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micro-level interaction in the so far primarily used simulation methods. We find that 
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Introduction 

Systems can change behaviour quite abruptly. In the theory of complex dynamical systems sudden 

regime shifts are grasped as critical transitions (CTs), which occur when gradually drifting parameters 

transit a threshold value [19] . The rising temperature of water for instance causes abrupt transitions

from solid to fluid or to gaseous states at certain temperature values. Theory suggests that such shifts

are caused by accumulating positive feedbacks leaving particular traces that can be detected with 

statistical methods comprised under the term Early Warning Signals (EWS, [5,6,31] . These methods,

so far, have been applied to real-world- as well as model-generated data. Examples range from

ecosystems that show rapid changes in desertification or extinctions of species [32,34] , medical

conditions that quickly change from regular to irregular behaviour [26 , 36] , or financial markets that

transit from a balanced market to a financial crisis [25] . When considering model-generated data for

investigating EWS, most activities so far focus on data from equation-based models (EBMs) [1 , 34 , 38] .

Only rarely, so far, EWS methods have been applied to data from agent-based models (ABMs) [16 , 18] .

This seems at odds when considering the theoretic proposition that CTs are caused by feedback-

driven distributed interactions on a system’s micro -level, which in the aggregated representation at 

the macro-level as possible with EBMs are only statistically represented, i.e. as an approximation.

We claim that certain micro-level details, such as a (possibly) small fraction of free-riders igniting a

tipping from cooperation to overall defection in game-theoretic representations of social dilemmas 

for instance, cannot be detected and comprehended appropriately on the macro-level of EBMs. 

Investigations into such details of social congestions necessitate the consideration of more fine-grained 

methods. They demand for simulations with ABMs. 

However, since EBMs are directly based on the mathematical concept of differential equation 

systems, they may be seen closer related to the theoretical foundation of EWSs [19–21] . Theory in

this context seems sound and clear. In practical application however, EWS often remain hidden behind

stochastic or parametric particularities of the systems concerned or are not discernible clearly or early

enough for waterproof classifications [17] . It seems that if EWS methods should be applicable for

predicting CTs in time to avert them, they would need to be significantly refined. 

Up to now, such refinement is largely left to human engineering spirit. With the rapid progresses

in development and accessibility of automated decision tools however, before all artificial neural 

networks, hope arises that the predictability of CTs in complex systems can be honed in an at least

semi-automated way as well (see also [38] ). In order to test the possibility of identifying CT-prone

time series with machine learning methods two separate data sets of time series from an ABM of a

Repeated Public Good Game (RPGG) were used to assess the predictive power of a Long-Short-Term-

Memory Neural Network (LSTM) on previously unseen time series, before all on time series that were

generated with RPGGs played in topologically different network settings. 

Consecutively, methods applied are explained and the findings are depicted and discussed. The 

theory of EWS is introduced in Section 2 via a brief outline of stability analysis in dynamical systems.

https://doi.org/10.1038/nature08227
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tatistical EWS-methods exploited in the further investigations are detailed, including a discussion of

ome of the shortcomings related to EWS-detection. Consequently, Section 3 contains a description

f the model put to use for the generation of both the training and the test data set. In Section

 the utilized methods are presented and finally, Section 5 is comprised of a depiction of the

esults accompanied by a discussion of their significance and furthermore their implications for future

esearch. 

tability in systems and EWS for critical transitions 

Most dynamical systems have one or more so-called equilibria, i.e. stable states. If a system is close

o one of those equilibria its eigen-behavior [37] leads to an evolution towards this stable state. This

ttraction causes systems to return to an equilibrium, even after (small) perturbations [24] . Certain

hanges in a system can diminish this attraction, so that the return to the stable state takes more

ime or the system even transitions into an alternative equilibrium. In many systems these changes

an be rather abrupt and can lead to sudden regime shifts [19] , so-called critical transitions (CTs) (see

ig. 1 ). 

