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Abstract
Although colorectal cancer is the third leading cause of death in Morocco, there are no studies of the microbiome changes 
associated with the disease in the Moroccan population. The aim of our study was to compare the stool microbiome of Moroc-
can cancer patients with healthy individuals. We analyzed the microbiome composition of samples from 11 CRC patients 
and 12 healthy individuals by 16S rRNA amplicon sequencing. Principal coordinate analysis of samples revealed defined 
cancer versus healthy clusters. Our findings showed that cancer samples had higher proportions of Firmicutes (T = 50.5%; 
N = 28.4%; p = 0.04), specifically of Clostridia (T = 48.3%; N = 19.0%; p = 0.002), and Fusobacteria (T = 0.1%; N = 0.0%; 
p = 0.02), especially of Fusobacteriia (T = 0.1%; N = 0.0%; p = 0.02), while Bacteroidetes were enriched in healthy sam-
ples (T = 35.1%; N = 62.8%; p = 0.06), particularly the class Bacteroidia (T = 35.1%; N = 62.6%; p = 0.06). Porphyromonas, 
Clostridium, Ruminococcus, Selenomonas, and Fusobacterium were significantly overrepresented in diseased patients, 
similarly to other studies. Predicted functional information showed that bacterial motility proteins, flagellar assembly, and 
fatty acid biosynthesis metabolism were significantly overrepresented in cancer patients, while amino acid metabolism and 
glycan biosynthesis were overrepresented in controls. This suggests that involvement of these functional metagenomes is 
similar and relevant in the carcinogenesis process, independent of the origin of the samples. Results from this study allowed 
identification of bacterial taxa relevant to the Moroccan population and encourages larger studies to facilitate population-
directed therapeutic approaches.

Keywords Gut microbiome composition · Colorectal cancer · Bacterial community · 16S rRNA sequencing · Moroccan 
population

Introduction

Colorectal cancer (CRC) is one of the most common cancers 
worldwide, and is the third cause of cancer mortality in the 
world [1–3]. In Morocco, CRC is as prevalent, behind breast 
and cervical cancer for women, and lung and prostate cancer 
for men [4, 5]. The number of patients affected has increased Electronic supplementary material The online version of this 

article (https ://doi.org/10.1007/s0043 0-018-0542-5) contains 
supplementary material, which is available to authorized users.
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over the last decade, with an increase in incidence from 6.0 
per 100,000 to 10.4 per 100,000 from 2005 to 2008 in Rabat 
[5] and from 10.8 per 100,000 to 12.9 per 100,000 from 
2004 to 2007 in Casablanca [4, 6].

CRC is a multifactorial disease with both environmen-
tal and genetic contributions to its pathogenesis. CRC can 
be classified by etiology as hereditary [7] (e.g. familial 
adenomatous polyposis due to an initiating mutation in the 
Adenomatous Polyposis Coli (APC) gene), inflammatory 
(associated with Crohn’s disease and ulcerative colitis), 
or sporadic (in more than 80% of cases) [8]. Risk factors 
for sporadic CRC include diet, age, alcohol consumption, 
smoking, physical activity and body mass index [9–12]. The 
incidence and mortality of CRC show geographical varia-
tion, with a high prevalence in Western countries, reflecting 
the importance of environmental factors [13–15]. Indeed, 
immigrants from low-incidence areas acquire similar CRC 
rates over time upon arrival in higher incidence areas, and 
eating habits likely contribute to this observation [16–19]. 
We have previously shown that geographic location and diet 
habits may impact the composition of the gut microbiome 
as reflected by significant differences in bacterial popula-
tions in tumor and tumor-adjacent tissues in individuals 
from Spain and the US [20]. Our study demonstrated an 
association between Eikenella and tumor tissues only in US 
individuals, while tumors from Spaniards were enriched for 
Fusobacterium, Bulleida, Gemella, Parvimonas, Campylo-
bacter, and Streptococcus. In another study, a comparison of 
healthy African American and native African groups identi-
fied significant differences between the two populations due 
to higher dietary intakes of animal products by the African 
American population, with major butyrate-producing bac-
terial groups overrepresented in native African populations 
[16]. Finally, CRC rates in migrant groups from high-inci-
dence southern European countries declined after more than 
15 years of residence in Australia, approaching the rates of 
the host country [18].

Research studies indicate that composition and function-
ality of the gut microbiome play a major role in modulating 
CRC risk [12, 21–31]. Studies seeking to identify specific 
bacterial signatures associated with cancer incidence have 
not been successful [32–34] due to the complexity of the gut 
microbiome [35–38], and the diversity within and between 
individuals and populations [39, 40]. However, metagenom-
ics studies have implicated certain bacterial species corre-
lated with the presence of CRC [41–48]. Overrepresentation 
of species of Fusobacterium in CRC has been demonstrated 
in several studies in both stool and mucosal samples [20, 
49, 50], raising the possibility that this species may play a 
causative role in carcinogenesis [51–53]. Fusobacterium is a 
rare inhabitant of the colon [54], but a well-known pathogen 
of the mouth, responsible for periodontitis and inflammation 
[55, 56]. A study by Rubinstein et al. showed that binding 

of Fusobacterium nucleatum to a specific receptor of the 
epithelial cells activated the proliferation of human colon 
cancer cells [57].

