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ABSTRACT

ReFOLD3 is unique in its application of gradual re-
straints, calculated from local model quality esti-
mates and contact predictions, which are used to
guide the refinement of theoretical 3D protein models
towards the native structures. ReFOLD3 achieves im-
proved performance by using an iterative refinement
protocol to fix incorrect residue contacts and local
errors, including unusual bonds and angles, which
are identified in the submitted models by our lead-
ing ModFOLD8 model quality assessment method.
Following refinement, the likely resulting improve-
ments to the submitted models are recognized by
ModFOLD8, which produces both global and local
quality estimates. During the CASP14 prediction sea-
son (May–Aug 2020), we used the ReFOLD3 protocol
to refine hundreds of 3D models, for both the refine-
ment and the main tertiary structure prediction cate-
gories. Our group improved the global and local qual-
ity scores for numerous starting models in the refine-
ment category, where we ranked in the top 10 accord-
ing to the official assessment. The ReFOLD3 protocol
was also used for the refinement of the SARS-CoV-
2 targets as a part of the CASP Commons COVID-
19 initiative, and we provided a significant number
of the top 10 models. The ReFOLD3 web server is
freely available at https://www.reading.ac.uk/bioinf/
ReFOLD/.

GRAPHICAL ABSTRACT

INTRODUCTION

In silico modelling of protein structures provides a potential
solution for bridging the protein sequence-structure gap.
Although protein structures can now be predicted with high
accuracy, using either advanced template based or deep
learning-based methods, the resulting 3D models may still
include significant local errors including unfavourable con-
tacts, irregular hydrogen bonds, geometrical clashes and un-
usual angles. These errors may limit the usage of the mod-
elled structures in cases where high accuracy is required,
such as in drug discovery and protein engineering (1–3). The
refinement of predicted protein structures refers to the cor-
rection of the local errors and improvement of the overall
quality of theoretical 3D models, which is often considered
as the ‘last mile’ for structure prediction (4).

Methods for the refinement of 3D protein models aim to
increase model accuracy by fixing the local errors with the
adjustment of secondary structure and modification of the
sidechain interactions (3,5). Ironically, until recent years,
the refinement of 3D models has more often than not re-
sulted in decreases in average model accuracy and it remains
a challenge for refinement groups to consistently improve all
3D models across all categories of target difficulty (3,6).

The employment of physics-based molecular dynamics
(MD) simulations has been the main stay for the non-server-
based refinement methods. Since the CASP9 experiment,
leading MD methods have generated refined 3D models by
taking advantage of new force fields, parallel computing
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and restraint strategies (3). Although the MD-based pro-
tocols have been used by many top-performing groups in
recent CASP experiments, they have suffered from a high
computational time cost and the inadequacy of force fields
for directing the generation of the 3D models towards the
native basin (2–4,7,8). Both the automated server-based and
non-server-based approaches for refinement sample dozens
of 3D models in many alternative conformations (9). The
most native like conformation among all 3D models are
subsequently identified in the scoring stage (3). However,
it is often problematic to recognise the improved models
using either energy functions or model quality assessment
programs (MQAPs), as the similarity among the 3D mod-
els generated by the sampling approaches (3).

The original ReFOLD server (10) was developed by our
group to refine 3D models using a hybrid approach, which
included both rapid and MD-based sampling and leading
model quality estimates, to produce the predicted local and
global quality scores for each sampled 3D model. The first
protocol included the refinement of the initial structure us-
ing i3Drefine in 20 refinement cycles (1,11). The second pro-
tocol accommodated an MD-based protocol inspired by
that of Feig and Mirjalili (7,12,13), but using more modest
computational resources compared to the supercomputer
scale resources, which were originally used. All 3D models
generated by these sampling approaches were ranked using
ModFOLD6 (14) at the last stage. The original ReFOLD
method (10) was used for the refinement of CASP12 targets,
and it showed promising performance, boosting the accu-
racy of our prediction pipeline (10). Nevertheless, structural
drifts from the native state often occurred, especially for the
templated based modelling (TBM) targets (10).

