openheart Risk and protective factors for atrial fibrillation after cardiac surgery and valvular interventions: an umbrella review of meta-analyses

Emmanouil Charitakis ⁽¹⁾, ¹ Dimitrios Tsartsalis,^{2,3} Dafni Korela,⁴ Maria Stratinaki,⁴ Farkas Vanky,¹ Efstratios I Charitos,⁵ Joakim Alfredsson,¹ Lars O Karlsson,¹ Emmanouil Foukarakis,⁴ Constantina Aggeli,³ Costas Tsioufis,³ Håkan Walfridsson,¹ Elena Dragioti⁶

ABSTRACT

Additional supplemental material is published online only. To view, please visit the journal online (http://dx.doi.org/10. 1136/openhrt-2022-002074).

To cite: Charitakis E, Tsartsalis D, Korela D, *et al.* Risk and protective factors for atrial fibrillation after cardiac surgery and valvular interventions: an umbrella review of metaanalyses. *Open Heart* 2022;9:e002074. doi:10.1136/ openhrt-2022-002074

Received 20 June 2022 Accepted 16 August 2022

Check for updates

© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

For numbered affiliations see end of article.

Correspondence to

Dr Emmanouil Charitakis; emmanouil.charitakis@liu.se **Objective** Postoperative atrial fibrillation (POAF) is a common complication affecting approximately one-third of patients after cardiac surgery and valvular interventions. This umbrella review systematically appraises the epidemiological credibility of published meta-analyses of both observational and randomised controlled trials (RCT) to assess the risk and protective factors of POAF. **Methods** Three databases were searched up to June 2021. According to established criteria, evidence of association was rated as convincing, highly suggestive, suggestive, weak or not significant concerning observational studies and as high, moderate, low or very low regarding RCTs. **Results** We identified 47 studies (reporting 61

associations), 13 referring to observational studies and 34 to RCTs. Only the transfemoral transcatheter aortic valve replacement (TAVR) approach was associated with the prevention of POAF and was supported by convincing evidence from meta-analyses of observational data. Two other associations provided highly suggestive evidence, including preoperative hypertension and neutrophil/ lymphocyte ratio. Three associations between protective factors and POAF presented a high level of evidence in meta-analyses, including RCTs. These associations included atrial and biatrial pacing and performing a posterior pericardiotomy. Nineteen associations were supported by moderate evidence, including use of drugs such as amiodarone, b-blockers, glucocorticoids and statins and the performance of TAVR compared with surgical aortic valve replacement.

Conclusions Our study provides evidence confirming the protective role of amiodarone, b-blockers, atrial pacing and posterior pericardiotomy against POAF as well as highlights the risk of untreated hypertension. Further research is needed to assess the potential role of statins, glucocorticoids and colchicine in the prevention of POAF. **PROSPERO registration number** CRD42021268268.

INTRODUCTION

Acute or new-onset atrial fibrillation (AF) in the immediate postoperative period is

WHAT IS ALREADY KNOWN ON THIS TOPIC

- ⇒ Postoperative atrial fibrillation (POAF) is a common complication after cardiac surgery and valvular interventions.
- ⇒ Numerous risk factors for POAF have been identified, but there is no credibility assessment.

WHAT THIS STUDY ADDS

⇒ Only a few identified risk factors and protective factors of POAF were supported by high-level evidence; namely, amiodarone, b-blockers, atrial pacing and posterior pericardiotomy against POAF as protective factors and untreated hypertension as a risk factor.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR POLICY

- \Rightarrow This study provides a broad picture of the nongenetic risk factors associated with the risk for POAF and evaluates their level of evidence across published meta-analyses.
- \Rightarrow These findings allow for robust classifications that can be used for future policymaking and future studies on POAF prevention.

classified as postoperative AF (POAF).¹ POAF is a common complication affecting over 30% of patients following cardiac surgery or valvular intervention.^{2 3} AF episodes after cardiac surgery are typically brief and selfterminating,⁴ with the highest incidence occurring between days 2 and 4 after cardiac surgery.⁵ POAF is an independent risk factor for numerous adverse events, including increased risk of stroke, prolonged hospital stays and a doubling of all-cause mortality.^{3 6}

Identifying and targeting modifiable risk factors may reduce the risk of POAF. However, risk prediction for POAF is complex. Propensity for POAF is due to a combination of preoperative, perioperative and postoperative factors.³ Predisposing factors such as age,

1

left ventricular dysfunction, hypertension and left atrial enlargement are strongly associated with POAF.⁵⁷ Local inflammation associated with surgical lesions and postoperative pericarditis,^{3 8 9} prolonged mechanical ventilation, pulmonary infections and electrolyte imbalances also appear to be linked to POAF.^{4 5 7} Moreover, adrenergic activation seems to be involved: the use of inotropic drugs increases the risk for POAF, while b-blockers reduce this risk.^{5 10}

Although numerous meta-analyses on risk factors for POAF have been published, there is still no complete and concise summary of the research. Thus, the prevention and management of POAF after cardiac surgery and cardiac interventions remain a major challenge.

We aimed to summarise the existing evidence on risk and protective factors associated with POAF among published meta-analyses through an umbrella review. An umbrella review is a systematic collection, evaluation and synthesis of the existing systematic reviews and metaanalyses on a specific topic.¹¹ It can be applied to provide a comprehensive picture of risk and protective factors for a specific disease and has already been implemented in several clinical entities.^{12 13} Using standardised methods used in umbrella review, we ranked the evidence from existing meta-analyses on POAF according to sample size, strength of the association and the presence of various biases.^{11 14}

METHODS

Data selection, search strategy and selection criteria

In this study, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses¹⁵ reporting guidelines and the Meta-Analysis of Observational Studies in Epidemiology guidelines¹⁶ (online supplemental appendix 1) were followed. An a priori protocol was registered in the PROSPERO database.