The Moroccan diet, rich in fruits, vegetables, and olive 
oil, is consistent with a Mediterranean diet. Despite dietary 
similarities, different regions display specific habits depend-
ing on cultural influences, religion, and lifestyles [58–60]. 
A study comparing dietary habits of Mediterranean popu-
lations from Spain, Morocco and Palestine reported high 
carbohydrate intake and low protein intake in Palestine com-
pared to Spain and Morocco, while the Moroccan popula-
tion had the highest consumption of fruits, vegetables, dairy 
products, and fish [61]. Considering the impact of diet on 
the composition of the gut microbiome [62–64], research 
studies from different geographic regions with different 
dietary habits are essential to advance the collective knowl-
edge and allow tailored and effective CRC treatments. The 
aim of our study was to compare the composition of the 
gut microbiome of Moroccan CRC patients versus healthy 
individuals. We performed 16S rRNA amplicon sequenc-
ing of stool samples to determine composition, followed by 
predictive functional analysis of data. The findings of this 
study provide new insights on the gut microbiome composi-
tion and on specific bacterial communities related to CRC in 
an understudied population.

Materials and methods

Ethics statement

This study was approved by the University Hospital Center 
Hassan II of Fez, Morocco. A written informed consent was 
obtained from all patients and healthy individuals.

Samples metadata and dietary questionnaires

Fecal samples were obtained from 11 colorectal cancer 
patients and 12 healthy subjects. Inclusion selection of CRC 
patients for this study was based on the following criteria: no 
gastrointestinal disorders, no antibiotic use during the last 
3 months and those who had been recently diagnosed and 
had not yet started treatment. Inclusion criteria for healthy 
individuals were: absence of gastrointestinal disorders and 
no antibiotic treatment during the last 3 months. CRC and 
healthy individuals were of similar ages, came from the 
same region, and had similar diets and lifestyle. Individuals 
from the Oriental region and from Casablanca are served by 
the same University Hospitals. Colorectal cancer patients 
and healthy subjects were given a food survey question-
naire and were requested to report their diet over the past 
5 days before collecting their stool samples. The food survey 
reports all food consumed by an individual during the day. 
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From this survey, we measured the frequency of consump-
tion of fruits, vegetables and red meat (e.g. times per day, 
daily, weekly). Dietary data were divided into two groups: 
(1) high consumption of fruits and vegetables/low consump-
tion of meat and (2) low consumption of fruits and vegeta-
bles/high consumption of meat. Daily consumption of fruits, 
vegetables, and meat was measured in grams for each subject 
(patients and healthy individuals). Individuals in group 1 
consumed more than 250 g of fruits and vegetables and less 
than 50 g of meat per day. Conversely, individuals in group 2 
consumed less than 250 g of fruits and vegetables and more 
than 50 g of meat per day.

In addition to the food survey, information related to age, 
sex, body mass index (BMI) and family history of CRC were 
collected from the subjects. BMI was measured for both 
groups [BMI is calculated from body mass (M) and height 
(H). BMI = M/(H × H), where M = body mass in kilograms 
and H = height in meters]. Dietary data were self-reported.

Sample storage and DNA isolation

All stool samples were collected in sterile Eppendorf tubes 
and then frozen at − 80 °C until DNA extraction. DNA isola-
tion was carried out using the QIAmp DNA Stool kit sup-
plied by Qiagen (Hilden, Germany). The subsequent steps 
were performed as recommended by the manufacturer’s 
protocol with minor modifications. Briefly, 200 mg of stool 
samples was added to a tube containing 1.4 ml buffer ASL. 
Samples were homogenized using a Tissue Lyser (Qiagen) 
for 1 min at 25 Hz. 15 ml of proteinase K and 200 ml AL 
buffer were added to samples, vortexed and incubated at 
70 °C for 10 min according to the manufacturer’s instruc-
tion. Then, 200 ml of 100% ethanol was added to the mixture 
and they were transferred into a column. Following this, 
500 ml of buffers AW1 and AW2 was added to the column 
separately and the flow-through was discarded in each step. 
Finally, 200 ml of buffer AE was added to the column to 
elute the DNA.

16S rRNA amplicon sequencing

Sequencing of 16S rRNA amplicons was done at the UNC 
Microbiome Core Facility. DNA was amplified using prim-
ers targeting the V1–V2 region of the bacterial 16S rRNA 
gene [65, 66] and overhang adapter sequences appended to 
the primer pair for compatibility with Illumina index and 
sequencing adapters. Master mixes contained 12.5 ng of total 
DNA, 2× KAPA HiFi HotStart ReadyMix (KAPA Biosys-
tems, Wilmington, MA, USA). The thermal profile for the 
amplification of each sample had an initial denaturing step 
at 95 °C for 3 min, followed by a cycling of denaturing of 
95 °C for 30 s, annealing at 55 °C for 30 s and a 30 s exten-
sion at 72 °C (25 cycles), a 5 min extension at 72 °C and a 

final hold at 4 °C. Each 16S rRNA amplicon was purified 
using AMPure XP reagent (Beckman Coulter, Indianapolis, 
IN, USA). Each sample was then amplified using a limited 
cycle PCR program, adding Illumina sequencing adapters 
and dual-index barcodes [index 1(i7) and index 2(i5)] (Illu-
mina, San Diego, CA, USA) to the amplicon target. For the 
second round of amplification, the thermal profile consisted 
of an initial denaturing step at 95 °C for 3 min, followed 
by a denaturing cycle of 95 °C for 30 s, annealing at 55 °C 
for 30 s and a 30 s extension at 72 °C (8 cycles), and 5 min 
extension at 72 °C. The final libraries were again purified 
using AMPure XP reagent (Beckman Coulter), quantified 
and normalized prior to pooling. The DNA library pool was 
then denatured with NaOH, diluted with hybridization buffer 
and heat denatured before loading on the MiSeq reagent car-
tridge (Illumina) and on the MiSeq instrument (Illumina). 
Automated cluster generation and paired-end sequencing 
with dual reads were performed according to the respective 
manufacturer’s instructions.