Even though the transition itself is sudden, it is sometimes possible to observe signals that indicate

n imminent regime shift. A viable indicator of the approach of such a tipping point is “critical

lowing down” (CSD): close to a tipping point, systems are slower to recover from perturbations and

eturn to their original stable state, hinting at a loss of resilience and a possible critical transition

6] . CSD can be seen in different statistical properties of time series. An increase in autocorrelation

t-lag-1 (AR1) indicates a higher “short-term memory” of the system, related to changes in the

orrelation structure close to a tipping point ( [7] , see 2nd row plot in Fig. 1 ). In addition to a signal

n the autocorrelation, also standard deviation (STD, 2nd row plot in Fig. 1 ) can increase before a

ritical transition, caused by the systems tendency to move further away from its stable state when

osing stability. The proximity to an alternative equilibrium and the resulting attraction can also cause

symmetries in variance and the occurrence of short jumps to states further away from the stable

tate and back, so-called flickering. Such effects can be identified by changes in skewness and kurtosis

3rd row plot in Fig. 1 ). Serial correlations between successive time samples can also induce changes

n spectral density, so called reddening, measured by spectral analysis (FR, 7th plots in Fig. A4 and

5 ). And finally, correlations over longer time-scales than detectable with AR1 can be measured by

e-trended fluctuation analysis (DFA, bottom plots in Fig. A4 and A5 ) These and some more signs are

omprised under the term Early Warning Signals (EWS) [33] . 

However, in practice not all systems prone to CTs show easily discernible EWS [2,17] Often, the

ignals remain hidden behind stochastic [3,4] or topological [18] particularities or they are so weak

hat predictions easily err. 

Several issues in this regard have been reported. They range from the noise-dependency of EWS,

ausing clear indications of tipping with a low noise-factor and blurred signals when the noise is

ncreased [19] , via the so-called hysteresis of complex systems making shifts occur at different values

f slowly drifting parameters in dependence on whether the tipping is approached from the one or

he other equilibrium [17] , up to the problem of interpreting EWS unambiguously in larger distances

o the CT. A particularly grave problem for the detection of EWS is additionally caused by the fact

hat many systems not being prone to CTs may show EWS-similar signals in their own right [17] . As

t could be shown that removing the trend from the time series can prevent such false positives, the

ata in this investigation has been consistently detrended before analysis (see Fig. 1 , and for details

ext section). 

Together, these difficulties in the interpretability of EWS provide reason to consider possibilities

or making the prediction of imminent regime shifts more reliable. With this aim, we tested the

ossibilities of predicting CTs with the help of automated decision tools, in particular with artificial

eural networks (ANNs). A particular interest thereby concerned the possibility to compare the effects

f causal CT-triggers on the micro-level of interaction to the aggregated statistical signals of the

verall system states. For this reason, and deviating from the bulge of existent EWS-investigations,

e deployed agent-based methods to simulate the system in question, in this case a Repeated Public
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Fig. 1. Top plot: example of generated time series showing loss and reinvigoration of cooperation in an RPGG (% of co-operators 

in the population). Highlighted (in pink) is an exemplary window of 500 steps as extracted in steps of 10 over the whole time 

series for analysis. Second row plot: autocorrelation at-lag-1 (AR1) and standard deviation (STD) of the un-detrended time series 

as shown in the top plot, with data immediately before the tipping and shortly afterwards (light blue) not considered to avoid 

rolling window miscalculations. Third row plot: skewness (S) and kurtosis (K) of the same un-detrended time series. (These 

EWS-analyses on un-detrended time series are shown for comparison. They are not used in further analyses). Fourth row plot: 

detrended time series (residuals) of top plot, using a Savitzky-Golay filter with window length 101 and a polynomial order of 5. 

Fifth and sixth row plots: AR1, STD, S and K of the detrended data. Bottom row plot: LSTM predictions about imminent CT on 

the detrended time series in the fourth row plot.(For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

Good Game constellation, which is driven by feedbacks from agents’ individual learning and social 

contagion, the details of which are explained in the next section. 

