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-6لادبتسلااجودزم-4،2ةساردللمعلااذهميمصتمت:ثحبلافادهأ
فدهبوكيليسلاتاينقتيفمدختستتايدومزلابللةداضملماوعكنيلونيكورولف
ةيلعافتاذةديدجرئاظنميمصتلاهمادختسانكمييتلاتامولعملانعفشكلا
ـل2ةمجرتلاليوطتلماعهاجتةيلاعطيبثتةردقوايرلامللداضمكةيلاع
.ديدجيئاودفده،ةيلجنملاةروصتملا

جودزم-4،2ـلطاشنلاوةينبلانيبةيمكلاةقلاعلاةساردتمت:ثحبلاةقيرط
جمانربيفةينيجلاةفيظولابيرقتةينقتمادختسابنيلونيكورولف-6لادبتسلاا
ـل2ةمجرتلاليوطتلماعـلداعبلأاةيثلاثةينبلاميمصتمت.تاودلأاويدتسا
ةجذمنلاةينقتىلإادانتسايرسيوسلاجذومنلالمعةحاسمنمةيلجنملاةروصتملا
يجذومنلا2ةمجرتلاليوطتلماعليئيزجلاماحتللااةساردتيرجأ.ةلثامتملا

"انيفكودوتوأ"مادختسابلدبتسملاريغنيلونيكورولف-6لادبتسلااجودزم-4،2
ضعبلةيئاودلاصئاصخلاةساردمت،كلذىلعةولاع."سكرياب"جمانربيف
.وكيليسلايفةراتخملاتابكرملا

طاشنلاوةينبلانيبةقلاعللايؤبنتواقوثوموايوقاجذومنثحبلااذهروط:جئاتنلا
نيلونيكورولف-6لادبتسلااجودزم-4،2ـلةيئايميكلاتابيكرتلاطبرييذلايمكلا
طابترلاالماعمىلعجذومنلايوتحي.مويدومزلابللةداضملااهتطشنأعم
،لدعملاعبرملاطابترلاالماعمو،0.921ةميقب"2رآ"،يلخادلايعيبرتلا
يس2ويك"،ةدحاولاةزاجلإاةحصنمققحتلالماعمو،0.878ةميقب"جدأ2رآ"
.0.901ةميقب"ديرب2رآ"،يؤبنتلايعيبرتلاطابترلاالماعمو0.801ةميقب"يف
صاوخلاىلعدمتعتنيلونيكورولف-6ـلمويدومزلابللةداضملاةطشنلأانأحضوي
يت"،"وي7يبيديت"،"9يآيجيج"،"نا5ةقلح"ـلةيئايميكلاوةيئايزيفلا
يآيجيج"ـلنوكيامنيبةيباجيإةمهاسم"يآ75فايدرآ"،"وي8يبيد
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مويدومزلابللةداضملاةطشنلأايفةيبلسةمهاسم"وي7يبيديت"و"9
ليوطتلماعجذومنوتابكرملانيبةرقتسمتاعمجمليكشتمت.تابكرملل
ىلإ8.200-نمحوارتيطبربراقتعمةيلجنملاةروصتملاـل2ةمجرتلا
ىلع24و22و16و11و5بكرملايوتحي.لوم/يرولاكوليك10.700-
ةيكرحصئاصخرهظيوديماسكوبرك-4-نيلونيكلانملضفأطبرتاطابترا
.ديدجلافدهلااذهللضفأاطبثمنوكينأنكمييلاتلابو،ةديجةيئاود

طاشنلاوةينبلانيبةيمكلاةقلاعلااهنعتفشكيتلاتامولعمللنكمي:تاجاتنتسلاا
جودزم-4،2ميمصتةقيرطلةبقاثةرظنيطعتنأتابكرمللماحتللااتاساردو
صئاصخوةيلاعتايدومزلابللةداضمةطشنأعمنيلونيكورولف-6لادبتسلاا
.ديدجلاايرلامللداضملاءاودلافدهطيبثتلةديجةيلكيه

ماحتللاا؛لثامتلاةجذمن؛ايرلاملاةحفاكم؛نيلونيكورولفلا-6:ةيحاتفملاتاملكلا
2ةمجرتلاليوطتلماع؛طاشنلاولكيهلانيبةيمكلاةقلاعلا؛يئيزجلا

Abstract

Objective: This work was designed to study 2,4-

disubstituted 6-fluoroquinolines as antiplasmodial

agents by using in silico techniques, to aid in the design of

novel analogs with high potency against malaria and high

inhibition of Plasmodium falciparum translation elonga-

tion factor 2 (PfeEF2), a novel drug target.