Bioinformatics sequencing data analysis

The Quantitative Insights Into Microbial Ecology (QIIME 
v.1.8.0) software pipeline [67] was conducted for the bio-
informatics analysis of our bacterial 16S sequencing data. 
The raw sequences were demultiplexed and filtered; all reads 
with a length above 200 bp and with a quality score above 
25 were kept. The resulting reads were clustered into opera-
tional taxonomic units (OTU) at 97% similarity threshold 
using UCLUST [68] from QIIME. After OTU picking, chi-
meras and singletons were removed using Chimera Slayer 
[69, 70]. Then, the sequences were aligned in order to build 
a phylogenetic tree using Fast Tree 2.1.3 [71]. The species 
level assignment was determined from the QIIME output 
using a biom file from the OTU picking. Additionally, to 
measure alpha diversity using observed species (S) and phy-
logenetic diversity (PD) metrics a random selection of 9090 
sequences from each sample was used. Beta diversity and 
principal coordinates analysis (PCoA) were also calculated 
within QIIME using weighted and unweighted Unifrac dis-
tances [72] between samples at a depth of 9090 sequences 
per sample to evaluate dissimilarities between the samples. 
PD corresponds to the sum of branches on the phylogenetic 
tree among taxa occurring in a sample [73] and S is the 
number of OTUs per sample.

Functional metagenome prediction

To predict the functional metagenome profiles from 16S 
rRNA amplicon sequencing input data, we used the Phy-
logenetic Investigation of Communities by Reconstruction 
of Unobserved States (PICRUSt) [74] (version 1.0.0) algo-
rithm. Closed Reference OTUs were picked using UCLUST 
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[68] against the GreenGenes database in order to create the 
OTU table for input into PICRUSt. The OTUs table result 
was normalized by dividing each OTU by the predicted 
16S rRNA gene abundance before predicting the functional 
metagenome based on the KEGG orthology groups (KOs). 
The resulting functional metagenome by PICRUSt was used 
in the HMP Unified Metabolic Analysis (HUMAnN) [75] 
pipeline (version 0.99) to determine the presence or absence 
and the abundance of microbial KEGG pathways in our 16S 
rRNA amplicon sequencing data.

Statistical analyses

T-Tests were performed to evaluate significant (p < 0.05) dif-
ferences in phylogenetic diversity (PD) and species richness 
(S) indexes between healthy individuals and colorectal can-
cer patients. Analysis of Similarities (ANOSIM) and Permu-
tational Multivariate Analysis of Variance (PERMANOVA) 
analyses were used to evaluate similarities between the two 
groups. The non-parametric Steel–Dwass method, which 
performs multiple comparisons while controlling the overall 
experiment-wise error rate, was applied to microbiome data. 
Significant differences (p < 0.05) in relative abundances 
of bacterial taxa and in metabolic pathways and enzymes 
between cohorts were computed using JMP Genomics (SAS, 
JMP Genomics 10.0). The Steel–Dwass All Pairs test cor-
rects for multiple comparisons.

Results

Eleven stool samples were collected from patients who 
had been diagnosed with CRC between October 2013 and 
December 2013, but who had not yet received treatment. 
The samples were collected from patients at the University 
Hospital Hassan II of Fez, Morocco. Twelve stool samples 
from healthy individuals were collected from the Oriental 
region (Northeastern area of Morocco) and Casablanca. 
CRC patients and healthy subjects were asked to give a 
detailed food record for the 5 days before sample collec-
tion, and data were collected regarding geographic origin, 
age, weight, family history, and risk factors. Characteris-
tics of patients and healthy individuals are summarized in 
(Table 1). No statistical differences were observed between 
the two groups in age, sex and BMI with (p = 0.5), (p = 0.9), 
(p = 0.1) respectively.

After 16S rRNA amplicon sequencing of DNA extracted 
from stool samples, a total of 1,633,421 sequences passed 
our quality filtering (length > 200 bp, quality scores > 25). 
The average quality score was 35.5 ± 4.1, the average 
number of reads per sample was 67,505 ± 28,344, and the 
average of sequences length distribution was 315.2 ± 19.3. 
Almost the entirety of sequences (98.8%) was assigned to a 

taxonomic group, while 1.2% of the reads were unassigned. 
A total of 5081 Operational Taxonomic Units (OTUs) were 
identified in the cohort after clustering sequences at a 97% 
similarity threshold.

The CRC microbiome had a higher diversity 
than the non‑CRC microbiome

Rarefaction analyses at a sampling depth of 9090 reads/sam-
ple were conducted to determine phylogenetic diversity (PD) 
and species richness (S) indexes (Fig. 1a, b). In contrast to 
our previous study on biopsy samples [20], we observed a 
trend towards CRC samples having higher PD and S values 
than healthy samples (t test p < 0.1).