Bibliographic databases (PubMed, Web of Science, Cochrane review and Cochrane database of clinical trials) were searched from inception through 28 May 2021, to identify systematic reviews with meta-analysis of observational or randomised controlled trials (RCT) examining associations between non-genetic risk or protective factors and risk for POAF. The search algorithm used was broad to identify all eligible studies with terms related to AF and meta-analysis and is presented in online supplemental appendix 2. Reference lists from eligible studies were also hand searched to identify additional studies.

Two researchers (DK and MS) independently searched for eligible articles. The same researchers examined the full texts of the recovered articles for eligibility. Any discrepancies were resolved through discussions with a third researcher (EC).

We included only meta-analyses of observational studies with a cohort, case–control or nested case–control study design and RCTs. Whenever multiple meta-analyses assessed the same risk or protective factor, we included only the meta-analysis with more studies.¹⁷ All reported outcomes were considered for inclusion.

We excluded meta-analyses with (1) study designs other than the ones stated before (eg, cross-sectional), (2) a non-systematic selection of the included studies, or non-systematic reviews, (3) examining genetic variants of AF, (4) studies published in non-English language, (5) insufficient data for quantitative synthesis or (6) studyspecific effect estimates for continuous exposures were reported as mean difference rather than relative risk (RR) measures, such as OR, HR, RR. The reasons for exclusion after a full-text review are presented in the supplementary material (online supplemental etable 1, Appendix 3).

Data extraction

Data extraction was performed independently by two researchers (DK and MS) using a predefined extraction form (EXCEL 365). Any disagreements were resolved through discussion. The extracted data included information on the first author's name, year of publication, journal, standard identifier (DOI), number of component studies, total sample size and the risk or protective factors assessed, with the RR estimate (such as OR, HR, RR), alongside with their 95% CIs. For each component study, we collected the first author's name, year of publication, study design, sample size (exposure and nonexposure) and the RR estimates (ie, HR, OR, RR) with the corresponding 95% CI.

Quality assessment

The RoB per included meta-analysis was assessed using the MeaSurement Tool to Assess systematic Reviews (AMSTAR2) tool (available at https://amstar.ca/ Amstar-2.php). This tool appraises randomised and nonrandomised studies and evaluates criteria within 10 original domains. Two reviewers (DT and MS) performed the quality assessment and checked by a third investigator in case of disagreement (EC).¹⁸

Data synthesis and analysis

We used standardised methods and state-of-the-art approaches for data synthesis and analysis in this umbrella meta-analysis.¹³ ¹⁹ Specifically, the effect size (ES) of different studies reported in each meta-analysis were extracted, for each association, and the pooled ESs and 95% CIs were recalculated, using random-effects models.²⁰ This was because of the expected heterogeneity, in particularly observational studies.²⁰

Between-study heterogeneity was evaluated using the I² metric.²¹ I² varies between 0% and 100% and measures the variability of ES due to heterogeneity rather than sampling error.²¹ An I² value greater than 50% corresponds to substantial heterogeneity. The small study effect bias (ie, whether small studies tend to yield more significant ES than the larger ones) was evaluated using the Egger regression asymmetry test.²² A p value <0.10

Arrhythmias and sudden death

was considered to provide adequate evidence for small study effects.

Finally, the excess significance bias was measured to evaluate whether more studies had statistically significant results than anticipated.²³ The anticipated number of statistically significant studies per association was calculated by adding the statistical power estimates for each component study. The ES of the larger study was used (ie, the study with the smallest SE) in each meta-analysis to calculate the power of each study using a non-central t distribution. A p value ≤ 0.10 was considered significant for excess significance bias.²³ All analyses were performed using Stata V.17.0 (StataCorp, College Station, Texas).

Assessment of epidemiological credibility

Relevant associations of risk and protective factors with POAF derived from observational studies were classified into five categories according to the evidentiary power of their associations: convincing (class I), highly suggestive (class II), suggestive (class III), weak (class IV) and not significant (NS) (online supplemental etable 1, appendix 4). Following previous umbrella reviews,¹³ we considered as convincing the associations with>1000 cases a highly significant association (p-value<1 \times 10⁻⁶), no large between-study heterogeneity, no evidence of excess significance bias or small study effects, and a 95% prediction interval excluding the null value. Highly suggestive evidence needed >1000 cases, a highly significant association (p value $<1 \times 10^{-6}$ by random-effects model), and a statistically significant effect in the largest study. Suggestive evidence required>1000 cases and p value <0.001 by random-effects model. Associations with a p value >0.05in the random-effects meta-analysis were considered nonsignificant.

In RCTs, the credibility of evidence was categorised according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) levels of evidence (GLE) using a standardised set of rules.^{24 25} The evaluated areas included: (1) imprecision, by the sample size in the pooled analysis (if 100-199 participants, GLE was downgraded by one level; if <100 participants, downgraded by two levels); (2) RoB of trials, by the proportion of participants in the pooled measured to have low RoB for randomization and observer blinding (if <75% of participants had low RoB or RoB not reported, GLE was downgraded by one level); (3) inconsistency, by heterogeneity (if $I^2 > 75\%$, downgraded by one level) and (4) RoB of the systematic review, based on AMSTAR 2 questionnaire (if moderate quality, downgraded by one level; if low or critically low quality, downgraded by two levels). Then, the associations were graded as high, moderate, low or very low by GLE (online supplemental etable 2, appendix 4).

Patient and public involvement

No participants were involved in the design, conduct, reporting, or dissemination plans of the research question or outcome measures.