Deploying an ABM for a fine-grained access to the system’s micro-level interactions provides one 

decisive advantage for the generation of data. Training ANNs for classification tasks needs positive 

as well as negative instances of an interesting system behaviour. In the case of tipping (i.e. systems

undergoing a CT) it is not always easy to differentiate these instances beforehand, since signals of
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mminent regime shifts can distribute over a wide range of system states. When considering a slowly

rifting parameter on aggregate level, as usually done in EBMs, it is thus difficult to specify when

he system is still predominantly under the influence of an equilibrium – and thus not expected to

how EWS – and when it is already prone to tipping and EWS can be expected. Different to this,

n ABMs the very dynamics that cause the shift are considered on the micro-level of component

nteraction and thus can simply be paused from driving the system towards a tipping. In this case, the

omponent interactions still generate data, but the behaviour shifting dynamics are missing. The time

eries obtained in this way simply represent steady state noise of the system at rest, thus providing

egative instances in arbitrary length with similar characteristics as the ones considered as positives

or training the classifier. The details of this time series generation and of the deployed alternative

ill be explained in the next section. 

he model used for generating data 

In preparation of the investigation, an agent-based model (ABM) was used for generating two

raining sets of time series, the one consisting of about 60.0 0 0 and the other of 80.0 0 0 instances,

oth taken in varying distances to CTs. The ABM simulates a stylized form of a Repeated Public Good

ame (RPGG), in which agents adjust an individual probability for contributing a.) according to their

ayoffs in relation to payoffs from preceding rounds of the game and b.) according to the majority of

ther agents’ respective behaviour. 

An RPGG is a well-known game theoretic formalization of a situation in which cooperation can

rocure a common good of high social value, but contribution is impeded by the possibility to realize

till higher payoffs by free riding [8] . Due to social contagion, this situation when repeated tends to

volve towards a socially sub-optimal Nash-equilibrium of pervasive defection [27] with nobody being

illing to cooperate as long as nobody else does [9,22] . Although experiments show that contributions

n RPGG do not decline to absolute zero [9,10,23] , changes in cooperation behaviour can be quite

brupt [11] , in particular when feedback-driven reciprocal entrainment is involved [35] . 

Our model mimics these feedback-driven shifts in a simple way, which is primarily tuned for

enerating CT time series, and not for modelling realistic behaviour. A population of N agents are

et up, each agent playing the RPGG with all others. The individual cooperativeness depends on their

ontribution probability c i , with a high initial cooperativeness being normally distributed close to 1

 c i = 1 − s with s ∈ {0.02, 0.04}). While running the model, agents in each iteration, dependent on c i ,

nvest either all or nothing of an endowment into a common pool, which after investment of all is

ultiplied with an enhancement factor f and is evenly distributed among all agents earning them a

nal payoff π i dependent on investment. As usually [ 28 ], the payoff of an agent i is defined as 

πi = E − I i + f 

∑ n 
j=1 I j 

N 

, (1)

ith the initial endowment E , the individual investment I i , the number of participants N in the game,

nd an enhancement factor f , expressing the added value from social cooperation. 

Playing the RPGG in successive rounds, the dynamics of the contribution probability are given by

 simple influence mechanism according to which agents adapt their contribution probability. Agents

ompare their current payoff with the one of the preceding round of the game. If the payoff decreases,

hey adjust their contribution probability in respect to the fraction of other agents who did not

ontribute to the public good. The contribution probability of each agent is updated according to: 

if πi,t−1 > πi,t then : c i,t+1 = c i,t − g 

(
N| I=0 

N 

)3 

, 

else : c i,t+1 = c i,t , (2)

ith the number of non-contributors (free riders) in the population N| I=0 , and an arbitrary scaling

actor g which governs the dynamics of the development. The dynamics generate a distinct

ownwards-tipping of the number of cooperators after a long and slow decline (see top plot in Fig. 1 ).