Subsequent principal coordinates analysis (PCoA) with 
analysis of similarities (ANOSIM) and permutational 

Table 1  Summary of samples characteristics

Cohort Colorectal cancer Healthy

Number of samples N = 11 N = 12
Age range (mean ± median) (52.8 ± 54) (49.3 ± 46)
 20–29 2 0
 30–39 0 4
 40–49 0 3
 50–59 5 1
 60–69 2 3
 70–79 2 1

Sex
 Female 7 11
 Male 4 1

Tumor location
 Right colon 1 –
 Sigmoid 1 –
 Rectum 9 –

Body Mass Index (BMI) 
(mean ± median)

(25.3 ± 23.8) (28.3 ± 26.8)

 Underweight 1 0
 Normal weight 4 1
 Overweight 2 6
 Obesity 1 2

Daily or almost daily consumption 
of fruits and/or vegetables

 Yes 3 6
 No 2 6

Frequency of consumption of red 
meat

 Weak – 1
 Moderate 3 4
 High 2 4

Family history of cancer
 Yes – 2
 No – –
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multivariate analysis of variance (PERMANOVA) showed 
a low correlation between disease state in samples (ANO-
SIM, R = 0.2039, p = 0.008 and PERMANOVA, F = 1.8976, 
p = 0.005,) (Fig. 1c). No statistically significant differences 
were observed between control and CRC groups in the age 
category from 20 to 49 years old. However, a moderate but 
statistically significant effect was observed when we com-
pared control and CRC groups in the second age category 
(ages 50–79) (ANOSIM, R = 0.3072, p = 0.036 and PER-
MANOVA, F = 1.7538, p = 0.036,). Comparison of samples 
according to sex, body mass index and diet showed no sta-
tistically significant differences between CRC and healthy 
groups.

Diet associated with the microbiome composition 
in healthy and CRC subjects

To assess the impact of diet on the gut microbiome com-
position, we Evaluated the phylogenetic diversity (PD) 
and species richness (S) indexes in healthy individuals by 
comparing samples from individuals following a diet rich 

in fruits and vegetables and low in red meat consumption 
with samples from individuals with a diet low in fruits and 
vegetables/high in red meat. Although we were not able 
to conduct any statistical analysis due to the low number 
of samples (high fruits and vegetables/low red meat group 
n = 6; low fruits and vegetables/high red meat group n = 6), 
we observed that high fruits and vegetables/low red meat 
subjects had high values of phylogenetic diversity and 
species richness (PD = 14.3 ± 4.6, S = 367.0 ± 164.7 vs 
PD = 12.6 ± 5.2, S = 299.0 ± 177.4). Veillonella, Shewanella, 
Lactococcus, and Bacteroides were statistically overrepre-
sented in the high fruits and vegetables/low red meat group, 
while Pseudomonas was statistically overrepresented in 
the low fruits and vegetables/high red meat group (p ≤ 0.1) 
(Fig. 2). We also evaluated the phylogenetic diversity (PD) 
and species richness (S) indexes in CRC patients. We found 
that patients having a diet rich in fruits and vegetables/low 
in red meat had slightly higher values of PD and S than 
patients having a diet low in fruits and vegetables/high in red 
meat (PD = 20.4 ± 0.8, S = 518.7 ± 99.2 vs PD = 20.0 ± 1.5, 
S = 445.5 ± 28.9). However, no significant differences in 
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Fig. 1  a Phylogenetic Diversity (PD) comparison between CRC and 
healthy individuals from the Moroccan population (*p < 0.1), b num-
ber of species identified in CRC and healthy individuals from the 
Moroccan population (*p > 0.1), c principal coordinates analysis—

PCoA (unweighted UniFrac) of samples, d distribution of bacterial 
phyla in CRC versus healthy individuals, e distribution of bacterial 
phyla by individual (12 controls and 11 CRC)
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bacterial communities were observed in CRC patients 
according to type of diet.

Gut microbiome composition of CRC and control 
stools

Our analysis showed that sequences clustered into 13 
phyla, 26 classes, 48 orders, 92 families, and 165 genera. 
The most represented phyla in both CRC and controls were 
Bacteroidetes, Firmicutes, and Proteobacteria (Fig. 1d, e). 
Other phyla detected at low relative abundance (< 1.0%) 
were Actinobacteria, Cyanobacteria, Elusimicrobia, Fuso-
bacteria, Lentisphaerae, Synergistetes, TM7, Tenericutes, 
and Verrucomicrobia. In the CRC group, Fusobacteria 
(CRC = 0.1% vs control = 0.0%), Firmicutes (CRC = 50.5% 
vs control = 28.4%) and Proteobacteria (CRC = 9.5% vs 
control = 6.8%) were overrepresented (Steel Dwass all 
pairs, p < 0.05), while Bacteroidetes (CRC = 35.1% vs con-
trol = 62.6%) were more prevalent in controls (p = 0.06). The 
predominant genera in both cohorts were Bacteroides and 
Prevotella. However, Prevotella was overrepresented in the 
control group while Bacteroides showed a non-significant 
overrepresentation in CRC (p ≤ 0.1). CRC stools were mark-
edly different from controls, showing an overrepresentation 

of 33 genera (Table 2). The most significantly overrepre-
sented species in normal samples compared to CRC samples 
were Prevotella copri, Prevotella stercorea, and Faecali-
bacterium prausnitzii, while for the CRC samples we found 
that Collinsella aerofaciens (Actinobacteria), [Eubacte-
rium] biforme (Firmicutes), Oxalobacter formigenes (Pro-
teobacteria), Akkermansia municiphila (Verrucomicrobia) 
and Bacteroides fragilis (Bacteroidetes) were significantly 
overrepresented.

