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Reconstruction of the cerebral cortex from magnetic resonance (MR) images is an important step in quantitative analysis of the
human brain structure, for example, in sulcal morphometry and in studies of cortical thickness. Existing cortical reconstruction
approaches are typically optimized for standard resolution (∼1 mm) data and are not directly applicable to higher resolution
images. A new PDE-based method is presented for the automated cortical reconstruction that is computationally efficient and
scales well with grid resolution, and thus is particularly suitable for high-resolution MR images with submillimeter voxel size. The
method uses a mathematical model of a field in an inhomogeneous dielectric. This field mapping, similarly to a Laplacian mapping,
has nice laminar properties in the cortical layer, and helps to identify the unresolved boundaries between cortical banks in narrow
sulci. The pial cortical surface is reconstructed by advection along the field gradient as a geometric deformable model constrained
by topology-preserving level set approach. The method’s performance is illustrated on exvivo images with 0.25–0.35 mm isotropic
voxels. The method is further evaluated by cross-comparison with results of the FreeSurfer software on standard resolution data
sets from the OASIS database featuring pairs of repeated scans for 20 healthy young subjects.

1. Introduction

Cortical reconstruction, the derivation of a computerized
representation of the cerebral cortical layer based on three-
dimensional (3D) magnetic resonance (MR) images of the
brain, is an important step in quantitative analysis of the
human brain structure, for example, in the analysis of corti-
cal folding patterns, in brain morphometry, and in cortical
thickness studies. Cortical surface models typically serve as
a reference basis for all further analysis and therefore must
be geometrically accurate and topologically correct in order
to provide valid and accurate quantitative measures of brain
structure [1].

The cerebral cortex, considered at the spatial scale of MR
images, is a thin layer of neural tissue, called gray matter
(GM), located on the outer side of the white matter (WM),
and surrounded by the cerebrospinal fluid (CSF). The cortex
has a complex geometry of a highly folded layer with spatially
varying curvature and thickness (thickness range 1–5 mm,
average ≈2.5 mm, see [1]). The cortical layer on a brain

hemisphere can be represented as the inner space between
two cortical surfaces (i.e., an inner surface at the WM/GM
and an outer or pial surface at the GM/CSF interface, see
Figure 1). It is a useful simplification to consider each surface
as topologically equivalent to a 3D sphere. In practice,
limited spatial resolution of MR images, noise, intensity
inhomogeneities, and partial volume effects can all be the
sources of geometrical inaccuracies and topological errors in
the reconstructed cortical model. In particular, the opposite
banks of gray matter in deep sulci are not always resolved as
separate and can appear as fused together (Figure 1), leading
to invalid models of the cortical layer and propagating errors
further into quantitative measurements (e.g., cortical thick-
ness). This may present a particular challenge for an auto-
mated reconstruction algorithm, requiring specific means for
an automatic detection and correction of topologically and
geometrically problematic cases.

Reconstruction of cortical surface models received con-
siderable attention in neuroimaging research. Here, we only
briefly overview some state-of-the-art methods; please refer
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Figure 1: Schematic illustration of a fragment of brain slice.
Contours of the inner and pial surface are marked in red and green.
Due to partial volume effects and limited resolution, adjacent banks
of gray matter in some sulci may appear as fused together, creating
either a “bridged” sulcus or an unresolved sulcal fundus (a “buried”
sulcus). Note that a “bridged” sulcus creates a topological defect, a
handle, which may be corrected by a topology-preserving model,
whereas a “buried” sulcus does not change the topology.

to Han et al. [1] and Kim et al. [2] for additional discussion.
A suite of algorithms for automated cortical reconstruction
is implemented in the popular and freely available FreeSurfer
software [3, 4]. FreeSurfer includes an algorithm for find-
ing and correcting the topological defects in the initial
WM/GM surface [5] and a method to deform the mesh for
reconstructing the inner and pial surfaces. The deformable
model is constrained by a second-order smoothing term
[6] and by a mesh self-intersection prevention routine [3],
which both help to resolve the boundaries between adjacent
banks in tight sulci. The FreeSurfer automated toolchain is
optimized for standard resolution T1-weighted MR images
and conforms input data to 1 mm isotropic voxel size, as
a rule. This is consistent with the fact that mesh self-
intersection detection and prevention is computationally
expensive (see [1, 6]) and does not scale well with increasing
mesh resolution. Xu et al. [7] developed a deformable mesh
model for reconstruction of the central cortical surface.
The model deforms the topology-corrected initial WM/GM
interface by forces derived from a smoothed gradient field [8]
that was computed from a GM class membership function.
The model does not perform a time-consuming check of
mesh self-intersections, which is arguably less critical for
finding the central surface, compared to the pial surface.
Kim et al. [2] presented a different deformable mesh-based
approach for reconstruction of a pial surface, which is
called constrained Laplacian anatomic segmentation using
proximity, or CLASP. The algorithm computes a Laplacian
field mapping between the GM/WM interface and the
skeleton of the partial volume classification of the CSF. The
Laplacian map is then integrated into the deformable model’s
objective function, driving mesh vertices into locations with
higher values of the Laplacian field. Terms for stretch and
self-proximity are included to regularize the deforming
mesh and prevent from mesh self-intersection inside sulci.
The method by Kim et al. depends on accurate extraction
of the CSF skeleton and therefore relies on an elaborate
partial volume tissue classification algorithm. However, the
accuracy of the Laplacian mapping may be compromised at
locations, where the fused GM sulcal banks are not resolved.
In addition, the computational cost of the self-proximity

term may become prohibitive for high-resolution meshes.
Zeng et al. [9] used implicit surfaces in a level set framework
for simultaneous reconstruction of the inner and outer
cortical surfaces coupled by the minimal and maximal
distance constraint. However, this approach did not gain
widespread use, because it does not preserve the topology
of the evolving surfaces and, in some areas, the distance
coupling term may suppress the data attachment term,
resulting in geometrical inaccuracies [10]. Han et al. [1]
described a method for automated reconstruction of cortical
surfaces, called CRUISE, which is built around a geometric
deformable model using level sets. To help resolve the
cortical banks in sulci, a thin digital separating barrier is
constructed using the anatomically consistent enhancement
algorithm ACE [1, 11], which finds a skeleton of the weighted
distance function computed from the Eikonal equation with
a speed function modulated by the CSF class membership.
At the core of the CRUISE method is a topology-preserving
geometric deformable surface model, TGDM [1, 11, 12],
which models the evolution of a level set function under
the influence of signed pressure forces computed from tissue
class membership values and curvature forces defined by
the surface geometry. The central surface of the cortex is
reconstructed by a TGDM with GGVF advection forces
similar to those in Xu et al. [7].