The ModFOLD server (14–17) has been a leading ap-
proach for predicting the local and global quality of theoret-
ical 3D models for more than a decade, according to both
the CASP and CAMEO experiments (2,14–17). The local
quality estimates provide significant information about the
predicted accuracy score for each residue in each 3D model.
In CASP13, ReFOLD2 was developed, which utilized a
fixed restraint threshold, based on the per-residue accuracy
scores produced by ModFOLD7 (the predicted distances
from the native structure for each C-alpha atom), in or-
der to guide the MD-based protocol. The CASP13 targets
were relatively larger compared to the previous CASP ex-
periments (3,10,18), and we observed that fixed restraint
thresholds were not always appropriate for larger targets
containing domains with varying accuracy. Therefore, with
ReFOLD3, we developed a more targeted, novel gradual
restraint strategy based on the local quality estimates for
each starting model, which considered the required level of
refinement for each individual residue.

In CASP13, contact prediction methods showed signif-
icant progress and reached up to 70% accuracy following
the application of advanced deep learning methods (19–21).
Residue–residue contact prediction methods have been used
for the prediction of 3D models, protein–ligand interactions
(22) and 3D model quality estimation (23–26), and more re-
cently, the performance of the tertiary structure prediction
has been boosted by contact prediction methods (19–21).
Thus for ReFOLD3, we also utilized contact predictions
for the refinement of the predicted 3D models with the ap-

plication of an additional gradual restraint strategy based
on our contact distance agreement (CDA) score (14). The
CDA score measures the agreement between the contacts,
which were predicted by the DeepMetaPSICOV method
(21,27,28), and the contacts between residues in the pre-
dicted 3D model, measured according to their Euclidean
distance (14). The CDA score has been a local scoring com-
ponent of the ModFOLD server since CASP11, and it will
become increasingly important as contact prediction accu-
racy improves (14,21,27–29).

In CASP14, ReFOLD3 gave us a performance boost in
the main tertiary structure prediction category, where it
enabled us to further improve the quality of some of the
very best initial server models. Our group ranked in the top
10 in the refinement category itself, according to the offi-
cial assessment. This was significant in the context of the
very high-quality models of tertiary structures produced by
many modelling groups. In CASP14, the models were much
harder to refine as there was less room for improvement.
Despite this major progress in modelling, most server mod-
els still contained significant local errors, which were both
detectable by our ModFOLD8 method and fixable using
ReFOLD3. It is notable that ReFOLD3 performed better
at refining the most highly accurate starting models and it
ranked within the top 5 refinement approaches, for models
with GDT-TS scores >70. As 3D models of proteins be-
come more widely used, it is important that biologists have
access to freely available tools, such as ReFOLD3, in or-
der to confidently identify and fix local errors in their the-
oretical models and bring them even closer to experimental
quality.

MATERIALS AND METHODS

ReFOLD3, consisted of four protocols, which included im-
provements on the original version (10). The major im-
provement for ReFOLD3 was the accommodation of the
two new comprehensive MD-based strategies (Supplemen-
tary Figure S1). The first and final protocol used i3Drefine
(1,11,30) to refine the input model with 20 rapid itera-
tions, the second and third protocols both employed more
CPU/GPU intensive molecular dynamic simulation strate-
gies, and models were ranked and selected at each stage us-
ing our ModFOLD8 server (14,16).

