LDHs (BA:
56.64%, ROC-AUC: 0.57); 26LDHs (BA: 53.14%, ROC-
AUC: 0.53); (BA: 55.03%, ROC-AUC: 0.58); 06LDHk
(BA: 55.25%, ROC-AUC: 0.52); 18LDHk (BA: 53.14%,
ROC-AUC: 0.53); 26LDHk (BA: 51.80%, ROC-AUC:
0.52). The results also indicate that the concatenation
of diffusion metrics via MKL did not add any relevant
information to improve the overall classification per-
formance: FA +MD + AD+RD (BA: 49.44%, ROC-
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AUC: 0.41); 06LDHs + 18LDHs + 26LDHs (BA:
56.15%, ROC-AUC: 0.60); 06LDHk + 18LDHk +
26LDHk (BA: 58.12%, ROC-AUC: 0.52). An overview
on provided diagnostic performances in displayed in
the Table 1. The comparison to random permuta-
tion testing showed that the classifications, as men-
tioned above, did not outperform pure chance.
Additionally, calculated weight maps are indicating
a random weighting distribution of voxels within
the SN used for the respective classifications (see
Fig. 2), which is in contrast to previously reported
changes of the dorsolateral portion of the SN (i. e.,
the nigrosome-1) [13].

Discussion
In this study, we demonstrated a standardized and sys-
tematic approach to potentially attain the individual dis-
crimination of PD patients from healthy controls using
DTI datasets. This approach comprised the pre-
processing of the data, the automatized selection of ap-
propriate features, and the subsequent classification.
Atkinson-Clement, Pinto, Eusebio, and Coulon [2]
already stated that “[…] they did not observe a PD in-
duced reduction of nigral FA” but also that “this obser-
vation is in contrast with some recent publications
claiming very high diagnostic accuracy, but [are] well in
line with other reports showing small or no PD induced

Fig. 1 ROCs for (I) FA (red), MD (black), RD (blue), and AD (grey) each as a single modality (bSVM) and (II) as concatenated modalities (MKL).
Based on our results, the ROCs are indicating no substantial diagnostic value. Further, the concatenation of DTI modalities yields no additional
information for this classification problem

Table 1 Overview of diagnostic performances of single modalities (bSVM) and concatenated modalities (MKL) for the SN

bSVM MKL

BA [%] ROC-AUC Sens [%] Spec [%] BA [%] ROC-AUC Sens [%] Spec [%]

FA 47.8 .42 47 48 FA + MD + AD + RD 49.4 41 44 60

MD 50.0 .54 55 42 06LDHs + 18LDHs + 26LDHs 56.1 60 54 56

AD 50.0 .44 40 47 06LDHk + 18LDHk + 26LDHk 58.1 52 56 41

RD 50.0 .54 48 41

06LDHs 49.4 .54 40 44

18LDHs 56.6 .57 49 41

26LDHs 53.1 .53 51 60

06LDHk 55.2 .52 51 56

18LDHk 53.1 .53 60 63

Besides BA and ROC-AUC. Sens and Spec are listed to enhance the transparency of reported ROC-AUC results
AD Axial diffusivity, BA Balanced accuracy, bSVM Binary Support vector machine, FA Fractional anisotropy, LDH Local diffusion homogeneity, MD Mean diffusivity,
MKL Multiple-kernel learning, RD Radial diffusivity, ROC-AUC Receiver operator characteristics area under the curve, Sens Sensitivity, Spec Specificity, SN
Substantia nigra
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nigral FA decrease”. A meta-analysis also did “not sup-
port nigral DTI metrics as a useful diagnostic marker of
PD” [19]. Our results are supporting the aforementioned
lack of evidence and should put discussions about the
diagnostic use of diffusion metrics in PD patients to rest.
The negative results of our study most likely reflect the
lacking suitability of diffusion metrics to investigate SN-
related microstructural alterations in PD. The interpret-
ation of our findings within the scope of differing DTI
acquisition schemes and MRI scanner hardware is chal-
lenging. However, a multicenter validation study by the
authors of Fox et al. [7] stated high intersite-
concordance for applied DTI metrics on different scan-
ner hardware (3 T magnetic field strength). ML-
algorithms are a more standardizable and sensitive
method to increase diagnostic accuracy and to disentan-
gle the overlap of diffusion metrics other groups re-
ported, which were only using voxel-wise mass-
univariate or manually extracted diffusion metrics for
subsequent analysis. The multivariate, compared to
mass-univariate, approach and the additional concaten-
ation of modalities should enhance the discriminatory,
and therefore, diagnostic accuracy substantially. The lack
of significant findings despite a larger sample size and a
more sensitive and sophisticated approach in this study
are further supporting the view that traditional diffusion
metrics are indeed missing any diagnostic use. Whether
DTI can be used to map individual disease progression
remains, to this point, elusive. Further methodological
improvements of diffusion-based imaging might improve
diagnostic accuracy and might, therefore, cause a recon-
sideration of our current conclusion. However, the
current MRI acquisition and analysis paradigms of DTI
measures are not of any use for investigating grey matter
alterations in PD. Further studies without substantial
methodological improvements will most likely not result
in potentially translatable advancements in improving
diagnostic accuracy or patient care. Recent research
studies which revealed that the use of free-water

corrected diffusion maps for the analysis of tissue alter-
ations might provide the opportunity for fostering the
diagnostic accuracy based on this dataset [14]. However,
ML analyses of neuroimaging data is a fruitful approach
in supporting clinical decision making and will be more
frequently applied in the future [8]. The objective of our
study was to investigate the role of ML-based algorithms
on diffusion metrics to identify PD patients correctly.
Our study did not provide any evidence to support the
hypothesis that DTI-based analysis, in particular of the
SN, could be used to resolve the issue of correctly classi-
fying study participants independent of the phenotype.
An advantage of our methodology is that by calculating
weighting maps, we can additionally validate our find-
ings: Previous literature stated that the dorsolateral parts
of the SN are the ones that are particularly affected at
the beginning of the disease [19]. Weighting maps
should indicate the higher relevance of these specific
areas for classification performance (which is in contrast
to our findings, see Fig. 2). Here, this advantage is of
even higher importance as further partitioning of the SN
appears, within the scope of the already small region and
the present image resolution, not to be feasible.

Conclusion
Our findings are well in line with previous publications
using conventional analyses. Further studies without
substantial methodological improvements (e. g., utilizing
more complex diffusion models) will most likely not re-
sult in potentially translatable advancements in improv-
ing diagnostic accuracy or patient care.
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diffusion metrics in the occipital portions of the SN [13]. However, interpretability is limited e.g. due to the small ROI size
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