Figure 1 PRISMA flowchart diagram. PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

RESULTS

Literature search

The initial search yielded 4179 publications. After evaluating titles and abstracts, 128 eligible articles were identified. Eighty-one articles were excluded after a full-text review (online supplemental etable 1, appendix 3), and 47 articles were subsequently included for analysis (13 metaanalyses of observational studies and 34 meta-analyses of RCTs, reported overall 49 associations; figure 1; online supplemental etable 1, appendix 5).

Meta-analyses of observational studies

The median number of meta-analyses included in metaanalyses of observational studies was 7.5 (IQR=4.3– 11.8), the median number of participants was 4349 (IQR=1219–30 273) and the median number of cases were 1036 (IQR=343–7373).

In the meta-analyses of observational studies, 10 of the 13 studied associations (77%) had a nominally statistically significant effect (p≤0.05) under the random-effects models, and three of those (23%) achieved a p value <10⁶. Seven associations (54%) had more than 1000 cases per association. Significant heterogeneity (I²>50%) was found in eight associations (62%), and only three associations (23%) had a 95% prediction interval that excluded the null value. In 10 associations (77%), the ES of the largest study had a nominally statistically significant effect (p≤0.05). Finally, small study effects were found for two associations (15%), and excess significance bias was found for four (31%).

The quality of meta-analyses of observational studies assessed by AMSTAR2 was high in five meta-analyses, moderate in five and low or critically low in three (table 1; online supplemental etable 1, appendix 5).

When the criteria for the credibility of evidence were applied, one (8%) association presented convincing evidence (table 1; online supplemental etable 1, appendix 5) concerning the use of non-transfemoral transcatheter aortic valve replacement (TAVR) versus transfemoral TAVR. Two other associations (15%) presented highly suggestive evidence for risk factors:

Table 1 Predic	tors for postopera	tive AF, in meta-analy	yses	s of observation	onal studi	ies									
		Exposed/unexposed					c	PI include	2	L	C L	LS.	L	CES2	AMSTAR 2
Author, year	Predictor	as included in MA	¥	N/N	Metric	ES (95% CI)	r	null value	<u>.</u>	SSE	ESB	sign	Ŀ	(n>1000)	quality
Angsubhakorn 2020	Non-transfemoral transcatheter AVR	Transfemoral transcatheter AVR or non-transfemoral AVR	2	1262/5681	RR	2.95 (2.43 to 3.58)	8.2×10–28	No	40.62	No	No	Yes	_	_	Critically low
Liu 2020	Neutrophil/lymphocyte ratio	High or low neutrophil/ lymphocyte ratio	12	1330/9262	OR	1.39 (1.26 to 1.53)	1.9×10–11	No	95.15	No	Yes	Yes	_	=	High
Zhou 2017	Preoperative hypertension	Preoperative hypertension or normotension	25	92658/130087	RR	1.07 (1.0.5 to 1.09)	9.1×10–15	No	54.88	No	Yes	Yes	=	=	Moderate
Litton 2012	Preoperative BNP/NT- proBNP	High BNP/NT-proBNP or Iow BNP/NT-proBNP	4	530/1115	OR	2.89 (1.04 to 8.04)	0.041	Yes	91.23	No	No	Yes	≥	2	Critically low
Phan 2016	Obesity	Obese or not	32	16608/86984	OR	1.21 (1.06 to 1.38)	0.006	Yes	89.36	No	Yes	No	≥	N	High
Liu 2018	Blood transfusion	Blood transfusion or not	œ	7491/31069	OR	1.55 (1.08 to 2.21)	0.016	Yes	97.09	No	Yes	Yes	≥	Ν	High
Qaddoura 2014	OSAS	OSAS or not	7	264/700	OR	1.84 (1.14 to 2.96)	0.012	Yes	51.69	No	No	Yes	≥	N	Moderate
Sun 2020	RAASi	RAASi use in TAVR or not	2	280/1532	RR	0.73 (0.59 to 0.91)	0.004	NP	0.45	NP	No	Yes	≥	N	Moderate
Chen 2020	CHA2DS2-VASC SCORE	CHA2DS2-VASc≥2 or CHA2DS2-VASc<2	œ	NA/NA	OR	1.46 (1.25 to 1.72)	3.2×10–6	Yes	0.000	Yes	NA	Yes	≥	=	Moderate
Athanasiou 2004	Off-pump elderly	Off-pump or not	8	809/3017	OR	0.70 (0.51 to 0.95)	0.022	Yes	49.07	No	NP	Yes	N	N	Critically low
Guan 2020	Off-pump	On- or off-pump CABG	13	6431/31039	OR	0.94 (0.79 to 1.12)	0.515	Yes	0.073	No	NP	No	NS	NS	High
Yousuf Salmasi 2020	Mini sternotomy	Mini-sternotomy or right anterior thoracotomy	5	616/2234	OR	0.67 (0.25 to 1.78)	0.425	Yes	91.00	No	No	No	NS	NS	Moderate
Chen 2019	RAASi	RAASi use in cardiac surgery or not	Ħ	7018/27885	OR	1.06 (0.93 to 1.2)	0.368	Yes	67.29	Yes	ЧN	Yes	NS	NS	High
CHADS VASc: conge OSAS: obstructive sl significance bias; l ² , i number of observed s	stive heart failure, hyper eep apnea syndrome; A reterogeneity; K, numbe studies is less than the	rtension, age >75 years, di F, atrial fibrillation; AVR, ao ar of studies for each factor expected; NR, not reported	abete nrtic v; r; LS, d; NT-	s, stroke, vascula alve replacement; largest study with proBNP, N-termir	rr disease, a BNP, brain significant al pro B-nat	ge >65, female sex. natriuretic peptide; CE effect; n, number of c triuretic peptide; PI, pr	;, class of evide ases; N, total n ediction interva	ance; CES, cla umber of coh II; RCT, randc	ass of ev orts per mised c	idence s factor; N ontrolled	ensitivity A, not a trial; RF	/ analysi ssessab î, risk ra	is; ES, e le; NP, tio; SSF	effect size; E not pertinen E, small stud	SB, excess t, because the y effects.

preoperative hypertension and neutrophil/lymphocyte ratio. The remaining seven (54%) statistically significant associations between risk or protective factors and POAF presented weak evidence (table 1; online supplemental etable 1, appendix 5), while three associations (23%) were NS (table 1; online supplemental etable 1, appendix 5). The three factors with convincing and highly suggestive evidence in the principal analysis did not change their class of evidence when the criterium with greater than 1000 cases per association was excluded (table 1).