Methods: Quantitative structure-activity relationships

(QSAR) of 2,4-disubstituted 6-fluoroquinolines were

studied with the genetic function approximation tech-

nique in Material Studio software. The 3D structure of

PfeEF2 was modeled in the SWISS-MODEL workspace

through homology modeling. A molecular docking study

of the modeled PfeEF2 and 2,4-disubstituted 6-

fluoroquinolines was conducted with Autodock Vina in

Pyrx software. Furthermore, the in silico pharmacoki-

netic properties of selected compounds were investigated.
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Results: A robust, reliable and predictive QSAR model

was developed that related the chemical structures of 2,4-

disubstituted 6-fluoroquinolines to their antiplasmodium

activities. The model had an internal squared correlation

coefficient R2 of 0.921, adjusted squared correlation co-

efficient R2
adj of 0.878, leave-one-out cross-validation

coefficient Q2
cv of 0.801 and predictive squared correla-

tion coefficient R2
pred of 0.901. The antiplasmodium ac-

tivity of 6-fluoroquinolines was found to depend on the

n5Ring, GGI9, TDB7u, TDB8u and RDF75i physico-

chemical properties: n5Ring, TDB8u and RDF75i were

positively associated, whereas GGI9 and TDB7u were

negatively associated, with the antiplasmodium activity

of the compounds. Stable complexes formed between the

compounds and modeled PfeEF2, with binding affinity

ranging from �8.200 to �10.700 kcal/mol. Compounds

5, 11, 16, 22 and 24 had better binding affinities than

quinoline-4-carboxamide (DDD107498), as well as good

pharmacokinetic properties, and therefore may be better

inhibitors of this novel target.

Conclusion: QSAR and docking studies provided insight

into designing novel 2,4-disubstituted 6-fluoroquinolines

with high antiplasmodial activity and good structural

properties for inhibiting a novel antimalarial drug target.

Keywords: 6-fluoroquinolines; Antimalaria; Homology

modeling; Molecular docking; QSAR; Translation elonga-

tion factor 2

� 2023 The Authors. Published by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Malaria poses a great danger to public health. This dis-
ease is caused by the Plasmodium parasite, which is trans-
mitted between humans by female Anopheles mosquitoes.

Five species of the parasite are pathogenic to humans, among
which Plasmodium falciparum and Plasmodium vivax are the
most threatening.1,2 Malaria caused an estimated 619,000

deaths in 2021, of which 76% (w470,000) were in children
younger than 5 years,3 amounting to a child dying from
the disease nearly every minute. The highest malaria

burden is in sub-Saharan Africa, which had an estimated
234 million cases and 593,000 deaths in 2021. Nigeria has
26.6% and 31.3% of the global malaria cases and deaths,

respectively.3 Prevention of malaria through vector control is
challenging, because of increasing mosquito resistance to the
most commonly used insecticides (pyrethroids) in insecticide-
treated nets, and increasing spread of an urban-adapted

mosquito species (Anopheles stephensi).3

Treatment through chemotherapy is challenging because
of rising resistance to many antimalarial drugs and

artemisinin-based combination therapy, a recommended
therapy for P. falciparum (the most deadly parasite).3

Therefore, new potent antiplasmodial drugs with novel

mechanisms of action must be developed.4 Quinoline-4-
carboxamide (DDD107498) was discovered as a potent
antimalarial compound active against multiple life-cycle
stages of the parasite. The molecular target of this com-

pound is translation elongation factor 2 (eEF2). However,
the interaction of DDD107498 with the target (PfeEF2) is
not well understood.4 Hochegger et al. (2019) synthesized

new analogs of quinoline-4-carboxamide to improve the
antiplasmodial activity (in vitro and in vivo) and to under-
stand the structure-activity-relationships of these analogs.4

In silico techniques are computer-aided modeling methods
used in screening chemical databases to identify novel drug
candidate.5 This work was aimed at conducting a
quantitative structure-activity relationships (QSAR) study

of quinoline-4-carboxamide analogs (6-fluoroquinolines) to
build a model relating the antiplasmodium activity to the
physicochemical properties of 6-fluoroquinolines, to increase

understanding of the structure-activity-relationships of the
compounds. We additionally performed a molecular docking
study of 6-fluoroquinolines with homology modeled

P. falciparum translation elongation factor 2 (PfeEF2) as the
molecular target, to understand the modes of interaction of
the compounds with the potential target. This information
may be used to design better inhibitors of the novel target as

antimalarial drug candidates.

Materials and Methods

Data collection

A dataset of 28 compounds of 6-fluoroquinoline de-

rivatives and their in vitro activities against the chloroquine-
sensitive strain NF54 of P. falciparum was obtained from the
literature.4 The antiplasmodial activities of the 6-

fluoroquinolines were obtained as IC50 (nM) and converted
to pIC50 {�logIC50 (M)} to normalize the distribution of the
values for QSAR building.5 The structures and names of the

6-fluoroquinolines and their respective activities (pIC50) are
presented in Table 1.