In order to account for the possibility of an upwards-tipping (i.e. a backward change from the

ash-equilibrium to the social optimum of near overall cooperation), which was found to enhance
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the generalizability of ANN-training (and apart from this is a common feature in EBM-simulated 

systems used for EWS-analysis, see a.o. [19] ), we assumed a near-symmetric reinvigoration dynamic 

for cooperation. Once the majority cooperation is lost and the RPGG is close to its Nash equilibrium,

the difference between the actual payoff and the payoff the agents could receive with a majority 

investing might cause individuals to be dissatisfied, leading to a reinvigoration of cooperation. In this

case, the dynamics of ( 2 ) are suspended and the update of the contribution probability is given by: 

if πi,t−1 > πi,t then : c i,t+1 = c i,t + g 

(
N| I=1 

N 

)3 

, 

else : c i,t+1 = c i,t (3) 

Together with the downward tipping this generates time series expressing the development of the 

fraction of RPGG-contributors (cooperators) in the overall population, as the one depicted in the top

plot in Fig. 1 . 

The RPGG-ABM was implemented in Netlogo ( https://ccl.northwestern.edu/netlogo/ ) and actuated 

with the Python modul pyNetlogo ( https://pynetlogo.readthedocs.io/en/latest/ ) for generating two sets 

of training data. For the first set, 500-step-series were extracted every 10 steps in distances ranging

backwards from 100 to 700 steps before the tipping point (the CT) from an overall set of about 10 0 0

series with downwards and upwards-tippings as shown in the top plot in Fig. 1 . To generate these,

the simulations were varied in respect to an initial deviation of c i from 1 ( c i = 1 − s with s ∈ {0.02,

0.04}) and in respect to the size of the simulated population randomly varied in an interval between

200 and 500. From the roughly 120.0 0 0 50 0-step chunks, a random sample of 30.0 0 0 was selected

for being used as positive instances for training the classifier. Additionally, another 30.0 0 0 such 500-

step chunks were generated by rendering Eqs. (2) and (3) ineffective. Without influence on the agents’

cooperation probability, the dynamics remained steady while showing similar statistical properties as 

the tipping ones. These steady state time series chunks were used as negative instances in training

the classifier. 

The second set of training data was generated for comparison. In this case, 500-step chunks were

extracted every 10 steps from the whole range of the generated series and checked for their auto-

correlation at-lag-1 (AR1). Since usually, time series are considered correlated when AR1 exceeds a 

value of 0.3, we took those 500-step chunks with an AR1 > 0.4 as positive instances (i.e. indicating

an imminent CT) and those with AR1 < 0.1 as negative instances (i.e. not indicating an imminent

CT). From these collections again, random samples of 40.0 0 0 each were taken for training the neural

network, as detailed in the next section. 

In order to avoid false positives of EWS (see Section 2) and having the ANN learn superficial

features, like for instance the overall trend of the time series, all considered time series were

detrended with a Savitzky-Golay filter [30] with a window length of 101 and a polynomial order

of 5 (see Fig. 1 , for comparison, EWS-analyses of an example time series in un-detrended and

detrended form is shown). The detrending method with these settings was chosen after extensive 

tests with different filters and different parameters, showing that polynomial order and window 

size have no influence on the results of EWS-analysis in this case. (Examples of these tests

are shown in the appendix, including also results for the coefficient of variation, for spectral

analysis and for detrended fluctuation analysis). Additionally, since upward as well as downward 

tipping time series were considered, time series were scaled using scikit-learn’s Standard scaler 

(sklearn.preprocessing.StandardScaler.html) before being applied to the decision tool. 