We present a method, henceforth, designated dielectric
layer field mapping, or DELFMAP, for the automated recon-
struction of the cortical compartment from MR images,
which is based on several partial differential equation (PDE)
modeling stages. Our method is inspired by the work of Han
et al. and uses a similar level set framework, but introduces
a different perspective, consolidating all algorithmic stages
around the key mathematical model of a potential field in
an inhomogeneous dielectric medium. Our method scales
well with image resolution and has an advantage over other
existing methods in reconstruction from high-resolution MR
images with submillimeter voxel sizes, because (1) in contrast
to deformable mesh models in FreeSurfer or CLASP, it avoids
the computational cost of testing for mesh self-intersection
and self-proximity; (2) similarly to CRUISE, it uses an
efficient narrow-band algorithm for the level set evolution;
(3) in contrast to CRUISE that requires solving a system of
three second-order PDEs in GGVF, our method solves just
one second-order PDE and does not need an intermediate
step of reconstructing a central cortical surface.

Preliminary results of this work were presented in two
conference publications [13, 14]. This report expands on the
methodology and experimental results and adds a validation
study that performs cross-comparison of our method’s
cortical reconstruction results with those obtained using
FreeSurfer [3, 4] on standard resolution data for 20 healthy
young subjects (test-retest repeated scans) from the OASIS
database [15].

2. Methods

The DELFMAP method proceeds as follows. A potential
field is computed using the mathematical model of an
electric field in an inhomogeneous dielectric medium, where
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the segmented WM poses as a charged conductive object
and the classified GM poses as an inhomogeneous dielectric
layer with permittivity proportional to GM class probability
values. This electrostatic model serves the purpose of
concentrating the flux of the mapping flow in a layer of
voxels classified as GM and helps to identify the separating
barriers between cortical banks in sulci, where the mapping
flow collides. Correspondence trajectories following the
lines of the potential field and geodesic distances from
WM boundary are determined using PDEs, and a digital
skeleton of the sulcal medial surface separating GM sulcal
banks is derived by finding collisions in the correspondence
trajectories and shocks in the distance field. The computed
electric field retains the desired laminar properties of the
Laplacian mapping in the bulk of the cortical layer and is
used as the potential flow that maps the inner surface to the
outer. The outer (pial) cortical surface is reconstructed using
a geometric deformable model level set framework [16] with
an advection along the gradient of the potential field, which
is constrained by the identified skeleton of the sulcal medial
surfaces and (optionally) by a maximal distance/proximity
constraint.

2.1. Image Processing Chain. DELFMAP takes as input a set
of volumetric images containing WM and GM tissue class
probability/membership functions and a refined WM model,
supplied either as a topology-corrected WM binary segmen-
tation or as a WM/GM interface level set function. The
overall chain of general image processing steps is outlined as
follows (Figure 2) (1) A T1-weighted volumetric MR image is
(optionally) aligned with the stereotaxic coordinate system,
interpolated to isotropic voxel size, and is preprocessed with
a brain-peeling algorithm that derives a mask of voxels
related to the cerebral tissues only. (2) The brain image
is corrected for intensity inhomogeneities and is classified
into WM,GM,CSF/background probability images. (3) A raw
WM binary segmentation is derived from the class probabil-
ity images (by thresholding or a maximum-probability rule),
and brain stem and cerebellum are (optionally) removed
from the WM segmentation. (4) A topology-corrected WM
volume is obtained from the raw WM binary segmentation
by an automated algorithm or by manual editing, or a com-
bination of both. (5) DELFMAP uses the output of step 2
and step 4 to reconstruct the inner and outer cortical
surfaces. We note that steps 1–4 are common to many brain
MR image processing workflows, therefore DELFMAP can
be easily integrated with a wide variety of toolchains. More
specifically, we used processing steps described in Yang and
Kruggel [17] in our experiments with 3-Tesla in-vivo images,
and we applied algorithms described in Kruggel et al. [18]
for the analysis of exvivo high-resolution images. In step 4,
for exvivo images, we used manual editing for filling ventri-
cles and correcting large topological defects, and we applied
a topological region-growing algorithm similar to the one in
Kriegeskorte and Goebel [19] to obtain a genus zero WM
binary object. In cross-validation with FreeSurfer on the
OASIS data sets, we used the FreeSurfer’s processing tool-
chain for the initial steps that are common between the two
methods (i.e., steps 1–4 that lead to a topologically-corrected

WM segmentation); therefore, the cross-method compari-
son of cortical reconstructions is not confounded by dif-
ferences in preprocessing approaches. Finally, we emphasize
that, in all our experiments involving DELFMAP, the tissue
classification was performed by a modified version (see [18])
of the adaptive fuzzy clustering algorithm [20] augmented
with a spatial regularization term [1]; this also applies to GM
and WM tissue classification that was used by DELFMAP in
cross-validation study on the OASIS data sets.

2.2. Inner Cortical Surface. The inner cortical surface is
reconstructed by a deformable model (Figure 2, step 5.0) that
smooths the initial WM/GM interface, which is determined
by the corrected WM segmentation. For this purpose, we use
a topology-preserving geometric deformable model (similar
to [12]), which is described in detail in Section 2.6. For
smoothing, we typically run 2-3 iterations of the deformable
model with the mean curvature term only. We will denote
the “inside” region of the level set function representing the
inner cortical surface by Ωw.

2.3. Electric Field Model. A potential field is found as a solu-
tion to the PDE modeling an electric field around a charged
conductive object (WM) insulated by a dielectric layer (GM)
having spatially inhomogeneous electric permittivity, which
is set proportional to GM tissue class probability (Figure 2,
step 5.1). In such a model, the flux of the electric field is
confined in regions of higher permittivity, that is, where GM
class probability is higher; therefore, trajectories following
the lines of the electric field trace through the GM layer
before exiting into the background space. Thus, the flux
of the mapping flow is concentrated in a layer of voxels
classified as GM. Let Ω denote the 3D image domain with
the boundary Γ(Ω). We will denote WM and GM tissue
class probability images by Pw(�r ) and Pg(�r ) (�r ∈ Ω), where
�r = (x, y, z) is a 3D point. Let ϕ(�r ) denote a potential field,
a scalar function defined over Ω. Let ε(�r ) denote another
scalar function, called permittivity and computed from class
probabilities as follows:

ε
(
�r
) = 1 + (εmax − 1)

(
Cd
(
�r
)
Pw
(
�r
)

+ Pg
(
�r
))

, (1)

where εmax is the maximum permittivity of the insulating
layer (εmax should be � 1 in order to emphasize the inho-
mogeneity of the dielectric layer; εmax = 100 was used, and
εmax = 1000 was tested with similar results). Thus, permittiv-
ity is close to εmax when WM and/or GM class probabilities
are high and is close to 1 when they are low. Note that the
WM probability is included above only to ensure a proper
transition of the field near the WM/GM interface, where
some border voxels can be classified with low GM but high
WM probability, for example, because a smoothed interface
can slightly deviate from the initial WM segmentation. The
inclusion of WM probability is therefore limited by the
constraint field Cd, which is computed by thresholding of the
WM chamfer distance transform Dcmf as Cd = {1 if Dcmf <
dmin, 0 otherwise}, where the distance threshold dmin can
be set at the lower bound on cortical thickness (≈1 mm),
just enough to ensure a “high-permittivity” transition via
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Figure 2: Block diagram of the overall image processing chain, where the DELFMAP method addresses the reconstruction of cortical surfaces
(steps 5.0–5.3) after the preprocessing stage (steps 1–4).