Predicted functional differences between the CRC 
and control cohorts

We used the Phylogenetic Investigation of Communities 
by Reconstruction of Unobserved States (PICRUSt) [75] 
to identify differences in metagenome functional predic-
tion based on Greengenes 16S rRNA database and KEGG 
Orthologs (KO). A total of 328 functional metagenomes 
were predicted in both CRC and control cohorts (Fig. 3, 
Supplementary Table 1). Cellular processes (bacterial 
chemotaxis, bacterial motility proteins, and flagellar 
assembly), environmental information processing (mem-
brane transport and signal transduction), lipid (fatty acid 
biosynthesis and fatty acid metabolism) and carbohydrate 
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Fig. 2  Relative abundances of significant bacterial genera in healthy individuals consuming a diet high in fruits and vegetables/low in red meat 
compared to healthy individuals following a diet low in fruits and vegetables/high in red meat (the boxplot scales are not the same)
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metabolism (pentose phosphate pathway), and xenobiotics 
biodegradation and metabolism were overrepresented in 
the CRC cohort (Steel Dwass All Pairs, p < 0.05). In con-
trast, genetic information processing (chaperones and fold-
ing catalysts, RNA degradation, and protein processing in 
endoplasmic reticulum), organismal systems (carbohydrate 
digestion and absorption, protein digestion and absorption, 
and NOD-like receptor signaling pathway), amino acid 

metabolism (glycine, serine and threonine metabolism), 
energy metabolism (oxidative phosphorylation), glycan 
biosynthesis and metabolism (glycosyltransferases and 
lipopolysaccharide biosynthesis) and metabolism of other 
amino acids (glutathione metabolism) were significantly 
overrepresented in the control cohort. The significantly 
overrepresented enzymes between CRC and controls sam-
ples are listed in (Table 3).

Table 2  Comparison of 
bacterial genera significantly 
(Steel Dwass All Pairs, 
p values < 0.05) over- or 
underrepresented in CRC versus 
controls

Numbers represent relative abundance (%) ± standard deviation

Phyla Genera CRC Control p values

Overrepresented in CRC 
 Actinobacteria f_Coriobacteriaceae 0.002 ± 0.004 0.0003 ± 0.0005 0.0692

Atopobium 0.003 ± 0.01 0.0003 ± 0.001 0.0612
f_Coriobacteriaceae_Other 0.05 ± 0.08 0.006 ± 0.01 0.0681

 Bacteroidetes Butyricimonas 0.1 ± 0.4 0.06 ± 0.09 0.0333
Odoribacter 0.3 ± 0.4 0.03 ± 0.05 0.0514
Parabacteroides 1.4 ± 1.3 0.1363299 ± 0.1 0.021
Porphyromonas 0.5 ± 0.9 0.0 ± 0.0 0.0047
f_Rikenellaceae 2.6 ± 4.0 1.0 ± 1.2 0.0605

 Firmicutes f_[Mogibacteriaceae] 0.07 ± 0.06 0.009 ± 0.02 0.0199
f_Christensenellaceae 8.4 ± 11.9 0.07 ± 0.1 0.0042
Christensenella 0.002 ± 0.002 0.0 ± 0.0 0.0119
f_Clostridiaceae 0.2 ± 0.2 0.06 ± 0.07 0.0247
Clostridium 0.2 ± 0.1 0.06 ± 0.06 0.0246
f_Dehalobacteriaceae 0.007 ± 0.01 0.0 ± 0.0 0.0659
Dehalobacterium 0.02 ± 0.01 0.0008 ± 0.001 0.0035
f_Lachnospiraceae 3.1 ± 2.3 1.3 ± 1.6 0.0074
[Ruminococcus] 0.3 ± 0.5 0.1 ± 0.2 0.0365
f_Lachnospiraceae_Other 2.1 ± 1.9 1.8 ± 2.7 0.0525
Peptostreptococcus 0.06 ± 0.1 0.0001 ± 0.0003 0.0157
f_Ruminococcaceae 0.1 ± 0.07 0.03 ± 0.04 0.0023
Oscillospira 1.3 ± 1.1 0.3 ± 0.3 0.0012
Ruminococcus 0.6 ± 0.4 0.4 ± 0.6 0.021
f_Ruminococcaceae_Other 1.3 ± 1.0 0.3 ± 0.5 0.0455
Selenomonas 0.07 ± 0.3 0.0 ± 0.0 0.0119
f_Erysipelotrichaceae 0.6 ± 1.5 0.06 ± 0.1 0.0514
[Eubacterium] 0.6 ± 0.5 0.06 ± 0.1 0.0246
Holdemania 0.01 ± 0.01 0.003 ± 0.005 0.073

 Fusobacteria Fusobacterium 0.08 ± 0.1 0.0003 ± 0.0009 0.0348
 Proteobacteria Oxalobacter 0.03 ± 0.02 0.01 ± 0.02 0.0093

f_Desulfovibrionaceae 0.01 ± 0.01 0.004 ± 0.009 0.0341
Bilophila 0.2 ± 0.2 0.04 ± 0.05 0.0066

 Synergistetes f_Synergistaceae_Other 0.04 ± 0.09 0.0 ± 0.0 0.0659
 Verrucomicrobia Akkermansia 0.4 ± 0.4 0.01 ± 0.03 0.0399

Overrepresented in controls
 Firmicutes Megamonas 0.0 ± 0.0 0.3 ± 1.5 0.0453

Mitsuokella 0.02 ± 0.08 0.7 ± 0.8 0.0529
 Proteobacteria f_Bradyrhizobiaceae 0.0 ± 0.0 0.001 ± 0.002 0.0399
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Discussion

CRC incidence in African populations is low compared 
to European and North American populations. This low 
incidence has been attributed to anthropomorphic or envi-
ronmental factors [76, 77]. However, incidence has been 
increasing over the last decade due to the westernization 
of the diet in many African countries [4–6, 13, 14, 78, 79].