The deployed methods 

For assessing the onset of tipping in RPGG time series with automated decision tools, several

possibilities were considered. Preliminarily tests were made in respect to the generalizability of 

classifications with data from very different systems. For this we deployed solely machine learning 

tools as contained in Python’s scikit-learn toolkit. In another experiment, following a suggestion by 

[39] , time series were transformed into so-called recurrence plots and exposed to Convolutional

Neural Networks for classification. In parallel, time series were also screened with the Python package

http://https://ccl.northwestern.edu/netlogo/
http://https://pynetlogo.readthedocs.io/en/latest/
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Table 1 

LSTM-classification results of test data 

Dataset 1, negatives generated by rendering Eqs. (2) and (3) ineffective: 60.0 0 0 instances. Dataset 2, generated by differentiating 

according to AR-1 > 0.4 and AR-1 < 0.1: 80.0 0 0 instances. 

t  

s  

t  

 

n  

[  

[  

o  

s  

f  

d

 

t  

l  

o  

w  

a

 

a  

b  

o  

w

R

 

 

o  

d  

t  

P  

t  

5

 

u  

t  

t  

L  
sfresh ( https://tsfresh.readthedocs.io/en/latest/# ) for automatically calculating a large number of time

eries characteristics, which allows evaluating their explanative power and importance in classification

asks. These experiments however, did not yield clear results so far. They will be presented elsewhere.

In the classification experiment at hand, a so-called Long-Short-Term-Memory (LSTM) neural

etwork was deployed. Originally proposed to avoid the vanishing or exploding gradient problem

15] , these ANNs are considered efficient learners in the context of long-term patterns in time series

12] . Their architecture foresees particular components, “cells” and “gates”, which regulate the flow

f information from neuron layer to neuron layer with the effect of enabling the ANN to consider a

ort of context knowledge when being trained on new data, thus accounting for a sort of experience

rom earlier phases in their training and making them particularly sensible for subtle changes in

evelopments. 

The LSTM was implemented using keras (version 2.2.4, keras.io) based on tensorflow (version 1.13.1,

ensorflow.org), consisting of a dense input layer with 500 neurons and Relu-activation, an LSTM-

ayer with 100 neurons, another dense layer with sigmoid-activation for the output (thus with just

ne neuron) and a dropout-rate of 0.2. In order to fit the model to data an Adam-optimizer was used,

hich yielded a test-set-accuracy (test-data size = 20%) of 98.7% when applied to the first dataset

nd 88.9% when applied to the second one. 

Our intuition was to explain the high accuracy on the first data set with the fact that positive

nd negative instances used for training show rather clear distinctive features, with the positive ones

eing taken from truly tipping dynamics and the negative ones representing just the steady variance

f initial cooperation probabilities. This was the reason to generate another data set for comparison

ith the results of a separate training. 

esults on unseen data 

As it turned out, in both cases the classifiers proved quite efficient on completely new data as well.

For testing their predictive power separately from the data used for training, several other sets

f time series were generated with the RPGG-model varied in respect to population size and the

eviation from initial cooperation s . All of them were detrended and scaled in the same way as

he training data, but this time, time series of greater length were applied to the trained LSTMs.

redictions were taken over a minimum of 180 0 and a maximum of 350 0 (in the networked cases)

ime steps in rolling windows of size 500 every 10 time steps up to the tipping point (with the initial

00 steps omitted for considering equal window sizes). 

An example result for the predictions of an LSTM trained on the first data set on a previously

nseen time series from a grid-based version of the RPGG is shown in the bottom plot of Fig. 1 . The

op plot in Fig. 2 shows an average of such predictions over 100 time series, which clearly runs up

o 1 when the system approaches the tipping point (from left to right in the plot), indicating the

STM’s positive classification of an imminent regime shift well before the residuals of the example

http://https://tsfresh.readthedocs.io/en/latest/#
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Fig. 2. Top-plot: mean LSTM predictions over 100 detrended time series of length 1300 of a grid-based version of the RPGG. 

Middle-plot: mean auto-correlation at lag-1 of the detrended time series (showing no indication of an imminent regime shift). 

Bottom-plot: residuals of one example time series,. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

time series, shown in the bottom plot in Fig. 2 , show optically detectable signs of changing dynamics.