boundary WM voxels to the layer of GM voxels. The potential
field is found as a solution of Maxwell’s equation for an
electric field inside inhomogeneous dielectric medium in the
absence of free charges:

∇
(
ε
(
�r
)�E
(
�r
)) = ∇ε∇ϕ + εΔϕ = 0. (2)

Equation (2) assumes that the dielectric medium has
linear and isotropic properties; therefore, ε is a scalar, not a
tensor. Boundary conditions are specified as ϕ(�r ∈ Ωw) = 1
and ϕ(�r ∈ Γ(Ω)) = 0, that is, the potential is set to one
in the WM core and is set to zero on the boundary of the

image volume. The solution of the PDE ϕ(�r ∈ Ω \ Ωw)
can be obtained as a steady-state solution (∂ϕ/∂t → 0) of
a corresponding nonstationary equation:

∂ϕ

∂t
= ∇ε∇ϕ + εΔϕ. (3)

Equation (3) can also be viewed as describing the dif-
fusion in inhomogeneous medium, where ε(�r ) is a spatially
varying but stationary diffusion coefficient and ϕ(�r, t) is the
concentration of the diffusing substance. This allows for a
different physical interpretation of the model: we seek a
steady-state spatial distribution of “particles” diffusing from
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WM source into the medium with a diffusivity proportional
to the GM class probability. Qualitatively, it is expected that
“particles” would diffuse more freely in GM; therefore, the
lines of the gradient field ∇ϕ would tend to concentrate in
the GM compartment. Equation (3) can be discretized and
solved iteratively as described by [21], for example, using the
Jacobi method [22].

2.4. Distance Field and Correspondence Functions. Lines of
the potential field ϕ are defined as a family of curves that are
at each point tangent to the gradient ∇ϕ. Let d(�s,�r ) denote
the length of a line segment originating at some point in WM
boundary �s ∈ Γ(Ωw) and ending in point �r ∈ Ω \ Ωw. If,
for any point �r, there is one and only one streamline passing
through it, then d(�r ) defines a distance field. It is possible
to compute the distance field by integrating trajectories
explicitly in a Lagrangian framework. Alternatively, using the
method described in Yezzi and Prince [23], the distance field
can be found as a solution of a PDE in an Eulerian framework
on a fixed grid. We note that ∇ϕ/‖∇ϕ‖ is the unit tangent
field of the potential field ϕ. Then, it can be shown that the
distance field d must satisfy the following PDE:

∇ϕ
∥∥∇ϕ∥∥ · ∇d

(
�r
) = 1, (4)

with the boundary condition d(�r ∈ Γ(Ωw)) = 0. Correspon-
dences along streamline trajectories can be computed in a
similar way. More specifically, let �ψ = [ψ1(�r ),ψ2(�r ),ψ3(�r )]
denote a vector of correspondence functions, which estab-
lishes a correspondence between a point in the field domain
�r ∈ Ω \ Ωw and a “source” point in the WM boundary
�ψ ∈ Γ(Ωw). These correspondence functions ψi can be found
as solutions of the following PDE (see [24]):

∇ϕ
∥
∥∇ϕ∥∥ · ∇ψi

(
�r
) = 0, (5)

with boundary conditions ψi(�r = [x1, x2, x3] ∈ Γ(Ωw)) = xi,
where i = 1, 2, 3.

The first-order PDEs (4) and (5) can be solved using
the numerical implementation described by Yezzi and Prince
[23]. In principle, finite spatial discretization may violate
the one-to-one correspondence property of the flow by
clamping several streamline paths into one point on a grid,
so the solutions d(�r ) and �ψ(�r ) may experience numerical
convergence problems in some grid locations. In practice,
we found that such problematic points are very sparse and
do not impede numerical convergence in the computational
domain at large. These points are usually detected among
other “shocks” in the distance field by a skeletonization
method (Figure 2, step 5.2), which is described next.

2.5. Skeleton of the Sulcal Medial Surface. Inside sulci,
streamlines originating from opposite cortical banks collide
(due to spatial discretization), which results into shocks in
the distance field and into “discontinuities” in the correspon-
dence functions. Shocks or singularities of a distance field
d are defined as a set of points, where spatial derivatives of

the field are not well-behaved, that is, the gradient ∇d is
not well defined. Such shocks appear as discontinuities or
sinks in the field. Note that even though the potential field in
our model should be, in theory, free from the sinks (because
there are no free charges), they may appear in the distance
field due to spatial discretization. Let S ⊂ Ω \ Ωw, called
a skeleton of the distance field, denote a set of points on a
grid, where shocks are detected by a numerical procedure.
Such numerical procedure can be based on finite difference
approximations to ∇d, as described by Han et al. [1]. The
observation is that a centered finite difference numerical
scheme will produce values of ‖∇d‖ that are significantly
lower than 1 on the shock points and are close to unity
elsewhere. Then, the skeleton can be detected as S = {�r |
(�r ∈ Ω \ Ωw) ∧ (d(�r ) > dmin) ∧ (‖∇d(�r )‖ < T)}, where
dmin is a minimum distance parameter set at the lower bound
on cortical thickness and T is a specified threshold value
(T < 1; values dmin = 1 mm and T = 0.8 can be used,
similarly to ACE in [1]). We found that the skeleton can be
robustly detected by a novel algorithm based on the analysis
of the correspondence function [14]. Recall that �ψ(�r0) is
a vector with coordinates of the streamline’s source point
at WM boundary. A streamline collision can be detected
if, in the neighborhood of �r0, there are correspondences to
source points that are “distant” between themselves. More
formally, the skeleton can be determined as S = {�r | (�r ∈
Ω \ Ωw) ∧maxi‖�ψ(�r) − �ψ(�ri)‖ > Dmin}, where �ri ∈ Nn(�r ).
We used Dmin = 4 voxels and 6 adjacent points N6(�r ) in our
computations.