Studies to understand the impact of geographical and cul-
tural differences affecting potential roles of the gut micro-
biome on CRC, especially in understudied populations, are 
essential. In this analysis, we compared 11 stool samples 
from CRC patients with 12 stool samples from healthy 
Moroccan subjects. We observed a trend towards a higher 
phylogenetic diversity (PD) and species richness (S) in CRC 
versus controls, but the differences were not significant. 
Other studies showed no significant changes in diversity and 
species richness between CRC and healthy subjects [80–83] 
and similar observations were made in tissue samples. A 
comparison of 90 matched pairs of colorectal carcinoma and 
tumor-adjacent (normal) tissues from cohorts from the US 
and Spain showed no significant differences between normal 
and tumor tissues for both cohorts [20]. In contrast, other 
studies have reported significant differences in diversity and 
species richness in both tissue [84–86] and stool samples 
[21].

The genus Bacteroides was overrepresented in CRC 
while Prevotella was increased significantly in controls. 
Specifically, Bacteroides fragilis was more common in 
CRC patients. Our findings agree with previous studies that 
showed that Bacteroides were enriched in CRC patients 

[20, 34, 75]. Prevotella has been repeatedly associated with 
diets rich in fiber, while diets rich in fat and animal protein 
are conducive to a Bacteroides-dominated gut microbiota 
[62, 63, 87]. More recently, the enterotoxigenic Bacteroides 
fragilis toxin (ETBF) has been shown to cause chronic 
inflammation that could promote CRC [34, 87–90]. One of 
the three isoforms of ETBF indirectly induces cleavage of 
E-cadherin, resulting in increased epithelial cell permeabil-
ity and exposure to bacterial antigens, which contribute to 
chronic inflammation [91–93]. ETBF has been associated 
with inflammatory bowel disease and CRC. It is charac-
terized by the activation of Stat3 in mucosal immune and 
epithelial cells, with a subsequent colonic mucosal Th17 
response that induces robust colonic tumors [94]. Addition-
ally, it has been shown that treatment with antibody-medi-
ated IL-17, a key cytokine amplifying Th17, reduced ETBF 
and tumor formation [95].

Similarly, Fusobacterium was overrepresented in our 
CRC cohort. This genus has been recurrently associated 
with CRC [20, 48, 50–53, 57, 96–98]. Moreover, Fuso-
bacterium was not detected in healthy control samples, as 
it is a relatively uncommon bacterium in the gut micro-
biome. F. nucleatum [51] has been associated with CRC 
through its ability to stimulate the proliferation of tumor 
cells through the FadA (fluffy autolytic dominant A) adhe-
sion gene [99–101]. FadA expression has been associated 
with increased expression of oncogenic and inflamma-
tory genes; it may have a major role in the transforma-
tion of epithelial cells and promotion of colon tumori-
genesis. Additionally, FadA binds E-cadherin, activating 
the beta-catenin signaling pathway, promoting the gut 

Fig. 3  Relative abundance 
of the predicted functional 
pathways in control versus CRC 
individuals
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Table 3  Enzymes significantly over- or underrepresented in the colorectal cancer and control samples (p < 0.05)

Enzymes EC p values Control CRC Ratio Fold change

Overrepresented in the Control Samples
 O-Succinylbenzoic acid–CoA ligase EC:6.2.1.26 0.0127 0.6 3.2 0.2 −1.5
 Acid phosphatase (class A) EC:3.1.3.2 0.0178 0.7 4.3 0.1 − 1.7
 Carbonic anhydrase EC:4.2.1.1 0.021 0.6 3.1 0.2 − 1.5
 Ribonucleoside-diphosphate reductase beta chain EC:1.17.4.1 0.0247 0.6 3.0 0.2 − 1.5
 Alpha-amylase EC:3.2.1.1 2 0.0337 0.6 3.1 0.2 − 1.5
 lysozyme EC:3.2.1.17 0.0337 0.7 3.7 0.1 − 1.6
 Carbonyl reductase (NADPH) EC:1.1.1.184 0.0385 0.9 11.2 0.08 − 2.5
 Dipeptidase E EC:3.4.13.21 0.0392 0.6 2.7 0.2 − 1.4
 Naphthoate synthase EC:4.1.3.36 0.0392 0.6 3.1 0.2 − 1.5
 Putative metalloprotease EC:3.4.24.- 0.0392 0.7 3.6 0.1 − 1.6
 Isochorismate synthase EC:5.4.4.2 0.0455 0.6 3.2 0.2 − 1.5
 Phosphatidylethanolamine N-methyltransferase EC:2.1.1.17 0.0478 0.9 44.4 0.02 − 3.8
 2-Hydroxy-3-oxopropionate reductase EC:1.1.1.60 0.0289 0.4 1.7 0.2 − 1.4