At the same time, the mean auto-correlation at-lag-1 (AR1, Fig. 2 middle plot) of these detrended time

series (that is, the indicator usually most commonly referred to in EWS-analysis) does not show any

indication of an imminent regime shift at all, similar to most other EWS-indicators we tested (that is,

standard deviation, skewness, kurtosis, coefficient of variation, reddening and detrended fluctuation. 

See the fifth and sixth row plots in Fig. 1 and the additional analysis in Fig. A4 , A5 and A6 in the

appendix). The performance of the LSTM trained on the second data set is shown in Fig. A4 in the

appendix, together with results for the other tested EWS-indicators. In our tests, none of them apart

from standard deviation and its relative variant, the coefficient of variation (see A6 in the appendix),

were showing signs of EWS. Standard deviations by themselves however, often are not considered 

unambiguous signals. Most often in literature, at least two independently changing EWS-indicators 

are requested as clear indication for the approach of a tipping, with standard deviation being most

commonly considered together with auto-correlation at lag 1. 

The networked case 

As mentioned, a particular interest of these investigations concerned the possibility of considering 

details of micro-level interactions with ABM-simulations, which are not visible on the (usually 

considered) level of aggregated system dynamics as assessable with EBM-methods. With this interest, 

we implemented the RPGG-ABM, as described in Section 3, in different network settings, with the

agents, differently to the grid version, receiving their cooperation-determining social influences not 

from the fraction of free riders (respectively cooperators) of the whole population, but just from the

fractions among their link-neighbours. The idea behind this was to see, if the classifier as trained

on the grid-version is able to distinguish the influence of different subsets of the network on the

dynamics of cooperation. 

This setting was realized in a scale-free network implemented after the suggestion of Goh, Kahng,

and Kim [14] , which, dependent on a parameter γ varying between 0 and 2 generates networks with

a distribution of link degrees obeying a power law P(k) ∼ k −γ (see also [18] ). The left images in Fig. 3
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Fig. 3. Left: Realizations of scale-free networked representations of ABM-RPGG-populations, in topologies as described in Goh, 

Kahng, and Kim [14] with (from top to bottom) γ = 0 . 2 , γ = 1 and γ = 2 . Right: Corresponding LSTM predictions of time 

series generated from networked versions of the RPGG’s total population, with AR1 and STD shown below, averaged over 100 

instances each. As in Figs. 1 and 2 , while STD is increasing, AR1 does not show any indication of an imminent CT. 

s  

a  

o  

i  

r  

s

 

t  

o  

a  

a  

S

 

o  

c  

I  
how realizations of such networks with γ = 0 . 2 , γ = 1 and γ = 2 . With these different γ -values,

nother set of time series from fractions of cooperators was generated, varied as before in the size

f the population, the initial deviation s from the cooperation probability c i = 1 (see Section 3) and

n whether they were tipping from upper to lower equilibrium or vice versa. Fig. 3 shows the mean

esults for, in each case, 100 of these time series, which were applied to the LSTM trained on the

econd data set in this case (results again being very similar to the ones of the first data set). 

As can be seen, the certainty about an imminent regime shift runs up to 1 significantly later

han in the grid-based version in this case. However, and somehow contra-intuitively, the dynamics

f the network with the most skewed link distribution ( γ = 2 ) seem to be slightly earlier classified

s approaching a CT than the ones with γ = 0 . 2 . As in the tests on the grid-based version, the mean

uto-correlation of the detrended time series does not show any signs of an imminent CT, while mean

TD is clearly increasing. 