Meta-analyses of randomised studies

The median number of studies included in meta-analyses of RCTs was 10 (IQR=4.8–13), the median number of cases was 344 (IQR=201–707) and the median number of participants was 1692 (IQR=834–2526) (table 2; online supplemental appendix).

Overall, 30 of the 48 (63%) associations reported a nominally significant summary result at p<0.05 (19 had p≤0.001). Twenty-one (44%) did not show considerable heterogeneity (I2<50%), and only seven associations (15%) had a 95% prediction interval that excluded the null value. Nineteen (40%) showed small study effects, and 21 (44%) showed excess significance bias. The ES of the largest study had a nominally statistically significant effect (p≤0.05) in 19 (40%) associations.

The quality of included meta-analyses of RCTs was scored as high in 20, moderate in 5 and low or critically low in 9 (online supplemental appendix 5).

By applying the credibility criteria for meta-analyses of RCTs, three (6%) associations between protective factors and POAF presented a high GLE (tables 2 and 3; online supplemental etable 1, appendix 5): atrial or biatrial pacing and the performance of a posterior pericardiotomy. Twenty associations (42%) of protective factors and the risk for POAF presented a moderate GLE, for instance, the use of amiodarone, beta-blockers, colchicine and glucocorticoid as well as TAVR as compared with surgical aortic valve replacement (SAVR) (tables 2 and 3; online supplemental etable 1, appendix 5). The remaining seven (14%) statistically significant associations between protective factors and POAF presented low GLE, while 18 associations (38%) were not statistically significant (table 2; Online supplemental etable 1, appendices 5 and 6).

DISCUSSION

This study reviewed 47 meta-analyses of observational and randomised design and found 40 significant associations of preoperative and postoperative risk and protective factors for POAF. Few of these were supported by convincing evidence or high GLE evidence, namely, the transfemoral TAVR versus non-transfemoral approach, the use of atrial or biatrial pacing and the choice of posterior pericardiotomy.

This study is the first umbrella review that systematically assesses the potential risk and protective factor

associated with POAF across broad spectrum of metaanalyses of observational and randomised studies and grade the evidence by using well-established criteria of credibility.^{19 25 26} Umbrella review methods have been previously used to assess the associations between other adverse health conditions with potential risk and protective factors, such as AF,¹³ adiposity²⁷ and vitamin D concentration.²⁶ This method is appropriate for a research area that is undoubtedly complex and ambiguous.³ ⁶ The large number of included patients (more than 400 000) in combination with the high number of cases per association enabled robust classifications. Furthermore, the AMSTAR 2 tool for quality assessment of the included meta-analyses allowed for a confident interpretation of our results. Hence, our proposed grading needs to be considered when planning future studies on preventive models of POAF.

POAF is a common complication after repair of severe aortic stenosis.²⁸ Data from a meta-analysis of observa-tional studies²⁹ showed that non-transfemoral TAVR versus transfemoral TAVR increases the risk of POAF threefold, a finding supported by convincing evidence. Contrary to the transfemoral approach, patients undergoing transapical TAVR require a pericardiotomy and several studies have shown that pericardial injury can lead to postoperative inflammation and the subsequent development of POAF. Furthermore, meta-analyses of RCTs³⁰ for patients at low and intermediate surgical risk showed a significant risk reduction for POAF using TAVR compared with SAVR. This finding is to be expected since an open procedure is associated with more postoperative inflammation, enhanced sympathetic stimulation and oxidative stress as opposed to a minimally invasive procedure such as TAVR.²⁸³¹

One of the modifiable preoperative factors associated with POAF, supported by highly convincing evidence, was hypertension.³² Hypertension is a well-established risk factor for AF,³³ and its adequate management during the preoperative period may protect against POAF by reducing both high left ventricular filling pressures and easing atrial stretch.³²⁻³⁴

In our study, the most critical perioperative protective factors for POAF prevention, that did not involve medical therapy, were atrial or biatrial pacing and posterior pericardiotomy, both supported by high GLE.³⁵ Overdrive atrial pacing might prevent POAF by reducing the risk of bradycardia and bradycardiamediated atrial ectopic beats.³ In the meta-analysis by Ruan *et al*, 35 the reduction in POAF risk with moderate heterogeneity and high quality according to AMSTAR 2 was meaningful. Posterior pericardiotomy is a riskreducing procedure for postoperative pericarditis by making an incision in the posterior pericardium and connecting the pericardial to the left pleural space.³ We found that about two-thirds as many patients undergoing cardiac surgery were protected from POAF when posterior pericardiotomy was used compared with not, at the expense of more pleural effusions.³⁶