The second protocol included the introduction of
molecular dynamics simulations that were guided by the
per-residue accuracy scores obtained from ModFOLD8
(14,16,31). For the gradual restraint strategy, it was as-
sumed that the regions identified as highly accurate should
be restrained by applying a stronger harmonic positional re-
straint to prevent deviations from the native basin (3,7,13).
A weaker restraint was also applied to the poorly pre-
dicted regions to allow for increases in the quality of these
regions towards the native state (Supplementary Figure
S2A). Thus, the gradual restraints ranged from weak (0.05
kCal/mol/Å2) to strong (1 kCal/mol/Å2) harmonic posi-
tional restraints, which were applied to all atoms, including
C-alphas, according to the distribution of the per-residue
accuracy scores produced by ModFOLD8 (Supplementary
Table S1) (3,7,10,18,31).
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For the third protocol, a similar gradual restraint strat-
egy was used to guide the MD simulation, but this time it
was based on the residue-residue contact predictions. We
utilized the CDA score method (14,31), which is based on
the agreement between the residue contacts predicted by
DeepMetaPSICOV (21) and the contacts in the model. If
the CDA score was high, a stronger restraint was applied to
preserve those residue contacts in the predicted 3D model.
Lower CDA scores indicated where residues were likely to
be further away from the native structure, and so weaker
restraints were applied (Supplementary Table S2 and Sup-
plementary Figure S2B).

The MD-based protocols were carried out at normal cel-
lular conditions at 298 K with 1 bar of pressure in explicit
solvent using nanoscale molecular dynamics (NAMD) (32)
version 2.10 in Graphics processing unit (GPU) mode.
The CHARMM22/27 force field (33) and the TIP3P water
model (34) were also used for the simulation of the protein
system. The system was also neutralized by inserting Na+
or Cl- ions to balance the net charge using Particle Mesh
Ewald (PME) (35). The non-bonded interactions (mostly
van der Waal’s) were cut off by 12 Å to the exclusion of
bonded interactions by using the CHARMM27 default pa-
rameter file with the switching distance of 10 Å (10). Using
the pairlistdist function with 14 Å distance between atom
pairs for inclusion in pair lists made the switching func-
tion more efficient (10). The rigidBonds functions were also
used to rigidify hydrogen bonds with a 2 fs timestep (10).
The system’s electrostatics and the temperature were calcu-
lated by PME with the temperature control using Langevin
dynamics under the NTP conditions (constant number of
particles, temperature and pressure) (10,36). The correction
of clashes and the minimization of the system were carried
out by 1000 steps in the first step of the MD-based protocol
(10). The minimization step was followed by the implemen-
tation of the defined MD simulation to refine each target
(10). Four parallel simulations were run for 2 ns, making 8
ns in total for a target as in the original MD-based protocol
of ReFOLD (10). After the completion of the simulation
run, 164 refined models were generated per target by taking
a snapshot every 50ps, for each MD-based protocol (10).

Refined models generated from the MD-based proto-
cols were then assessed and ranked using ModFOLD8 rank
(10,14,31). The fourth protocol was a combination of the
MD-based approaches, where the top-ranked model from
the second and third protocol was then further refined using
i3Drefine (1,10,11,14,31). Finally, all of the refined models
generated by each of these protocols and the input model
were pooled and re-ranked again according to the Mod-
FOLD8 rank global scores (1,10,11,14,31).

RESULTS AND DISCUSSION

Server inputs and outputs

The required inputs for ReFOLD3 are the protein sequence
and a 3D model (in PDB format) for refinement. Option-
ally, users may provide a name for their protein sequence
and their email address. The ReFOLD3 server results page
(Figure 1) includes an accurate estimate of the likely per-
centage improvement in model quality score for each re-
fined 3D model, and it is unique in providing a series of

individual per-residue error plots (Figure 1B), which show
the local quality estimates for the refined models compared
to the uploaded protein structure. Therefore, users may eas-
ily visualize the specific local improvements in every re-
fined 3D model at a glance. Users may also click buttons to
compare the refined and original 3D models interactively
directly within the browser. The superposition of the re-
fined models with the input models can be visualized us-
ing the JSmol/HTML5 framework. Therefore, models can
be viewed in 3D directly within in the browser, including
on mobile devices, without the requirement of any plug-
ins (Figure 1C). The ReFOLD3 server will typically pro-
vide the results within ∼21 h for a target with 100 residues,
with the MD simulation stages lasting ∼4 h (with Intel
Xeon Platinum 8268 CPUs and Nvidia Tesla T4 GPUs).
The server should complete the majority of refinement jobs
within 48 h, once they are running.