In order to dig into more detailed levels of agents’ interactions, we analysed the social networks

f the RPGG in regard to the centrality of agents and distinguished the development of the fraction of

ooperators with above-median centrality from the one of the fraction with below median-centrality.

n these tests Closeness- and Eigenvector-centrality were considered, with the first indicating the
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Fig. 4. Instance of Goh-scale-free-network with γ = 2 , with nodes with above-median Eigenvector-centrality in blue and nodes 

below-median in red.(For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

property of being “close” in terms of shortest paths to other nodes in a network, and the second

indicating the influence of a node in a network based on the number of connections this node

has to other highly influential nodes in the network [29] . In order to illustrate this differentiation,

Fig. 4 shows an instance of a Goh-scale-free-network with γ = 2 , with nodes with above-median

Eigenvector-centrality in blue and nodes below-median in red. 

When exposed to LSTM-prediction, the time series from both networks yield very similar results

(see Fig. 5 ). As in the case of the total population ( Fig. 3 ), the LSTM’s estimation of seeing EWS

increases clearly when approaching the tipping point (from left to right). What is interesting in

the centrality-differentiated case however, is that more information about the imminent regime shift 

seems to be mediated by the below median fraction of the population (see also Figs. A1 , A2 and A3 in

the appendix). As can be seen, as well in the γ = 0 . 2 as in the γ = 2 case the certainty of predictions

for the below median fraction rises significantly earlier than the one for the above median fraction,

with the γ = 2 case (that is, the highly centralized network case) showing particularly striking

differences. If these results prove generalizable, they may suggest focusing attempts of predicting 

forthcoming regime changes in cooperation networks on the peripheral nodes of the network. 

Note that, as mentioned in Section 3, all investigated time series are analysed in a (Savitzly-Golay)

detrended form. While in the often successfully used combination of EWS-indicators AR1 and STD, 

only STD shows an increase that could be seen as an indications for an approaching regime shift (as

well in the fraction of highly central as in the low-central nodes), the LSTM appears to have learned

to recognize respective differences nevertheless, although it was trained in this case only on time

series distinguished along the AR1 > 0.4 (positives) and AR1 < 0.1 (negatives) difference. These results

suggest that using automated decision tools for detecting imminent regime shifts in complex systems 

with more than one equilibrium state may efficiently complement and support EWS-methods as they 

are considered so far. 
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Fig. 5. Mean LSTM-predictions over 100 time series, each of above-median (blue) and below-median centrality (red) fractions 

of Goh-networked RPGG-cooperators (standard deviation in light-blue and light-red), together with mean AR1 and mean STD 

(smaller plots). Top and second row from Goh-networked RPGGs with γ = 0 . 2 , third and bottom row with γ = 2 . Top and third 

row differentiated by Closeness-centrality, second and bottom row by Eigenvector-centrality.(For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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We report on attempts of training an LSTM-ANN for predicting critical transitions in time series

enerated with an ABM-model of a Repeated Public Good Game. Different from the bulk of existent

WS-investigations on simulated systems with alternative equilibrium states, the focus in this case is
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Fig. 5. Continued 

 

 

 

 

 

on the possibility to assess indications of arising regime shifts on the micro-level of agent interactions.

For this, the trained LSTM was applied to different time series from scale-free networked versions of

the RPGG, among them time series taken from two different fractions of the population differentiated

by above and below median-centrality of their social networks. The investigation showed that the 

trained LSTM is able to identify signals of approaching critical transitions in detrended time series, to

which the usually deployed EWS-indicators do not always respond unambiguously. What is more, we 

found indications that the LSTM’s estimation for seeing such signals increases earlier with regard to



M. Füllsack, M. Kapeller and S. Plakolb et al. / MethodsX 7 (2020) 100920 13 

t  

s

 

s  

t  

a  

A  

g  

f

A

 

a  

a  

i  

a

he low-centrality fraction of a population, which suggests to focus further investigations of regime-

hift-predictions in social systems on the periphery of these systems. 