2.6. Geometric Deformable Model. The geometric deform-
able model uses an implicit representation of a surface,
embedding it into a level set function φ(�r, t)(�r ∈ Ω). The
evolving interface is represented by the zero-level set Φ(t) =
{�r | φ(�r, t) = 0} (see [16]), and it can be retrieved with
subvoxel resolution by an isosurface algorithm (e.g., march-
ing cubes). In our model, evolution of the level set function
is described by the following PDE that has an advection and
a mean curvature term:

∂φ
(
�r, t
)

∂t
+wα�V

(
�r
) · ∇φ(�r, t) = wκκ

(
φ
)∥∥∇φ(�r, t)∥∥,

(6)

where �V is the advection velocity vector field, κ is the
mean curvature, and wκ are weights of the respective terms
(wα,wκ ≥ 0). The mean curvature of the interface embedded
in the level set function is [16]

κ = ∇ ·
( ∇φ
∥∥∇φ∥∥

)

=
(
φ2
xφyy − 2φxφyφxy + φ2

yφxx

+ φ2
xφzz − 2φxφzφxz + φ2

zφxx

+φ2
yφzz − 2φyφzφyz + φ2

zφyy
)
/
∥
∥∇φ∥∥3,

(7)
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Figure 3: Plots of the stopping/reversal factor β (a) and the distance-constraining factor γ (b) at different values of the “steepness” constant
K (solid red line: default K = 40; dashed green line: K = 80; dotted blue line: K = 20).

where the subscripts x, y, z denote partial derivatives. The ad-

vection velocity vector field �V(�r ) is derived from the gradient
of the potential ϕ or distance field d:

�V
(
�r
) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−β(�r )
(∇ϕ(�r )
∥∥∇ϕ∥∥

)

or

β
(
�r
)
(
∇d(�r )
‖∇d‖

)

,

(8)

where β(�r ) is a stopping/direction-reversal factor computed
from the GM/WM class probabilities. For example, this
factor can have a form of a logistic function:

β
(
�r
) = 2

1 + exp
(
−K

[
Pgw

(
�r
)− P0

]) − 1, (9)

where K is the constant controlling the steepness of the slope
of the sigmoid curve and P0 is the GM class probability
threshold value that determines the “set-point” of the
deformable model. Figure 3 illustrates how the factor β
depends on GM and WM probability Pgw. In our experi-
ments, a moderately steep sigmoid curve with K = 40 and
the threshold P0 = 0.8 were used. For spatial regularization,
the combined GM and WM class probability Pgw(�r0) can be
calculated as a weighted sum over the (closed) neighborhood
of the point �r0:

Pgw
(
�r0
) =

∑

�ri∈{�r0,Nn(�r)},�ri /∈S
wi

(
Pg
(
�ri
)

+ Pw
(
�ri
))

,
(10)

where wi are the neighborhood weights (e.g., wi = 0.5/n,
where n = 18 or 26, and for the central point w0 = 0.5),
and the skeleton of the sulcal medial surfaces S is used for

masking of class probability values in separating barriers. As
an option, the stopping factor β in (8) can be modified to
include the distance-constraining factor:

β1 =
∣∣β
(
�r
)∣∣∣∣γ

(
�r
)∣∣ sgn

(
β, γ

)
, (11)

where the sign function is an “OR” combination of two signs:

sgn(a, b) =
{−1, if a < 0 or b < 0,

1, otherwise,
(12)

and the distance-constraining factor γ can also have a form
of a logistic function:

γ
(
�r
) = 2

1 + exp
(−K[1/2−min

(
d
(
�r
)
, 2dmax

)
/2dmax

]) − 1.

(13)

In (13), dmax is a parameter constraining the maximum
distance of advection along the streamlines of the gradient
field (i.e., a proximity constraint that limits the thickness of
the reconstructed cortical layer). We used dmax = 6 mm (see
Figure 3) in the reported cortical reconstructions, that is, the
maximum distance constraint was set above the anatomically
plausible upper bound on cortical thickness and therefore
was affecting only the artefactual or noncortical gray matter
areas.

Our numerical implementation for solving the level set
(6) is based on the narrow-band algorithm [12, 16, 25]. The
initial level set function is computed as a signed-distance
function (SDF) of the initial interface in the corrected WM
image using the fast marching method (FMM, [16, 26]).
By standard convention, “inside” points are represented by
negative values of the SDF. During the evolution, the level set
function φ(�r, t) is maintained close to the SDF by periodic
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{Compute time step for each point in the narrow band}
for all�ri ∈ NarrowBand do

{1. Compute the updated value}
φnew ← φ(�ri, tk) + ΔtΔφ(�ri, tk)
{2. Check if there is a sign change}

if sgn(φnew) == sgn(φ(�ri, tk)) then
{3.1 No sign change}
φ(�ri, tk+1)← φnew{apply the update}

else if �ri ∈ S then {Check if is in the barrier}
{3.2 Is in the barrier, do not allow sign change}
φ(�ri, tk+1)← ε{set to a small positive value}

else {3.3 Is clear; check for topology change}
if IsSimple (φ(�r, tk),φnew,�ri) then
{3.3.1 No change in topology}
φ(�ri, tk+1)← φnew{apply the update}

else {3.3.2 Do not allow topology change}
φ(�ri, tk+1)← ε · sgn(φ(�ri, tk)){set to a small value of the same sign}

end if
end if

end for

Algorithm 1: The level set function update algorithm.

reinitialization with the FMM. The advection term in (6) is
discretized based on the upwind differencing scheme (for
details, see [16]), and the curvature term is discretized along
the lines of (7) using the central differencing scheme [22].
A pseudocode outlining the narrow-band algorithm is
described elsewhere (e.g., in [12, 25]). In Algorithm 1 pseu-
docode we focus on the core part that deals with the time-
step update of the level set function. The update algorithm
is novel in the way it uses the skeleton of the sulcal medial
surface to create barriers for the evolving interface. In
addition, the algorithm has a built-in rule preserving the
digital topology of the deformed model [1, 12] that is based
on the concept of simple points [27] (function IsSimple()
in Algorithm 1, see details in [13]), which guarantees that
the deformed surface retains the same topology as the initial
WM/GM surface.

As already mentioned, the inner cortical surface is
reconstructed by a few iterations of the model with the
curvature term only (wα = 0,wκ = 1) (Figure 2, step 5.0).
In step 5.3 of Figure 2, the outer cortical surface is first re-
constructed by a model using the advection term only (wα =
1,wκ = 0) until convergence (i.e., until the relative amount of
change in the SDF per iteration becomes small, for example,
lower than 10−4) or for a specified number of time steps and
then smoothed by a few iterations with the curvature term,
similarly to the inner surface.

3. Experiments and Results

Our algorithm was implemented in C++ in the Linux
environment and ran on a PC with 2.5 GHz AMD-64 CPU
and 4 GB RAM, unless otherwise noted. The algorithm’s
performance was evaluated on simulated test cases with a
simplified geometry of a sulcus, on simulated MRI datasets,
on standard resolution T1-weighted MR images of human

brains, and on high-resolution (sub-mm) MR images of
extracted brain hemispheres.

3.1. Simulated Data. The first test case is intended to il-
lustrate the effect of the inhomogeneous dielectric model
used in DELFMAP and shows the difference between the
field produced with a nonuniform permittivity and the field
computed with the uniform permittivity (ε = 1, the Lapla-
cian field). Test images simulate a simplified 3D geometry of
a sulcal fold and contain two WM stalks separated by the
sulcal space (with a curvature radius of 10 mm); the WM
is covered by a layer of GM having unequal thickness at
the opposing banks and a smoothly varying thickness at
the fundus (Figure 4(a)). Figure 4 shows the lines of the
Laplacian field (Figure 4(b)) and the lines (Figure 4(d)) and
isocontours (Figure 4(c)) of the field in the DELFMAP mod-
el. It can be seen that the “ridge” (where the field lines con-
centrate and the isocontours converge) of the DELFMAP
field is close to the sulcal center line, whereas the “ridge” of
the Laplacian field is at the geometric center.