Independent benchmarking and cross validation

CASP14 and CASP Commons 2020: The ReFOLD3 pro-
tocol was used to provide a significant proportion of the
top ten identified 3D models for the ten SARS-2-CoV tar-
gets in CASP Commons COVID-19 initiative (Supplemen-
tary Tables S3–S10) (1,10,11,14,31). ReFOLD3 was also
subsequently blind tested by independent assessors in the
CASP14 experiment (May–Aug 2020) (2,10,14,18,31). Our
refinement pipeline was employed to refine the best server
3D models for each target, which were selected by Mod-
FOLD8 in the regular prediction category, as well as the
starting models provided by the CASP assessors for the re-
finement category itself (1,10,11,14,31). ReFOLD3 gener-
ated numerous improved models compared to the initial
structures, and this enhanced the performance of our pre-
diction pipeline in the CASP14 experiment (Table 1 and
Figure 2) (1,10,11,14,31). ReFOLD3 was ranked as the
ninth best approach according to the assessors’ formula
(Supplementary Table S11) and tenth, according to the cu-
mulative GDT-TS score in the CASP14 refinement category
(Supplementary Table S12).

For the regular CASP14 prediction category, in our pre-
diction pipeline, the top 3D model was selected by Mod-
FOLD8 and then refined by the ReFOLD3 protocol in an
attempt to further increase the accuracy of the predicted
structure (1,10,11,14,31). From the results in Table 1, it is
clear that ReFOLD3 managed to improve the quality for
68% of the top server 3D models selected by ModFOLD8,
according to GDT-TS and lDDT scores (

∑
�GDT TS =

4.69,
∑

�lDDT = 0.52). The GDT-TS score (37) is based
on the superposition of C-alpha atoms between the pre-
dicted and native structure, while the lDDT score (38) cal-
culates scores based on the atom–atom distance between
the predicted or refined 3D model and the observed struc-
ture, considering all atoms (38). Thus, the results show that
ReFOLD3 increased the accuracy of both the backbone
and local regions for 68% of the structures. Furthermore,
whereas the original version of ReFOLD was not success-
ful in increasing the accuracy of the models for TBM targets
in CASP12 (10), ReFOLD3 performed well across all target
definitions in CASP14, including TBM (Figure 2, Supple-
mentary Tables S13–S15).
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Figure 1. The ReFOLD3 server results page for an FM CASP14 target (T1031). In CASP14, the ReFOLD3 protocol was used to refine the top selected
server models. (A) The results page provides the superposition of the top model and the input 3D model, a summary of the predicted scores and improve-
ments in model quality estimation, along with the confidence intervals and P-value for each generated 3D model. After clicking on images or plots, users
can download and view the data in detail (B) The plot of the predicted per-residue accuracy scores produced by ModFOLD8 for the top refined 3D model
(green bars) compared with the original 3D model (red bars). Plots can also be downloaded as PDFs. (C) Interactive superposition of the top 3D model
and the original 3D model, which are displayed in 3D using JSmol. Models can also be downloaded which including the per-residue error data in the
B-factor column.

The refinement of the best server 3D model in the regular
prediction category is arguably closer to a real-world sce-
nario, compared to refinement of the starting models pro-
vided by assessors in the refinement category. The starting
models chosen by the CASP assessors for the refinement
category, may have already been pre-refined in their mod-
elling pipelines and they often represent the very highest
quality starting models, which makes their further refine-
ment much more difficult. Nevertheless, ReFOLD3 man-
aged to improve the quality for 38% of the starting models
in the refinement category according to the observed scores
(Supplementary Table S16). Using ReFOLD3, our group
ranked ninth in the refinement category for the regular time-
frame targets, according to the official assessors’ formula
(Supplementary Table S11). The ReFOLD3 method has
also shown similar performance for each of the CASP14

target definitions, for the refinement category as well as
the regular prediction category (Supplementary Table S17-
S19). The datasets used for benchmarking are freely avail-
able for all to download via https://predictioncenter.org/
download area/CASP14/.