Overrepresented in the Colorectal Cancer Samples
 2-Dehydro-3-deoxygalactonokinase EC:2.7.1.58 0.0106 0.4 1.7 0.2 − 1.4
 2-Phosphosulfolactate phosphatase EC:3.1.3.71 0.0246 0.2 1.2 0.1 − 1.7
 3-Dehydro-l-gulonate 2-dehydrogenase EC:1.1.1.130 0.0247 0.4 1.7 0.2 − 1.4
 3-Hydroxybutyryl-CoA dehydratase EC:4.2.1.55 0.021 0.3 1.5 0.2 − 1.4
 5-Methylthioadenosine/S-adenosylhomocysteine deaminase EC:3.5.4.- 3.5.4.28 0.0455 0.3 1.5 0.2 − 1.4
 Acetaldehyde dehydrogenase (acetylating) EC:1.2.1.10 0.0335 0.5 2.1 0.2 − 1.3
 Acetate CoA-transferase alpha subunit EC:2.8.3.8 0.0247 0.4 1.9 0.2 − 1.3
 Acetyl-CoA synthetase (ADP-forming) EC:6.2.1.13 0.0384 0.8 5.3 0.1 − 1.8
 Acetylglutamate kinase EC:2.7.2.8 0.0337 0.4 1.6 0.2 − 1.4
 Acyl-CoA dehydrogenase EC:1.3.99.- 2 0.0023 0.1 1.1 0.08 − 2.4
 Adenylate cyclase, class 2 EC:4.6.1.1 0.0221 0.3 1.5 0.2 − 1.4
 Alanine-synthesizing transaminase EC:2.6.1.- 0.0454 0.3 1.5 0.2 − 1.4
 Aminotransferase EC:2.6.1.- 2 0.0106 0.3 1.5 0.2 − 1.5
 Arginine decarboxylase EC:4.1.1.19 4 0.0023 0.2 1.3 0.1 − 1.6
 Asparagine synthase (glutamine-hydrolysing) EC:6.3.5.4 0.0392 0.3 1.6 0.2 − 1.4
 Aspartate aminotransferase EC:2.6.1.1 4 0.0151 0.3 1.5 0.2 − 1.4
 Beta-glucosidase EC:3.2.1.21 2 0.0455 0.4 1.7 0.2 − 1.4
 Beta-phosphoglucomutase EC:5.4.2.6 0.021 0.3 1.5 0.2 − 1.4
 Butyryl-CoA dehydrogenase EC:1.3.8.1 0.021 0.3 1.4 0.2 − 1.5
 C4-Dicarboxylate-binding protein DctP 0.0035 0.2 1.3 0.1 − 1.6
 Carbon monoxide dehydrogenase/acetyl-CoA synthase subunit 

alpha
EC:1.2.7.4 1.2.99.2 2.3.1.169 0.021 0.2 1.4 0.2 − 1.5

 Carbon-monoxide dehydrogenase gamma subunit EC:1.2.99.2 0.0337 0.3 1.4 0.2 − 1.5
 Cell division inhibitor SepF 0.0455 0.3 1.5 0.2 − 1.4
 Chemotaxis protein CheD EC:3.5.1.44 0.0015 0.1 1.2 0.1 − 1.8
 Chemotaxis protein methyltransferase CheR EC:2.1.1.80 0.0074 0.2 1.3 0.1 − 1.6
 Cyanophycinase EC:3.4.15.6 0.0067 0.01 1.01 0.01 − 4.1
 Cysteine desulfurase EC:2.8.1.7 0.0247 0.3 1.5 0.2 − 1.4
 Cystine transport system ATP-binding protein EC:3.6.3.- 0.0337 0.3 1.5 0.2 − 1.4
 D-proline reductase (dithiol) PrdE EC:1.21.4.1 0.0422 0.3 1.5 0.2 − 1.4
 Dihydroflavonol-4-reductase EC:1.1.1.219 0.0074 0.2 1.3 0.1 − 1.7
 Fatty acid synthase, bacteria type EC:2.3.1.- 0.002 0.04 1.04 0.04 − 3.1
 Flagellar assembly factor FliW 0.0015 0.1 1.2 0.1 − 1.9
 Flagellar assembly protein FliH 0.0056 0.2 1.2 0.1 − 1.7
 Flagellar biosynthesis protein 0.0062 0.2 1.3 0.1 − 1.6
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inflammatory response [57]. Administration of F. nuclea-
tum to Apc(Min/+) mice increased the number of colon 
tumors and recruited tumor-infiltrating myeloid cells, 
inducing a pro-inflammatory state similar to that observed 
in humans [52].

Our study confirmed the role of other bacterial biomark-
ers in CRC, including Porphyromonas, overrepresented in 
CRC samples in accordance with previous reports [21, 83, 
84, 102]. An association between oral bacteria, periodon-
tal disease, and cancer has been established, specifically 

between Porphyromonas gingivalis and F. nucleatum [99, 
103–106]. Porphyromonas has been associated with oral 
periodontal disease. It can penetrate periodontal tissue and 
alters the composition of the oral microbiome [89, 107]. 
Porphyromonas gingivalis has been linked to orodigestive 
cancer [108], pancreatic cancer [109] and colorectal cancer 
[100]. Invasion of epithelial cells by P. gingivalis causes 
suppression of the apoptotic pathways JAK1, STAT3 and 
Akt [110, 111] and stimulates cell proliferation [112].

Table 3  (continued)

Enzymes EC p values Control CRC Ratio Fold change

 Flagellar hook protein FlgE 0.0151 0.2 1.3 0.1 − 1.6
 Flagellar protein FlaG 0.0074 0.2 1.2 0.1 − 1.7
 Fructose-6-phosphate aldolase 2 EC:4.1.2.- 0.0089 0.3 1.5 0.2 − 1.4
 Galactonate dehydratase EC:4.2.1.6 0.0178 0.2 1.3 0.1 − 1.6
 Glucoamylase EC:3.2.1.3 0.0305 0.05 1.05 0.05 − 2.9
 Glucose 1-dehydrogenase EC:1.1.1.47 0.0046 0.2 1.2 0.1 − 1.7
 Glutamate formiminotransferase EC:2.1.2.5 0.0392 0.4 1.8 0.2 − 1.3
 Glutamate synthase (ferredoxin) EC:1.4.7.1 0.0178 0.3 1.5 0.2 − 1.4
 Glutamine amidotransferase EC:2.4.2.- 0.0392 0.3 1.6 0.2 − 1.4
 Glycerol kinase EC:2.7.1.30 0.0392 0.3 1.5 0.2 − 1.4
 Glycine reductase EC:1.21.4.2 0.0023 0.2 1.3 0.1 − 1.6
 Histidinol-phosphatase (PHP family) EC:3.1.3.15 0.0106 0.3 1.5 0.2 − 1.4
 Inosose isomerase EC:5.3.99.- 0.0392 0.3 1.4 0.2 − 1.5
 l-Asparagine permease 0.0287 0.6 3.08 0.2 − 1.5
 Lipopolysaccharide transport system permease protein 0.021 0.4 1.7 0.2 − 1.4