The second test case demonstrates how the model re-
solves the barrier separating the two opposing cortical banks
inside a sulcus. Test images simulate a fully resolved sulcus
(with two banks fully separated by background), a sulcus
with an unresolved fundus, and a sulcus with two banks
bridged by unresolved voxels (the top row in Figure 5: left,
middle, and right, resp.). The middle row in Figure 5 shows
the cross-section of the sulcal medial surface (white lines)
that was identified by the DELFMAP method. It can be seen
that the method is capable of reconstructing the boundary
surface separating the two cortical banks and finds a
geometrically plausible solution in incompletely resolved
cases. Side-by-side comparison of the results of our method
and those of ACE (the bottom row in Figure 5) shows
that skeletons produced by DELFMAP have a more regular
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(a) (b)

(c) (d)

Figure 4: Cross-sections of simulated test images. (a) The input image; (b) field lines in the uniform permittivity model (Laplace equation).
Bottom row: isocontours (c) and field lines (d) in the DELFMAP model with the dielectric layer (dark gray in the input image).

structure, whereas ACE skeletons can have small extraneous
branches and discontinuities. Our method does not produce
spurious detections very close to WM and thus does not
require a minimum distance cut-off parameter, which is
needed in ACE. In addition, our method is more robust with
respect to noise (see [14]): skeletons produced by DELFMAP
show very little degradation even at the highest noise level,
while ACE skeletons are significantly affected by strong levels
of noise.

Cortical reconstruction results for simulated brain phan-
tom MR images [28] showed good reproducibility across
various levels of simulated Gaussian-distributed noise and
intensity inhomogeneity (see [13, 14]).

3.2. High-Resolution MR Images. Our method’s performance
is illustrated by results for high-resolution exvivo images,
where, contrary to FreeSurfer, our method does not need
to conform images to standard 1 mm isotropic voxel size.

The algorithm was evaluated on three high-resolution (0.25–
0.35 mm isotropic voxel size) images of explanted brain
left hemispheres. DELFMAP reconstruction at 0.35 mm
resolution took 67 min on a PC with 2.5 GHz AMD-64 CPU
and 4 GB RAM. We tried to process the same 0.35 mm
data with the recently released CRUISE plugin for MIPAV
[29] on a cluster node with four Opteron 285 2.6 GHz
cores and 32 GB RAM. Reconstruction of the inner surface
took 28 min using 4.9 GB RAM, computation of GGVF
took 32 min using 3.5 GB RAM, while reconstruction of
the central and pial surfaces took 49 and 52 min using
5.3 and 5.1 GB, respectively, but did not produce ade-
quate results with the default settings. DELFMAP compu-
tations at 0.25 mm resolution required 4.7 GB RAM and
were successfully completed after 3 h 20 min. Examples of
the reconstructed cortical surfaces overlaid on orthogonal
cross-sections of a high-resolution MR image are shown in
Figure 6.
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Figure 5: Cross-sections of simulated test images (left: fully resolved sulcus; middle: unresolved fundus; right: bridged sulcus). The white
line shows the location of the identified sulcal medial surface skeleton. Comparison of DELFMAP (middle row) versus ACE (bottom row)
shows that skeletons produced by DELFMAP have a more regular structure compared to ACE skeletons, which can have small extraneous
branches and discontinuities. In the bottom row (ACE), small spurious components are visible at the fundus very close to WM, which in
ACE method have to be suppressed by thresholding the distance from WM.

Lateral views of pial surfaces of three brain samples (3D
rendering of thickness maps) are shown in Figure 7, left
column. Measured thickness values (mean 2.2 mm; stdev
0.7 mm) are in good agreement with the literature. Inflated
maps (Figure 7 middle and right column) are intended for

better visualization of the surface inside sulci; they were pro-
duced with 20 iterations of Laplacian smoothing of the
mesh. Maps in the right column are color-coded with con-
vexity values that were computed as vertex travel distances
during smoothing/inflation, similarly to FreeSurfer [4]. On
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Figure 6: Isocontours of the zero level sets of reconstructed cortical surfaces overlaid on cross-sections of high-resolution MR images (red:
the inner surface; green: the outer surface; top, middle, and bottom rows: examples of axial, sagittal, and coronal sections (not to scale),
resp.).

convexity maps, gyral crowns appear in blue color and sulcal
fundi appear in yellow-orange. Thickness and convexity
maps demonstrate noticeable correlation (Pearson’s corre-
lation coefficient computed over the entire surface mesh is
0.24, 0.22, and 0.28 for the three brain samples shown, that is,
significantly different from zero at the 0.05 level), which is in
good agreement with the known anatomical fact that cerebral

cortex is generally thicker on gyral crowns and thinner in
sulcal depths.

3.3. Cross-Validation with FreeSurfer: Test-Retest Precision.
Our method was validated by cross-comparison of cortical
reconstruction results with those obtained using FreeSurfer.
Standard resolution images for 20 right-handed healthy
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Figure 7: Lateral view of pial surfaces from three high-resolution datasets (left column: thickness maps; middle column: inflated thickness
maps; right column: inflated convexity maps).

young subjects (age 19–34, average 23; 8 males/12 females)
were selected from the cross-sectional OASIS database [15].
For each subject, data are available from two scan sessions
(test and retest) separated by a short delay (1–89, average
21 days), with four T1-weighted standard resolution images
acquired per session. This relatively short delay between
two consecutive scan sessions makes data sets suitable for
the assessment of test-retest reproducibility (i.e., precision)
of the analysis by comparing measurements between scan
sessions.

First, we analyzed data sets using the default automated
pipeline in FreeSurfer and obtained 40 cortical recon-
structions (two per subject), each including a pial and a
white surface mesh. Next, we exported images of extracted
brains (without any intensity normalization/correction) and
corrected WM segmentations from FreeSurfer, ran our tissue
classification algorithm on images of extracted brains, and
used these results in the DELFMAP toolchain to obtain
another set of 40 cortical reconstructions. For a subvoxel res-
olution of a digital skeleton, solutions of PDE in (3)–(6) were

computed on a grid with half-voxel spacing. Implicit level
set surfaces were tessellated using connectivity-consistent
marching cubes algorithm [12], and triangular meshes were
simplified down to 300,000 faces by a topology-preserving
variant of the mesh simplification method [30]. DELFMAP
processing took approximately 30 min per brain hemisphere
(at half-voxel 0.5 mm res. grid) and was twice faster than
FreeSurfer’s deformable model step (mris make surfaces
program, took ≈70 min at 1 mm res.). FreeSurfer computes
cortical thickness at each vertex as the average of the closest-
point distance (Figure 8(a)) measured between the surfaces
both ways using linked vertices [6]. Since vertices on pial
and white surfaces are not linked in DELFMAP, which is
not based on a deformable mesh model, for the cross-
method comparison, we recomputed cortical thickness using
an orthogonal projection distance measure [31] (Figure 8(b)
and the Appendix) that is robust and universally applicable
to results from both methods. We verified that the two
cortical thickness measures were in close agreement on all
40 reconstructions obtained with FreeSurfer.
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Figure 8: Illustration of two different approaches of defining a distance between two surface meshes. (a) The thickness measure defined in
FreeSurfer (2D schematic drawing). (b) The (signed) distance measure defined by closest orthogonal projection.