The performance of the ReFOLD3 was also analysed ac-
cording to the size (number of amino acids) and the GDT-
TS score intervals of the starting models by the CASP
assessors in the refinement category (Supplementary Ta-
bles S20–S25). It is clear that the CASP14 refinement tar-
gets were much harder to refine overall and there was less
room for improvement, as high-quality models of tertiary
structures were produced by many modelling groups, which
were then chosen by the assessors (20,39). However, it is
important to note that many models still contained sig-
nificant local errors, which were both detected and fixed

https://predictioncenter.org/download_area/CASP14/
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Table 1. The performance of the McGuffin group ReFOLD3 refinement pipeline for all regular CASP14 targets according to the GDT-TS and lDDT
scores versus the starting model. The top ModFOLD8 selected server models were taken as the starting models that were refined using ReFOLD3 and
submitted during the CASP14 experiment. Data are from https://www.predictioncenter.org/casp14/

CASP model ID GDT-TS LDDT

Target ID
Prediction
category Starting model Submitted model

Starting
model

Refined
model Diff

Starting
model

Refined
model Diff

T1024 TBM-easy T1024TS326 2 T1024TS220 1 60.68 60.93 0.25 0.67 0.68 0.01
T1026 TBM-hard T1026TS487 4-D1 T1026TS220 1-D1 68.49 68.15 -0.34 0.54 0.58 0.04
T1027 FM T1027TS487 1-D1 T1027TS220 1-D1 36.87 37.12 0.25 0.4 0.4 0
T1029 FM T1029TS487 1-D1 T1029TS220 1-D1 40.8 40.8 0 0.47 0.47 0
T1030 TBM-hard T1030TS487 1 T1030TS220 1 39.84 43.77 3.93 0.6 0.62 0.02
T1031 FM T1031TS209 5-D1 T1031TS220 1-D1 24.47 24.74 0.27 0.32 0.32 0
T1033 FM T1033TS209 5-D1 T1033TS220 1-D1 46.25 45.25 -1 0.51 0.5 -0.01
T1034 TBM-easy T1034TS487 1-D1 T1034TS220 1-D1 82.37 82.53 0.16 0.7 0.73 0.03
T1035 FM/TBM T1035TS351 3-D1 T1035TS220 1-D1 48.28 50 1.72 0.5 0.5 0
T1037 FM T1037TS337 1-D1 T1037TS220 1-D1 51.3 51.3 0 0.52 0.53 0.01
T1038 FM/TBM T1038TS487 4 T1038TS220 1 26.45 26.58 0.13 0.37 0.36 -0.01
T1039 FM T1039TS487 4-D1 T1039TS220 1-D1 34.63 34.78 0.15 0.35 0.38 0.03
T1040 FM T1040TS351 3-D1 T1040TS220 1-D1 24.42 23.65 -0.77 0.38 0.38 0
T1041 FM T1041TS377 3-D1 T1041TS220 1-D1 52.58 53 0.42 0.53 0.53 0
T1042 FM T1042TS226 2-D1 T1042TS220 1-D1 54.98 54.62 -0.36 0.55 0.53 -0.02
T1043 FM T1043TS487 3-D1 T1043TS220 1-D1 17.06 17.23 0.17 0.22 0.24 0.02
T1045s2 TBM-easy T1045s2TS487 4-D1 T1045s2TS220 1-D1 69.28 70.03 0.75 0.63 0.65 0.02
T1046s1 FM/TBM T1046s1TS487 3-D1 T1046s1TS220 1-D1 74.31 75 0.69 0.6 0.6 0
T1046s2 TBM-hard T1046s2TS487 4-D1 T1046s2TS220 1-D1 75.53 76.06 0.53 0.57 0.63 0.06
T1047s1 FM T1047s1TS075 1-D1 T1047s1TS220 1-D1 32.58 32.94 0.36 0.58 0.56 -0.02