Table 2 Stati:	stical significant pre	edictors for postoperati	ve A	F, in meta	1-analyse	s of RCTs									
Author, year	Predictor	Exposed/unexposed as included in MA	¥	N/n	Metric	ES (95% CI)	٩	PI include null value	l ² %	SSE	ESB	LS sign	High RoB	GLE	AMSTAR 2 quality
Ruan 2020	Atrial pacing	Atrial pacing or not	21	511/2002	OR	0.57 (0.43 to 0.76)	0.0002	Yes	35.04	No	Yes	No	≤25%	High	High
Ruan 2020	Bi-atrial pacing	Bi-atrial pacing or not	10	235/1014	OR	0.44 (0.26 to 0.76)	0.002	Yes	57.55	No	Yes	No	≤25%	High	High
Hu 2016	Posterior pericardiotomy	Posterior pericardiotomy or not	10	329/1648	OR	0.36 (0.23 to 0.56)	0.0000	Yes	56.36	No	Yes	Yes	≤25%	High	High
Liu 2019	Dexmedetomidine	Dexmedetomidine use or not	13	335/1684	OR	0.70 (0.49 to 0.98)	0.037	Yes	29.82	No	No	No	>25%	Moderate	High
Guerra 2017	Ranolazine	Ranolazine use or not	e	176/700	OR	0.30 (0.13 to 0.69)	0.004	Yes	66.00	No	No	Yes	>25%	Moderate	High
Patti 2015	Statin pre-treatment	Statin pre-treatment or not	₽	303/1106	OR	0.41 (0.32 to 0.53)	0.000	Yes	0.00	No	NP	Yes	≤25%	Moderate	High
Putzu 2016	Perioperative statin therapy	Perioperative statin therapy or not	19	1255/4737	OR	0.53 (0.35 to 0.81)	0.003	Yes	90.90	No	Yes	Yes	>25%	Moderate	High
Guo 2014	PUFAs alone and in combination therapy with vitC+vitE	PUFAs alone and in combination therapy with vitC+vitE or not	÷	956/3137	OR	0.61 (0.44 to 0.86)	0.005	Yes	68.84	Yes	Yes	N	>25%	Moderate	Moderate
Guo 2014	EPA/DHA ratio1:2	EPA/DHA ratio1:2 or 1:2	÷	956/3137	OR	0.61 (0.44 to 0.86)	0.005	Yes	68.84	Yes	Yes	No	>25%	Moderate	Moderate
Gillespie 2005	Amiodarone	Amiodarone or not	15	762/2941	OR	0.5 (0.42 to 0.60)	0.0000	No	0.00	No	NP	Yes	≤25%	Moderate	Moderate
DiNicolantonio 2014	Carvedilol use	Carvedilol or metoprolol use	4	135/497	OR	0.50 (0.28 to 0.90)	0.020	Yes	45.88	No	No	No	≤25%	Moderate	High
Li 2015	Landiolol	Landiolol use or not	6	217/807	RR	0.40 (0.30 to 0.53)	0.0000	No	20.15	Yes	Yes	Yes	>25%	Moderate	High
Ho 2009	Hydrocortisone	Hydrocortisone use or not	18	455/1509	RR	0.74 (0.63 to 0.86)	0.0002	No	0.00	No	No	Yes	>25%	Moderate	High
Geng 2017	Perioperative antioxidant therapy	Perioperative antioxidant therapy use or not	÷	464/1544	RR	0.55 (0.42 to 0.72)	0.0000	Yes	54.44	Yes	Yes	Yes	>25%	Moderate	High
Lennerz 2017	Colchicine	Colchicine use or not	5	354/1744	RR	0.66 (0.52 to 0.85)	0.001	Yes	24.68	No	No	No	>25%	Moderate	Moderate
Liu 2014	Prophylactic NAC use	Prophylactic NAC use or not	10	253/1026	OR	0.56 (0.38 to 0.83)	0.004	Yes	14.06	No	No	No	≤25%	Moderate	Critically low
Langlois 2017	PUFA	PUFA supplementation or not	17	1074/3614	OR	0.67 (0.49 to 0.90)	0.008	Yes	62.14	No	Yes	No	>25%	Moderate	High
Liu 2014	Low dose glucocrorticoids	Low dose glucocrorticoids use or not	2	285/843	RR	0.71 (0.55 to 0.92)	0.008	Yes	31.82	No	No	Yes	>25%	Moderate	High
Liu 2015	Medium dose glucocrorticoids	Medium dose glucocrorticoids use or not	19	1915/5968	뚪	0.76 (0.60 to 0.96)	0.020	Yes	49.57	Yes	Yes	No	>25%	Moderate	High
Liu 2015	Glucorticoids	Glucorticoids use or not	27	2255/7019	RR	0.77 (0.66 to 0.90)	0.001	Yes	40.08	Yes	Yes	No	>25%	Moderate	High
Khan 2020	TAVR in patients with aortic stenosis with low risk	TAVR or SAVR	e	563/2633	OR	0.13 (0.09 to 0.18)	0.0000	Yes	48.84	N	N	Yes	>25%	Moderate	High
Khan 2020	TAVR in patients with aortic stenosis with intermediate risk	TAVR or SAVR	2	812/3692	OR	0.23 (0.16 to 0.33)	0.0000	dN	76.17	N	N	Yes	>25%	Moderate	High
Khan 2020	TAVR in patients with low and intermediate risk	TAVR or SAVR	4	1375/6325	OR	0.17 (0.12 to 0.24)	0.0000	No	82.84	Yes	No	Yes	>25%	Moderate	High
Chatterjee 2013	Oral amiodarone	Oral amiodarone or not	œ	472/1906	RR	0.58 (0.47 to 0.72)	0.0000	No	36.28	No	No	Yes	≤25%	Low	Low
Chatterjee 2013	IV amiodarone	IV amiodarone or not	15	598/2044	RR	0.57 (0.43 to 0.75)	0.0001	Yes	68.26	Yes	Yes	Yes	≤25%	Low	Low
Chatterjee 2013	Preoperative amiodarone	Preoperative amiodarone or not	÷	585/2231	RR	0.55 (0.46 to 0.64)	0.0000	No	18.49	No	No	Yes	≤25%	Low	Low
Chatterjee 2013	Peri/postoperative amiodarone p	Peri/postoperative amiodarone or not	12	482/1717	ЯЯ	0.55 (0.38 to 0.80)	0.001	Yes	57.85	Yes	Yes	Yes	≤25%	Low	Low
															Continued