The geometric precision or test-retest reproducibility
of cortical reconstruction was evaluated independently for
FreeSurfer and for DELFMAP as follows. For each subject,
test and retest MR images (averages of 4 aligned scans from
the first and the second session, resp.) were rigidly registered
to each other using FSL FLIRT [32]. The obtained rigid
transformation was applied to the first set of surface meshes,
aligning the test surfaces to the retest ones. Next, signed
and absolute distances (the Appendix, (A.1) and (A.2)) were
measured between aligned test and retest white/pial surface
meshes, and surface-wise mean and standard deviation were
computed, as well as the group-wise statistics. In addition,
we evaluated the test-retest precision of cortical thickness
measured with FreeSurfer and with our method using the
standard methodology described in the cortical thickness
reproducibility study in Han et al. [33], which consists
of the following four steps: (1) rigid registration of two
repeated scans of each subject; (2) computation of a thickness
difference map for each subject (on the first surface, using
point-correspondences established according to closest
Euclidean distance in registered space); (3) resampling the
thickness difference map to a common template (e.g., any
subject surface or the FreeSurfer’s average template); (4)
computing the group-wise mean and standard deviation of
the differences at every vertex of the template mesh. Resam-
pling to a common template relies on FreeSurfer’s intersub-
ject registration by nonlinear surface morphing [34].

Results of both methods, the absolute distance measure
ADmean and ADstdev between test and retest cortical sur-
faces (the Appendix, (A.3)), per subject hemisphere, were
compared statistically using a Wilcoxon signed rank test,
and results are reported as P values. For FreeSurfer WM
surfaces, reproducibility is characterized by mean absolute
error 0.19(Δ0.06) mm (where the Δ value in parentheses
indicates a statistical spread for the group, equal to two
stdev). For DELFMAP WM surfaces, mean absolute error
is 0.24(Δ0.06) mm (P = 9.5 × 10−5). For DELFMAP pial
surfaces, reproducibility is characterized by a mean absolute
error 0.24/0.25(Δ0.04) mm (L/R) that is similar in FreeSurfer

(L: P = 0.37, R: P = 0.16, see details in Table 1). The stand-
ard deviation of the absolute distance ADstdev is much lower
in DELFMAP than in FreeSurfer (L: P = 8.2 × 10−5, R:
P = 3.2 × 10−4) which can be interpreted as a “tighter”
reconstruction of pial surfaces in DELFMAP. Table 1 sum-
marizes the statistics of the test-retest analysis. The mean
absolute difference of the cortical thickness is similar in both
methods (L: P = 0.10, R: P = 0.28), but the corresponding
standard deviation is again much smaller in DELFMAP than
in FreeSurfer (L: P = 1.9 × 10−6, R: P = 1.0 × 10−4).
To summarize, test-retest precision of cortical thickness
measurement is similar in DELFMAP and FreeSurfer in
terms of the mean error, which is close to a quarter of the
voxel size, but is “tighter” in DELFMAP in terms of surface-
wise variance in absolute differences.

3.4. Cross-Validation with FreeSurfer: Intermethod Accuracy.
The geometric accuracy of our method was evaluated
by cross-comparison with FreeSurfer as follows. For each
cortical reconstruction (two per subject), white (W) and
pial (G) surfaces (Wf, Gf) were exported from FreeSurfer
and a cortical thickness map AGfWf (A.2) was computed
on pial surface. Next, maps of intermethod geometric
differences (DWfWd, DWdWf, DGfGd, DGdGf) were computed
as signed distances (A.1) between white or pial surfaces
reconstructed with FreeSurfer and DELFMAP (Wd, Gd).
On these geometric-difference maps (40 sets, four maps per
set), surface-wise statistics Dmean, Dstdev, ADmean, and ADstdev

(A.3) were computed. In addition, maps of intermethod
thickness differences were built using the cortical thickness
reproducibility analysis steps 2–4 [33] as described in the
previous section, except for using two pial surfaces from both
methods in step 2 (we emphasize that for both FreeSurfer and
DELFMAP, the compared thickness maps were measured by
the same method, that is, as AGW). The 40 individual maps
were resampled to a common template and averaged into
group-wise maps of mean difference and standard deviation.
The group-wise maps of intermethod cortical thickness
measurement differences allow to assess and visualize any
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Table 1: Precision analysis: summary of the group-average statistics for the signed distance (SD) and absolute distance (AD) measure (in
mm) between test and retest surfaces (surface: DF—DELFMAP, FS—FreeSurfer; L/R: left/right hemisphere; mean: a group average of a
surface-wise mean of the distance; stdev: a group average of a surface-wise stdev of the distance; “> X mm (%)”: (group-average) percentage
of surface points where AD was greater than X mm; values in parentheses indicate the statistical spread within the group, measured by the
group-wise stdev).

Surface
L/R Signed distance Absolute distance

Mean (mm) stdev (mm) Mean (mm) stdev (mm) >1 mm (%) >2 mm (%)

DF pial
L −0.02 (0.03) 0.35 (0.06) 0.24 (0.02) 0.25 (0.04) 1.4 (0.3) 0.2 (0.1)

R −0.01 (0.04) 0.37 (0.09) 0.25 (0.02) 0.26 (0.06) 1.5 (0.4) 0.2 (0.2)

FS pial
L −0.02 (0.04) 0.37 (0.10) 0.24 (0.02) 0.28 (0.06) 1.9 (0.4) 0.3 (0.2)

R −0.03 (0.04) 0.39 (0.13) 0.24 (0.03) 0.29 (0.08) 2.0 (0.4) 0.3 (0.2)

DF white
L −0.01 (0.07) 0.34 (0.08) 0.24 (0.02) 0.24 (0.05) 1.0 (0.3) 0.2 (0.1)

R +0.02 (0.06) 0.35 (0.11) 0.24 (0.03) 0.24 (0.07) 1.0 (0.3) 0.2 (0.2)

FS white
L +0.02 (0.02) 0.31 (0.10) 0.19 (0.02) 0.23 (0.07) 1.0 (0.3) 0.2 (0.2)

R +0.01 (0.02) 0.31 (0.13) 0.19 (0.03) 0.23 (0.08) 0.9 (0.3) 0.2 (0.2)

Table 2: Intermethod accuracy analysis: summary of the group-average statistics for distances between DELFMAP- and FreeSurfer-generated
surfaces.