Mannonate dehydratase EC:4.2.1.8 0.0455 0.4 1.8 0.2 − 1.3
 Methyl-galactoside transport system substrate-binding protein 0.0151 0.3 1.5 0.2 − 1.4
 Motility quorum-sensing regulator/GCU-specific mRNA 

interferase toxin
0.021 0.03 1.03 0.03 − 3.4

 N-Acetylglucosamine-6-phosphate deacetylase EC:3.5.1.25 0.0392 0.4 1.7 0.2 − 1.4
 N-Glycosylase/DNA lyase EC:3.2.2.- 4.2.99.18 2 0.0089 0.2 1.3 0.2 − 1.5
 Ornithine carbamoyltransferase EC:2.1.3.3 0.0289 0.3 1.5 0.2 − 1.4
 Phosphatidylglycerol:prolipoprotein diacylglycerol transferase EC:2.-.-.- 0.0289 0.3 1.5 0.2 − 1.4
 Purine catabolism regulatory protein 0.0178 0.4 1.7 0.2 − 1.4
 Putative glutamine amidotransferase 0.0074 0.2 1.4 0.2 − 1.5
 Pyrimidine-specific ribonucleoside hydrolase EC:3.2.-.- 0.0247 0.3 1.5 0.2 − 1.4
 Pyruvate ferredoxin oxidoreductase, alpha subunit EC:1.2.7.1 0.0089 0.2 1.2 0.1 − 1.7
 Serine/threonine-protein kinase Stk1 EC:2.7.11.- 0.047 0.03 1.03 0.03 − 3.3
 Sirohydrochlorin cobaltochelatase EC:4.99.1.3 2 0.0283 0.04 1.05 0.04 − 3.07
 Superoxide dismutase EC:1.15.1.1 0.0162 0.1 1.2 0.1 − 1.8
 Threonine 3-dehydrogenase EC:1.1.1.103 0.0392 0.4 1.7 0.2 − 1.4
 Two-component system, AgrA family, sensor histidine kinase 

AgrC
EC:2.7.13.- 0.0455 0.3 1.4 0.2 − 1.5

 Two-component system, OmpR family, alkaline phosphatase 
synthesis response regulator PhoP

0.0178 0.3 1.5 0.2 − 1.4

 UDP-N-acetyl-d-glucosamine dehydrogenase EC:1.1.1.- 0.0138 0.1 1.1 0.09 − 2.3
 Virulence factor 0.0289 0.2 1.3 0.1 − 1.6
 Xanthine phosphoribosyltransferase EC:2.4.2.22 0.0488 0.5 2.3 0.2 − 1.4
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The role of other genera overrepresented in our CRC 
cohort is less clear. In our study, Clostridium, Butyrici-
monas, Peptostreptococcus, and Ruminococcus were signifi-
cantly overrepresented in CRC samples. Conversely, Fae-
calibacterium prausnitzii, an anti-inflammatory commensal 
bacterium able to block NF-κB and IL-8 secretion [113, 114] 
was significantly overrepresented in healthy individuals. 
Finally, we observed a non-significant overrepresentation 
of the beneficial bacteria Lactobacillus and Bifidobacterium 
in healthy individuals.

Predictive functional analysis of sequencing data showed 
a higher significant relative abundance of genes responsi-
ble for cellular processes including bacterial chemotaxis, 
bacterial motility proteins, and flagellar assembly in CRC 
samples. Flagellin is the primary component of bacterial 
flagella. This protein has the potential to bind to Toll-like 
receptor 5 (TLR5) activating the transcription nuclear 
factor-κβ (NF-κβ) signaling-pathway with inflammatory 
and anti-apoptotic outcomes [115, 116]. Additionally, we 
found that acetaldehyde dehydrogenase and acetyl-CoA syn-
thetase involved in glycolysis/gluconeogenesis were overrep-
resented in CRC samples. It is well known that acetaldehyde 
is highly toxic and is recognized as a carcinogenic molecule 
to humans [117]. Moreover, acetaldehyde is considered a 
CRC biomarker and plays a crucial role in cancer initiation 
and progression [118]. Finally, relative abundance of genes 
of the pentose phosphate pathway was significantly higher 
in CRC samples. This pathway plays a critical role in cancer 
cells by generating high levels of NADPH, which may be 
used in the synthesis of nucleic acids and is also required 
for both fatty acids synthesis and cell survival under stress 
conditions [119, 120].

This is the first study conducted on the CRC-associated 
gut microbiome in the Moroccan population. Studies have 
shown that populations from different geographic locations 
may have different healthy and disease-associated micro-
biota composition [20, 39, 121, 122], making this study of 
particular relevance. The low number of samples limited the 
power of this study; however, the study had the advantage 
of giving a first insight into the CRC gut microbiota com-
position of the Moroccan population. Likewise, the use of 
self-reported dietary information could have resulted in less 
accurate data. Although self-reported data are one the most 
used methods for data collection in health research, it could 
introduce biases and impact data reliability in analysis and 
potentially, the validity of the conclusions. Future, large-
scale gut microbiome studies will confirm data from our 
pilot study in order to better understand the role of nutrition 
and other environmental factors on cancer etiology in the 
Moroccan population.
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