6

Table 2 Con	itinued														
Author, year	Predictor	Exposed/unexposed as included in MA	- ×	N.	Metric	ES (95% CI)	٩	PI include null value	² %	SSE	ESB	LS sign	High RoB	GLE	AMSTAR 2 quality
Willer 2005	Magnesium	Magnesium administration or not	20	77/2490	OR	0.53 (0.38 to 0.74)	0.0002	Yes	59.67	Yes	Yes	No	>25%	Low	Critically low
Wiesbauer 2007	B-blockers	B-blockers use or not	26 1	019/3959	OR	0.38 (0.29 to 0.49)	0.0000	No	45.04	Yes	Yes	Yes	>25%	Low	Critically low
/ioli 2014	Antioxidants	Antioxidants use or not	15 4	81/1738	RR	0.58 (0.45 to 0.76)	0.0001	Yes	54.39	Yes	Yes	No	>25%	Low	Critically low
AF, atrial fibrillation; and Evaluation; I ² , h number of observed surgical aorta valve	CE, class of evidence; DHA eterogeneity, K, number of s studies is less than the exp replacement; SSE, small stu	 docosahexaenoic acid; EPA, eicos; studies for each factor; LS, largest st sected; NR, not reported; OSAS, ost idy effects; TAVR, transcatheter aort 	apentae tudy wi structive ta valve	anoic acid; E th significant s sleep apne replacemeni	S, effect size : effect; n, nu a syndrome; t; vit, vitamin	; ESB, excess significant imber of cases; N, total n PI, prediction interval; PI.	e bias; GLE, (umber of cohc JFAs, polyuns;	GRADE level o ort per factor; l aturated fatty	of evidence NA, not ass acids; RCT	; GRADE, sessable; ; randomi	Grading c NAC, N-a ised contr	of Recom cetylcyst olled trial	mendatio eine; NP, I ; RoB, risl	ns Assessmen not pertinent, t < of bias; RR, r	t, Development ecause the isk ratio; SAVR,

 Table 3
 Summary of associations with high
 epidemiological credibility of risk and protective factors with the risk of postoperative atrial fibrillation

<u> </u>	
Level of credibility	Associations
Meta-analyses including Observational studies	
Convincing	Transfemoral transcatheter AVR
High suggestive	Preoperative hypertension, high neutrophil/lymphocyte ratio
Grade level of evidence	
Meta-analyses including RCTs	
High	Atrial pacing, biatrial pacing, posterior pericardiotomy
Medium	Dexmedetomidine, glucocorticoids (general, low, medium doses), hydrocortisone, ranolazine, statin (pre-treatment and perioperative), antioxidant, PUFAs (alone or in combinations with Vitamin C and E), amiodarone, colchicine, TAVR compared with SAVR, landiolol, carvedilol, prophylactic NAC use
AVR, aortic valve replacement; polyunsaturated fatty acids; RC	NAC, N-acetylcysteine; PUFAs, T, randomised controlled trial;

SAVR, surgical aorta valve replacement; TAVR, transcatheter aorta valve replacement.

More than 10 pharmacological treatments have been studied as preventive treatment options against POAF. Drugs provided statistically significant prevention of POAF in meta-analyses of RCTs with at least moderate GLE included amiodarone,³⁷ statins,³⁸ colchicine,³⁹ b-blockers (carvedilol and landiolol)^{40 41} and glucocorticoids.⁴² Amiodarone and b-blockers are established treatments for AF and POAF, recommended in the current European Society of Cardiology (ESC) guidelines (Class I, level of evidence A), 33 a recommendation supported by our results. However, the use of statins, colchicine and glucocorticoids can also be considered, even if they are not directly recommended by the current ESC guidelines.³³ Due to their anti-inflammatory actions,³ these medications may play a protective role against POAF in the preoperative management of patients undergoing cardiac surgery, as shown by our results based on metaanalyses of RCTs, supported by a moderate level of evidence.

Furthermore, ranolasine appears to have a protective role against POAF. However, the results are based on meta-analysis with few events.⁴³ Controversial results have also been shown for the effects of fish oils^{44 45} and antioxidants^{46 47} and should not be broadly recommended before cardiac surgery, according to our analysis.

In this study, we described the broad picture of risk and protective factors that have been studied for POAF. However, our study has several limitations that should be reported. First, asymmetry and excess significance

Open Heart

tests offer bias clues but not definitive proof. Second, even we appraised the quality of the included metaanalyses, we did not assess the quality of their offstudies. Component studies should be qualitatively assessed in the original meta-analyses. Third, although we evaluated many risks and protective factors, there might be other factors of POAF that have not yet been evaluated in published meta-analyses, such as chronic obstructive pulmonary disease and severe heart failure. Fourth, the associations supported by convincing or highly suggestive evidence based on observational data can be considered strong but are not evidence of causality. Fifth, the grading criteria applied in the credibility assessment are not validated in empirical studies. However, they are proposed by expert panels of wellrenowned epidemiologists.^{25 48}

CONCLUSIONS

Although POAF is a common complication after cardiac surgery and has been thoroughly studied over the last decades, only 6 of the 61 (9.8%) associations reported here were supported by high-level evidence. While some associations might be genuine, there is still a degree of uncertainty. In our study, we were able to confirm the protective role of TAVR versus non-TAVR or SAVR, along with the protective role of amiodarone, B-blockers, atrial pacing and posterior pericardiotomy against POAF, and the risk of untreated hypertension. In addition, our analvsis suggests that statins, glucocorticoids and colchicine may play a role in preventing POAF. Further investigation by meta-analyses of individual participant data may facilitate the study of sources of between-study heterogeneity and identify risk and protective factors of POAF in specific subpopulations.⁴⁹