T1047s2 FM/TBM T1047s2TS487 5 T1047s2TS220 1 34.05 34.21 0.16 0.62 0.66 0.04
T1049 FM T1049TS326 3-D1 T1049TS220 1-D1 63.25 63.43 0.18 0.57 0.58 0.01
T1050 TBM-easy T1050TS487 1 T1050TS220 1 55.85 55.88 0.03 0.63 0.67 0.04
T1052 FM/TBM T1052TS487 4 T1052TS220 1 54.48 54.15 -0.33 0.67 0.66 -0.01
T1053 FM/TBM T1053TS238 4 T1053TS220 1 39.95 39.18 -0.77 0.54 0.53 -0.01
T1054 TBM-hard T1054TS326 4-D1 T1054TS220 1-D1 67.48 68.71 1.23 0.66 0.68 0.02
T1055 FM/TBM T1055TS238 5-D1 T1055TS220 1-D1 70.9 70.29 -0.61 0.57 0.55 -0.02
T1056 TBM-hard T1056TS209 3-D1 T1056TS220 1-D1 54.44 53.25 -1.19 0.48 0.46 -0.02
T1057 TBM-easy T1057TS351 5-D1 T1057TS220 1-D1 79.57 79.47 -0.1 0.68 0.68 0
T1060s3 TBM-hard T1060s3TS487 4-D1 T1060s3TS220 1-D1 67.89 67.28 -0.61 0.61 0.64 0.03
T1061 FM/TBM T1061TS326 4 T1061TS220 1 30.34 30.5 0.16 0.45 0.47 0.02
T1064 FM T1064TS140 1-D1 T1064TS220 1-D1 20.65 20.65 0 0.22 0.23 0.01
T1065s1 TBM-hard T1065s1TS487 1-D1 T1065s1TS220 1-D1 88.44 88.87 0.43 0.75 0.8 0.05
T1065s2 TBM-hard T1065s2TS277 4-D1 T1065s2TS220 1-D1 90.31 91.07 0.76 0.78 0.78 0
T1067 TBM-hard T1067TS351 3-D1 T1067TS220 1-D1 52.83 52.49 -0.34 0.51 0.49 -0.02
T1068 TBM-hard T1068TS183 2-D1 T1068TS220 1-D1 57.26 55.17 -2.09 0.53 0.51 -0.02
T1073 TBM-easy T1073TS140 5-D1 T1073TS220 1-D1 83.47 83.47 0 0.73 0.73 0
T1074 FM T1074TS487 5-D1 T1074TS220 1-D1 35.8 35.98 0.18 0.38 0.39 0.01
T1076 TBM-easy T1076TS487 4-D1 T1076TS220 1-D1 87.41 87.41 0 0.72 0.78 0.06
T1078 TBM-easy T1078TS351 3-D1 T1078TS220 1-D1 76.74 76.55 -0.19 0.7 0.69 -0.01
T1079 TBM-easy T1079TS487 2-D1 T1079TS220 1-D1 62.03 62.36 0.33 0.64 0.68 0.04
T1080 FM/TBM T1080TS183 1-D1 T1080TS220 1-D1 24.81 25.19 0.38 0.41 0.41 0
T1082 FM/TBM T1082TS487 5-D1 T1082TS220 1-D1 58.67 59.33 0.66 0.43 0.42 -0.01
T1083 TBM-hard T1083TS364 4-D1 T1083TS220 1-D1 83.7 83.15 -0.55 0.71 0.71 0
T1084 TBM-hard T1084TS252 2-D1 T1084TS220 1-D1 88.73 88.03 -0.7 0.76 0.75 -0.01
T1085 FM/TBM T1085TS183 3 T1085TS220 1 35.97 35.78 -0.19 0.61 0.61 0
T1086 FM/TBM T1086TS238 1 T1086TS220 1 41.8 42.06 0.26 0.73 0.71 -0.02
T1089 TBM-easy T1089TS238 4-D1 T1089TS220 1-D1 65.45 65.92 0.47 0.59 0.59 0
T1090 FM T1090TS487 1-D1 T1090TS220 1-D1 53.17 53.17 0 0.51 0.53 0.02
T1091 TBM-easy T1091TS351 4 T1091TS220 1 26.62 26.67 0.05 0.62 0.62 0
T1092 TBM-easy T1092TS319 3 T1092TS220 1 23.24 23.47 0.23 0.45 0.49 0.04
T1093 FM T1093TS487 3 T1093TS220 1 25.44 25.4 -0.04 0.36 0.39 0.03
T1095 TBM-hard T1095TS487 2-D1 T1095TS220 1-D1 41.86 42.09 0.23 0.56 0.61 0.05
T1096 FM T1096TS252 1 T1096TS220 1 26.14 26.52 0.38 0.52 0.56 0.04
T1099 TBM-hard T1099TS487 4-D1 T1099TS220 1-D1 57.3 55.76 -1.54 0.59 0.53 -0.06
T1101 TBM-easy T1101TS487 4 T1101TS220 1 56.65 57.16 0.51 0.65 0.69 0.04