Surf. L/R
Signed distance Absolute distance

Mean (mm) stdev (mm) Mean (mm) stdev (mm) >1 mm (%) >2 mm (%)

pial
L −0.08 (0.04) 0.49 (0.02) 0.40 (0.02) 0.37 (0.02) 6.8 (1.2) 0.6 (0.2)

R −0.07 (0.04) 0.53 (0.02) 0.42 (0.02) 0.38 (0.02) 7.4 (1.3) 0.6 (0.2)

white
L 0.00 (0.04) 0.28 (0.01) 0.24 (0.01) 0.17 (0.01) 0.1 (0.1) 0.0 (0.01)

R 0.00 (0.04) 0.29 (0.01) 0.24 (0.01) 0.18 (0.01) 0.0 (0.0) 0.0 (0.01)

Table 3: Intermethod accuracy analysis: summary of the group-average statistics for difference in cortical thickness measurement between
DELFMAP and FreeSurfer.

L/R
Signed difference Absolute difference

Mean (mm) stdev (mm) Mean (mm) stdev (mm) >1 mm (%) >2 mm (%)

L 0.12 (0.07) 0.47 (0.03) 0.35 (0.03) 0.34 (0.03) 4.4 (1.5) 0.4 (0.1)

R 0.11 (0.08) 0.46 (0.03) 0.34 (0.03) 0.33 (0.03) 4.1 (1.4) 0.3 (0.1)

regional patterns of agreement/disagreement between the
two methods. The intermethod geometric accuracy analysis
statistics is summarized in Table 2 (averaged over 40 image
sets, two per subject). It can be seen from the mean signed
distance SDmean that, on average, DELFMAP has a very
small outward bias in pial surfaces (−0.08/−0.07(Δ0.08)
mm, L/R; negative sign means FreeSurfer’ surface is “inside”
w.r.t. DELFMAP’ surface). The intermethod accuracy can
be characterized by the mean absolute distance ADmean

(0.40/0.42(Δ0.04) mm, L/R), which is less than a half of the
voxel size. The share of pial surface vertices where the AD
was larger than 1 mm is less than 10%; less than 1% of pial
vertices had an AD larger than 2 mm.

The intermethod accuracy analysis of cortical thickness
measurements, summarized in Table 3, is in good agreement
with the above observations. On average, there is a small
bias towards thicker values in DELFMAP (mean signed
difference: 0.12/0.11(Δ0.16) mm, L/R; positive sign here
means that DELFMAP-measured thickness is larger w.r.t.
FreeSurfer). The intermethod accuracy, characterized by the
mean absolute difference (0.35/0.34(Δ0.06) mm, L/R), is
less than a half of the voxel size. The share of pial surface

vertices where the absolute difference between thickness
measurements was larger than 1 mm is less than 6%, and less
than 1% of pial vertices had an absolute difference larger than
2 mm. An example comparing DELFMAP and FreeSurfer
pial surface reconstructions side-by-side, for one subject,
is shown in Figure 9 (colored with cortical thickness; see
colorbar for color map and range of values). Overall, a good
correspondence is visible, but some patterns of thickness
difference are noticeable: (1) for FreeSurfer, thickness is
larger (indicated as yellow) in the superior region of the
frontal lobe and in some temporal regions (lateral view);
(2) for DELFMAP, thickness is larger (indicated as orange)
in the inferior occipitotemporal region (medial view, where
the cerebellum is found); (3) for FreeSurfer, thickness is
smaller (indicated as blue) in the medial orbitofrontal cortex
(mOFC) region (medial view). These differences can be
attributed and traced to the following segmentation trends
in either of the two methods: (1) oversegmentation, by
FreeSurfer, into meningeal space in superior frontal region
and in temporal region (see Figure 10); (2) oversegmenta-
tion, by DELFMAP, into cerebellar gray matter in the inferior
occipitotemporal region; (3) too conservative segmentation,



14 International Journal of Biomedical Imaging

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Figure 9: Example of side-by-side comparison of DELFMAP (column 1 and 3) and FreeSurfer (column 2 and 4) thickness maps
(OAS1 202 1, on pial surfaces, left/right hemisphere in the left/right two columns, resp.; 1st row: lateral surface; 2nd row: medial surface;
colorbar range 0–5 mm).

by FreeSurfer, in the mOFC region (too thin, less than
1.5 mm).

Regional patterns of intermethod geometric differences
in pial cortical reconstructions are visible on group-average
maps of geometric (Figure 11) and cortical thickness differ-
ences (Figure 12), where the above outlined three trends are
also noticeable.

4. Discussion

We presented a novel PDE-based approach for reconstruct-
ing the cerebral cortex from MR images. We developed an
accurate and scalable method that works on MR images
with a high spatial resolution. Because high-resolution MRI
begins to attract considerable attention in brain imaging
research, a method that readily scales with imaging resolu-
tion is highly valuable. This scalability is achieved by using
an implicit deformable surface model in a fast marching
framework guided by a novel, computationally efficient
model using potential field mapping. Our method requires
much lower computational resources and has a much
faster computation times than conventional methods. These
demonstrated advantages come not only from an efficient
practical implementation, but also from the design of our
algorithms. For instance, other existing approaches that are
based on deformable mesh models incur a significant com-
putational cost associated with the mesh self-intersection
(e.g., FreeSurfer) or mesh self-proximity (CLASP) term,
which does not scale linearly with increasing mesh resolu-
tion. Although the computational cost of the straightforward
mesh self-proximity term [2], which is quadraticO(N2/2) on
the number of facesN , is significantly reduced in a mesh self-
intersection prevention algorithm utilizing a spatial cache
[3], it nevertheless remains supralinear. Similarly, the cost of
another known efficient algorithm for mesh self-intersection
detection, which is based on intersection of bounding boxes,

is O(N log3
2N) [35]. In contrast to this, the computational

complexity O(Nk) of the narrow-band level set algorithm
used in our method (and in CRUISE) is linear with respect
to the size of the interface N (k is the width of the narrow
band). This difference between a linear and a quadratic or
supralinear algorithmic complexity, which can be tolerated
when dealing with standard resolution images and meshes,
becomes quite large at high resolutions. As to the comparison
with the available CRUISE MIPAV software, our method’s
dramatic gain in speed is most likely due to differences in
implementation but, at least in part, can be attributed to
a smaller algorithmic cost of our method (e.g., solving one
second-order PDE in DELFMAP versus a system of three
second-order PDEs in GGVF, and not using an intermediate
step of reconstructing a central cortical surface).