Author affiliations

¹Department of Cardiology and Department of Health, Medicine and Caring Sciences, Linköping University, Linkoping, Sweden

²Department of Emergency Medicine, Hippokration Hospital, Athens, Greece ³First Department of Cardiology, Hippokration Hospital, Athens Medical School, Athens, Greece

⁴Department of Cardiology, Venizeleio General Hospital, Heraklion, Greece ⁵Department of Cardiac Surgery, Kerckhoff Hospital, Bad Nauheim, Hessen, Germany

⁶Pain and Rehabilitation Centre and Department of Health, Medicine and Caring Sciences, Linköping University, Linkoping, Sweden

Contributors EC, DT and ED designed the study. MS and DK performed a comprehensive screening of the literature, selected the studies included in the meta-analysis and abstracted the data items. ED and DT performed the statistical analysis. EC drafted the manuscript and is the guarantor of the paper. EC, ED, DT, MS, DK, LOK, FV, EIC, JA, EF, CA, CT, and HW interpreted the results and edited the manuscript critically. All the co-authors have read and accepted this version of the manuscript.

Funding Emmanouil Charitakis has received funding from ALF grants (County Council of Östergötland) RÖ818141.

Competing interests None declared.

Patient consent for publication Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. The datasets used and/or analyzed during the current study are available from the corresponding author.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD

Emmanouil Charitakis http://orcid.org/0000-0002-2514-5324

REFERENCES

- Lubitz SA, Yin X, Rienstra M, et al. Long-term outcomes of secondary atrial fibrillation in the community: the Framingham heart study. *Circulation* 2015;131:1648–55.
- 2 Jørgensen TH, Thyregod HGH, Tarp JB, et al. Temporal changes of new-onset atrial fibrillation in patients randomized to surgical or transcatheter aortic valve replacement. Int J Cardiol 2017;234:16–21.
- 3 Dobrev D, Aguilar M, Heijman J, et al. Postoperative atrial fibrillation: mechanisms, manifestations and management. Nat Rev Cardiol 2019;16:417–36.
- 4 Funk M, Richards SB, Desjardins J, et al. Incidence, timing, symptoms, and risk factors for atrial fibrillation after cardiac surgery. *Am J Crit Care* 2003;12:424–33.
- 5 Mathew JP, Fontes ML, Tudor IC, *et al*. A multicenter risk index for atrial fibrillation after cardiac surgery. *JAMA* 2004;291:1720–9.
- 6 Greenberg JW, Lancaster TS, Schuessler RB, et al. Postoperative atrial fibrillation following cardiac surgery: a persistent complication. *Eur J Cardiothorac Surg* 2017;52:665–72.
- 7 Aranki SF, Shaw DP, Adams DH, et al. Predictors of atrial fibrillation after coronary artery surgery. current trends and impact on hospital resources. *Circulation* 1996;94:390–7.
- 8 Bruins P, te Velthuis H, Yazdanbakhsh AP, et al. Activation of the complement system during and after cardiopulmonary bypass surgery: postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. *Circulation* 1997;96:3542–8.
- 9 Hak Łukasz, Myśliwska J, Wieckiewicz J, et al. Interleukin-2 as a predictor of early postoperative atrial fibrillation after cardiopulmonary bypass graft (CABG). J Interferon Cytokine Res 2009;29:327–32.
- 10 Shantsila E, Watson T, Lip GYH. Atrial fibrillation postcardiac surgery: changing perspectives. *Curr Med Res Opin* 2006;22:1437–41.
- 11 Ioannidis JPA. Integration of evidence from multiple meta-analyses: a primer on umbrella reviews, treatment networks and multiple treatments meta-analyses. CMAJ 2009;181:488–93.
- 12 Bellou V, Belbasis L, Tzoulaki I, et al. Environmental risk factors and Parkinson's disease: an umbrella review of meta-analyses. *Parkinsonism Relat Disord* 2016;23:1–9.
- 13 Belbasis L, Mavrogiannis MC, Emfietzoglou M, *et al.* Environmental factors, serum biomarkers and risk of atrial fibrillation: an exposure-wide umbrella review of meta-analyses. *Eur J Epidemiol* 2020;35:223–39.
- 14 Ioannidis J. Next-generation systematic reviews: prospective metaanalysis, individual-level data, networks and umbrella reviews. Br J Sports Med 2017;51:1456–8.
- 15 Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.
- 16 Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. meta-analysis of observational studies in epidemiology (moose) group. JAMA 2000;283:2008–12.