Total 2943.86 2948.55 4.69 30.95 31.47 0.52

https://www.predictioncenter.org/casp14/
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Figure 2. The refinement of four CASP14 targets using the ReFOLD3 protocol. In the left panels, the initial structures were coloured by the per-residue
accuracy score produced by ModFOLD8. In the middle panels, superposition of the best predicted 3D server model selected by ModFOLD8 or the
starting model provided by CASP in the refinement category (cyan), the top 3D model generated by ReFOLD3 (magenta) and native structure (green). In
the right panels, GDT TS plots for the comparison of the original 3D model (cyan) with the top 3D model generated by ReFOLD3 (magenta). (A) CASP14
regular TBM-hard target T1030: RaptorX TS1 versus McGuffin TS1, a GDT TS improvement from 39.84 to 43.77. (B) CASP14 regular FM/TBM target
T1035 domain 1: tFOLD-lDT TS3 versus McGuffin TS1, a GDT TS improvement from 48.28 to 50.00. (C) CASP14 refinement FM target R10909:
starting model versus McGuffin TS1, a GDT TS improvement from 65.61 to 67.06 (D) CASP14 refinement TBM-easy target R1091-D1: starting model
versus McGuffin TS1, a GDT TS improvement from 79.21 to 81.78. Images are created using PyMOL (http://www.pymol.org). GDT TS plots are from
https://www.predictioncenter.org/casp14/.

http://www.pymol.org
https://www.predictioncenter.org/casp14/
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using our ReFOLD3 pipeline (10,14,31). In that context,
while many groups did not perform particularly well for
targets with GDT-TS scores >70 (Supplementary Table
S25), ReFOLD3 performed relatively better at refining the
most highly accurate starting models and was ranked within
the top 5 refinement approaches for targets with GDT-TS
scores >60, according to the cumulative Z-score (Supple-
mentary Tables S24 and S25).

CONCLUSIONS

ReFOLD3 is one of the leading freely available fully auto-
mated servers for the refinement of theoretical 3D models
of proteins. The method is unique in utilizing a gradual re-
straint strategy, based on both contact predictions and local
quality estimation, to guide the refinement of protein mod-
els. Our application of gradual, rather than fixed, restraints
has proved to be more successful for guiding our MD-
simulations. As well as existing as an independent server,
the ReFOLD3 method is integrated with the latest Mod-
FOLD8 server (14,31). This integration enables users to
identify the local errors in their 3D models and then correct
them more conveniently, through the targeted improvement
of specific regions. Using the ReFOLD3 server, non-expert
users can easily visualize the likely improvements to their
models, via intuitive per-residue error plots and 3D model
superpositions.
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Qin,C., Žı́dek,A., Nelson,A.W.R., Bridgland,A. et al. (2019) Protein
structure prediction using multiple deep neural networks in the 13th
critical assessment of protein structure prediction (CASP13). Protein
Struct. Funct. Bioinform., 87, 1141–1148.