Although some algorithmic building blocks of our meth-
od were previously known to the medical image processing
community (e.g., [1, 21, 23]), the central aspect of our
method, that is, the use of the model of the potential field in
the inhomogeneous dielectric layer introduced here, is novel
and has attractive advantages. The novelty of our method
is also in the newly introduced skeletonization algorithm
that is based on the analysis of correspondence trajectories
and in several novel aspects of the geometric deformable
model (e.g., the constraint of the evolution by the medial
surfaces, the maximal distance constraint of the advection,
and the novel form of the advection stopping/direction-
reversal factor β and the distance-constraining factor γ).
We note that most of the design parameters introduced in
Section 2 remain fixed, and the method is sensitive only to
two settings, which can be easily tuned: the GM probability
threshold P0 (a “set-point”) and the maximal distance dmax

(which has strong influence only if set below the upper
bound on cortical thickness).

The results from three high-resolution data sets demon-
strate that the method is capable of reconstructing the outer
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Figure 10: Contours of reconstructed cortical surfaces overlaid on the axial (left) and coronal (right) slice (red: inner surface; green:
DELFMAP pial surface; yellow: FreeSurfer pial surface; note that the yellow contour appears jagged because it is displayed from FreeSurfer’s
volumetric signed distance function sampled at 1 mm grid, whereas red and green contours are from level set functions sampled at a finer
resolution; left and right images are not to scale). On the left image at the cross-line cursor position (superior frontal region), the yellow
contour of FreeSurfer’s pial reconstruction oversegments into meningeal space, and a similar trend is noticeable next to cursor on the right
image (temporal region).

cortical boundary with good geometric precision and accu-
racy, while guaranteeing the preservation of the initial surface
topology. The method’s performance is illustrated on syn-
thetic images and on standard resolution MR brain images,
where it compares favorably to existing methods in both
quality and speed.

The precision and accuracy of our method was assessed
by cross-validation in standard resolution datasets with
the widely accepted approach implemented in the available
FreeSurfer software. Using a database of consecutive exam-
inations in healthy subjects, the precision of both methods
was evaluated using pointwise geometric distances of recon-
structed surfaces and differences in cortical thickness. Both
methods are similar in terms of the mean absolute error in
position and mean absolute error in cortical thickness. How-
ever, DELFMAP has a much lower variance than FreeSurfer.
In a second study, we evaluated the accuracy of our method

by quantifying the intermethod reproducibility of recon-
structed cortical surfaces, measured by pointwise geometric
distances and differences in cortical thickness measurement
between the two methods. Results demonstrate that the
accuracy of our method, using FreeSurfer as a reference, is
better than half of a mm in terms of both mean absolute error
in geometric position and mean absolute error in measured
cortical thickness. Group-average analysis of the spatial
distribution of geometric and thickness differences between
the two methods reveals some surface regions, where one
of the two methods has a tendency to systematically over-
or undersegment the cortical ribbon, resulting in patterns
of small (subvoxel) but measurable differences. Thus, cross-
comparison of the two methods allows detection of existing
regional patterns in intermethod differences, benefiting the
study of accuracy of both approaches and highlighting some
potentially problematic areas for further improvement of
both methods.
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Figure 11: Group-average maps of intermethod (DELFMAP-FreeSurfer) geometric differences in pial surface reconstructions, resampled to
FreeSurfer’s average template (left column: signed distance mean, colorbar range±1 mm, negative/positive values mean FreeSurfer’ surface is
inside/outside of DELFMAP’ surface, resp.; middle column: absolute distance mean, colorbar range 0-1 mm; right column: absolute distance
stdev., colorbar range 0-1 mm; rows 1–4: lateral/medial surface of left/right hemisphere, resp.).



International Journal of Biomedical Imaging 17

1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

−1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 12: Group-average maps of intermethod (DELFMAP-Freesurfer) cortical thickness differences, resampled to FreeSurfer’s average
template (left column: signed difference mean, colorbar range ±1 mm, negative/positive values mean thickness measured with DELFMAP
is smaller/larger than measured with FreeSurfer, resp.; middle column: absolute difference mean, colorbar range 0-1 mm; right column:
absolute difference stdev., colorbar range 0-1 mm; rows 1–4: lateral/medial surface of left/right hemisphere, resp.).
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Appendix

Distance Measure between Two Surfaces

The orthogonal projection method [31] was adapted to
define a measure of geometric distance between two meshes
that was used throughout our validation study. We note that
a similar approach was proposed in Tosun et al. [36] for
accuracy and precision analysis of cortical surface recon-
structions. The signed distance between two triangulated
meshes M1 = {V1, F1}N1 and M2 = {V2, F2}N2 was meas-
ured as:

D12=
{
d12,i=

(
�p12,i· �n1,i

)∥∥
∥�p12,i

∥
∥
∥ :�p12,i = �v1,i −PF2

(
�v1,i
)}

N1
,

(A.1)

where PF2 (�v1,i) is the closest orthogonal projection operator
projecting a vertex �v1,i from the first mesh onto one of the
triangles F2 in the second mesh, along the normal to that
triangle (Figure 8(b)). The sign of the distance measure is
determined by the innerproduct of the projection difference
vector �p12,i with the first surface outward normal�n1,i at vertex
�v1,i; thus, a positive/negative value signifies that the second
surface is outside/inside of the first surface, respectively. For
the signed distance, mean and standard deviation (stdev) are
computed on d12,i values. We define the absolute distance
measure as:

A12 =
{
a12,i =

∥
∥
∥�p12,i

∥
∥
∥ :
(
a12,i =

∣∣d12,i
∣∣)
}

N1
. (A.2)

In this notation, the cortical thickness measure of Kruggel
and von Cramon [31] is defined as the absolute distance from
GM to WM mesh AGW; this orthogonal projection measure
should not be confused with the distance along surface
normal [37], which was shown to be less reliable compared to
other distance measures [38]. For the absolute distance, two-
way mean and standard deviation are computed (see also
[36]) as:

ADmean = 1
N1 +N2

⎛

⎝
N1∑

i=1

a12,i +
N2∑

j=1

a21, j

⎞

⎠,

ADstdev =
⎛

⎝ 1
N1 +N2

⎛

⎝
N1∑

i=1

a2
12,i +

N2∑

j=1

a2
21, j

⎞

⎠− AD2
mean

⎞

⎠

1/2

.
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Acknowledgments

The authors gratefully acknowledge the Athinoula A. Marti-
nos Center for Biomedical Imaging for providing FreeSurfer
software and the Open Access Series of Imaging Studies
(OASIS) project for providing MRI data sets, which were
used for the validation of our new method. The OASIS
project is made available by Dr. Randy Buckner at the
Howard Hughes Medical Institute (HHMI) at Harvard
University, the Neuroinformatics Research Group (NRG)
at Washington University School of Medicine, and the
Biomedical Informatics Research Network (BIRN). The
authors would like to thank Professors T. Arendt and M. K.

Brückner (Paul-Flechsig-Institut für Hirnforschung, Leipzig)
for providing specimens for exvivo imaging, and Professor C.
J. Wiggins (MPI für Kognitions- und Neurowissenschaften,
Leipzig) for high-resolution MRI acquisition, under project
C15 supported by a grant from the Interdisziplinäres Zen-
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