Arrhythmias and sudden death

- 17 Raglan O, Kalliala I, Markozannes G, *et al.* Risk factors for endometrial cancer: an umbrella review of the literature. *Int J Cancer* 2019;145:1719–30.
- 18 Shea BJ, Reeves BC, Wells G, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or nonrandomised studies of healthcare interventions, or both. BMJ 2017;358:j4008.
- 19 Dragioti E, Solmi M, Favaro A, *et al.* Association of antidepressant use with adverse health outcomes: a systematic umbrella review. *JAMA Psychiatry* 2019;76:1241–55.
- 20 DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials* 1986;7:177–88.
- 21 Higgins JPT, Thompson SG, Deeks JJ, *et al.* Measuring inconsistency in meta-analyses. *BMJ* 2003;327:557–60.
- 22 Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34.
- 23 Ioannidis JPA, Trikalinos TA. An exploratory test for an excess of significant findings. *Clin Trials* 2007;4:245–53.
- 24 Schünemann HBJ, Guyatt G, Oxman A. Grade Handbook for grading quality of evidence and strength of recommendations, 2013. Available: https://gradepro.org/
- 25 Pollock A, Farmer SE, Brady MC, et al. An algorithm was developed to assign GRADE levels of evidence to comparisons within systematic reviews. J Clin Epidemiol 2016;70:106–10.
- 26 Theodoratou E, Tzoulaki I, Żgaga L, et al. Vitamin D and multiple health outcomes: umbrella review of systematic reviews and meta-analyses of observational studies and randomised trials. BMJ 2014;348:g2035.
- 27 Kim MS, Kim WJ, Khera AV, et al. Association between adiposity and cardiovascular outcomes: an umbrella review and meta-analysis of observational and Mendelian randomization studies. *Eur Heart J* 2021;42:3388–403.
- 28 Shahim B, Malaisrie SC, George I, et al. Postoperative atrial fibrillation or flutter following transcatheter or surgical aortic valve replacement: partner 3 trial. JACC Cardiovasc Interv 2021;14:1565–74.
- 29 Angsubhakorn N, Kittipibul V, Prasitlumkum N, et al. Nontransfemoral transcatheter aortic valve replacement approach is associated with a higher risk of new-onset atrial fibrillation: a systematic review and meta-analysis. *Heart Lung Circ* 2020;29:748–58.
- 30 Khan MR, Kayani WT, Manan M, et al. Comparison of surgical versus transcatheter aortic valve replacement for patients with aortic stenosis at low-intermediate risk. Cardiovasc Diagn Ther 2020;10:135–44.
- 31 Maesen B, Nijs J, Maessen J, et al. Post-operative atrial fibrillation: a maze of mechanisms. *Europace* 2012;14:159–74.
- 32 Zhou A-G, Wang X-X, Pan D-B, et al. Preoperative antihypertensive medication in relation to postoperative atrial fibrillation in patients undergoing cardiac surgery: a meta-analysis. *Biomed Res Int* 2017;2017:1–12.
- 33 Hindricks G, Potpara T, Dagres N. ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European association of Cardio-Thoracic surgery (EACTS). *Eur Heart J* 2020.

- 34 Verdecchia P, Angeli F, Gattobigio R, et al. Impact of blood pressure variability on cardiac and cerebrovascular complications in hypertension. Am J Hypertens 2007;20:154–61.
- 35 Ruan Y, Robinson NB, Naik A, et al. Effect of atrial pacing on postoperative atrial fibrillation following coronary artery bypass grafting: pairwise and network meta-analyses. Int J Cardiol 2020;302:103–7.
- 36 Hu X-L, Chen Y, Zhou Z-D, et al. Posterior pericardiotomy for the prevention of atrial fibrillation after coronary artery bypass grafting: a meta-analysis of randomized controlled trials. Int J Cardiol 2016;215:252–6.
- 37 Gillespie EL, Coleman CI, Sander S, et al. Effect of prophylactic amiodarone on clinical and economic outcomes after cardiothoracic surgery: a meta-analysis. Ann Pharmacother 2005;39:1409–15.
- 38 Patti G, Bennett R, Seshasai SRK, et al. Statin pretreatment and risk of in-hospital atrial fibrillation among patients undergoing cardiac surgery: a collaborative meta-analysis of 11 randomized controlled trials. Europace 2015;17:855–63.
- 39 Lennerz C, Barman M, Tantawy M, et al. Colchicine for primary prevention of atrial fibrillation after open-heart surgery: systematic review and meta-analysis. *Int J Cardiol* 2017;249:127–37.
- 40 DiNicolantonio JJ, Beavers CJ, Menezes AR, et al. Meta-analysis comparing carvedilol versus metoprolol for the prevention of postoperative atrial fibrillation following coronary artery bypass grafting. Am J Cardiol 2014;113:565–9.
- 41 Li L, Ai Q, Lin L, et al. Efficacy and safety of landiolol for prevention of atrial fibrillation after cardiac surgery: a meta-analysis of randomized controlled trials. Int J Clin Exp Med 2015;8:10265–73.
- 42 Liu C, Wang J, Yiu D, et al. The efficacy of glucocorticoids for the prevention of atrial fibrillation, or length of intensive care unite or hospital stay after cardiac surgery: a meta-analysis. *Cardiovasc Ther* 2014;32:89–96.
- 43 Guerra F, Romandini A, Barbarossa A, *et al.* Ranolazine for rhythm control in atrial fibrillation: a systematic review and meta-analysis. *Int J Cardiol* 2017;227:284–91.
- 44 Guo X-Y, Yan X-L, Chen Y-W, et al. Omega-3 fatty acids for postoperative atrial fibrillation: alone or in combination with antioxidant vitamins? *Heart Lung Circ* 2014;23:743–50.
- 45 Liu T, Korantzopoulos P, Shehata M, *et al.* Prevention of atrial fibrillation with omega-3 fatty acids: a meta-analysis of randomised clinical trials. *Heart* 2011;97:1034–40.
- 46 Violi F, Pastori D, Pignatelli P, *et al.* Antioxidants for prevention of atrial fibrillation: a potentially useful future therapeutic approach? A review of the literature and meta-analysis. *Europace* 2014;16:1107–16.
- 47 Hemilä H, Suonsyrjä T. Vitamin C for preventing atrial fibrillation in high risk patients: a systematic review and meta-analysis. *BMC Cardiovasc Disord* 2017;17:49.
- 48 Ioannidis JPA, Boffetta P, Little J, *et al.* Assessment of cumulative evidence on genetic associations: interim guidelines. *Int J Epidemiol* 2008;37:120–32.
- 49 Riley RD, Lambert PC, Abo-Zaid G. Meta-analysis of individual participant data: rationale, conduct, and reporting. *BMJ* 2010;340:c221.