Supplementary material and/or Additional information: [OPTIONAL. We also give you the option to

ubmit both supplementary material and additional information. Supplementary material relates directly

o the work that you have submitted and can include extensive excel tables, raw data etc. We would

lso encourage you to include failed methods or describe adjustments to your methods that did not work.

dditional information can include anything else that is not directly related to your method, e.g. more

eneral background information, useful links etc. Introduction is not a section included in the MethodsX

ormat. This information could be moved to the end under Additional Information. 

cknowledgments 

[OPTIONAL. This is where you can acknowledge colleagues who have helped you that are not listed

s co-authors, and funding. MethodsX is a community effort, by researchers for researchers. We highly

ppreciate the work not only of authors submitting, but also of the reviewers who provide valuable

nput to each submission. We therefore publish a standard "thank you" note in each of the articles to

cknowledge the effort s made by the respective reviewers.] 

On behalf of all authors, the corresponding author states that there is no conflict of interest. 



14 M. Füllsack, M. Kapeller and S. Plakolb et al. / MethodsX 7 (2020) 100920 

 

 

 

 

 

 

 

Appendix 

Fig. A1. Top plot: example of one of the generated time series showing loss and reinvigoration of cooperation in the total

population of a Goh-networked version of the RPGG (% of co-operators in the population). Second row plot: AR1 and STD of

the un-detrended time series shown in the top plot, with data immediately before the tipping and shortly afterwards (light

blue) not considered to avoid rolling window miscalculations. Third row plot: S and K of the un-detrended time series. Fourth

row plot: detrended time series of top plot, using a Savitzky-Golay filter with window length 101 and a polynomial order of 5.

Fifth and sixth row plots: AR1, STD, S and K of detrended data. Bottom row plot: LSTM prediction about imminent CT on the

detrended time series in the fourth row plot.(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.) 
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Fig. A2. Loss and reinvigoration of cooperation in the most Eigenvector-central 50%-fraction of the population of a Goh- 

networked version of the RPGG. Plots in analogy to Fig. A1 . 
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Fig. A3. Loss and reinvigoration of cooperation in the least Eigenvector-central 50%-fraction of the population of a Goh- 

networked version of the RPGG. Plots in analogy to Fig. A1 . 
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Fig. A4. Top: Mean LSTM predictions, averaged over 100 time series (similar to the ones shown in Fig. 1 ), with the LSTM 

trained on data set 2 with 80,0 0 0 instances (as described in Section 3). Below: mean results of EWS analysis: auto-correlation 

at lag-1 (AR1), standard deviation (STD), skewness (S), kurtosis (K), reddening (FR), detrended fluctuation analysis (DFA)of the 

same 100 time series. 
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Fig. A5. Example analysis of alternative Savitzky-Golay-generated residuals (blue in the top plot), here with a polynomial of 

order 3, from an ABM-generated time series showing loss and reinvigoration of cooperation in an RPGG. The plots indicate the 

Mann-Kendall-trend τ [13] of the indicators, conveying an idea of whether the curves show a monotonic upward or downward 

trend and thus could be seen as showing EWS. 
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Fig. A6. Comparison of mean coefficient of variance (CV) over un-detrended data with mean STD over detrended and mean 

STD over un-detrended time series from both equilibria of the system. Note that CV (aka relative STD), defined as ratio of 

standard deviation to mean, does not suggest detrending, but is sensitive to the local mean of the data. Therefore, applying 

CV to the complete test set of 100 un-detrended time series from both equilibria of the system shows a striking difference to 

mean STD on the same un-detrended data (as can be exemplarily seen in the bottom plot in A6 for data set 1). Note however, 

that this data set contains time series from the lower and from the upper equilibrium of the tested system, and hence two sets 

of time series with different means. When this set is separated and only time series from one of the equilibria are considered, 

the difference between STD and CV becomes much smaller and less indicative (as can be exemplarily seen in the bottom plot 

of A7 for time series from the lower equilibrium of data set 1). For this reason, the main part of the paper omits CV-analysis 

and focuses predominantly on detrended data. 

Fig. A7. Comparisons of mean CV over undetrended data with mean STD over detrended and mean STD over un-detrended 

data for time series from the lower equilibrium of data set 1, as described in section 3. 
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