Generation of molecular descriptors and pretreatment

The molecular structures of the 6-fluoroquinolines

(Table 1) were drawn with Chemdraw version 12.0.2
software, and their equilibrium geometries were obtained
in Spartan 14 software by optimization with the parametric
semi-empirical (PM6) quantum mechanics method.6,7 The

molecular descriptors of the optimized 6-fluoroquinolines
were generated with PaDEL-Descriptor software version
2.20.8 After redundant and highly correlated descriptors

were removed, normalization with Eq. (1) was performed
to give each descriptor an equal chance of appearing in the
model.9 These steps were achieved with Drug Theoretical

and Cheminformatics Laboratory (DTC Lab) pretreatment
and normalization software and the following equation:

Xni ¼ Xi � Xmin

Xmax � Xmin
(1)

where Xni and Xi are the normalized and unnormalized

descriptor values for molecule i for a particular descriptor,
and Xmin and Xmax are the minimum and maximum values
for the descriptor.

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1: Antiplasmodial activity and leverage of the 6-fluoroquinolines.

C/N Compound Experimental pIC50 Theoretical pIC50 Residual Leverage

1a 5.132 5.403 �0.271 0.720

2 5.057 5.254 �0.197 0.281

3 5.223 5.111 0.111 0.190

4a 5.335 4.649 0.687 0.419

5 5.252 4.887 0.365 0.205

6a 4.827 5.808 �0.980 0.679

7 4.424 4.370 0.053 0.511

8a 4.194 4.014 0.179 0.586

9 4.996 5.360 �0.364 0.120

(continued on next page)
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Table 1 (continued )

C/N Compound Experimental pIC50 Theoretical pIC50 Residual Leverage

10 5.712 5.782 �0.070 0.107

11a 9.678 9.294 0.384 0.786

12 5.507 5.978 �0.471 0.292

13 8.301 8.275 0.026 0.528

14 8.959 8.720 0.239 0.336

15a 7.699 7.176 0.523 0.563

16 7.745 7.858 �0.114 0.658

17 5.147 5.504 �0.357 0.137
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Table 1 (continued )

C/N Compound Experimental pIC50 Theoretical pIC50 Residual Leverage

18a 6.004 5.676 0.329 0.432

19a 6.638 6.181 0.457 0.815

20 5.983 7.138 �1.155 0.365

21 5.123 5.017 0.106 0.410

22 5.019 4.620 0.399 0.462

23 8.398 8.244 0.154 0.282

24 6.215 5.570 0.645 0.367

25 6.585 6.505 0.080 0.125

(continued on next page)
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Table 1 (continued )

C/N Compound Experimental pIC50 Theoretical pIC50 Residual Leverage

26 6.276 6.489 �0.214 0.356

27a 7.056 7.172 �0.117 1.000

28 8.699 7.936 0.763 0.267

a Test set, C/N ¼ compound number.
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Model building and validation

The Kennard-Stone algorithm in DTC LabData Division
software was used to divide the data into two sets.10 This
algorithm selects training set compounds from the data set

by first selecting two compounds separate from each, other
on the basis of Euclidean distance, and including them
in the training set. Sequentially, the algorithm removes

compounds from the dataset and includes them in the
training set to maximize the Euclidean distance between
the x-vectors of the already selected compound and the
remaining compounds in the dataset. This process is

repeated until the specified number of training set
compounds is selected.11 This algorithm has the advantages
of selecting training set compounds that are uniformly

distributed along the data space and test set compounds
that fall within the measured space.10

A total of 70% of the data (training set) was used in

building the model, and 30% of the data (test set) was used to
validate the model. The activities (pIC50) of the training set
compounds were used as the dependent variable and their

descriptors served as independent variables in regression
analysis to build the model with the genetic function
approximation (GFA) technique inMaterial Studio software
version 8.0.12 GFA uses a genetic algorithm to identify the

best model among possible QSAR models. It automatically
selects group of descriptors at random, according to the
user-specified number, and uses them to build regression

models, then assesses the models with the Friedman function
(LOF), a measure of model fitness expressed in Eq. (2).13

Many models are built on the basis of the user-specified

number of generations, and the best model is the one with
the lowest LOF score14 calculated as follows:
LOF ¼ SEE�
1� cþdp

M

�2
(2)

where p is the total number of descriptors in the model, c is

the number of terms in the model, M is the number of
compounds in the training set, d is the user-defined
smoothing parameter, and SEE is the standard error of

estimation, which is the same as the standard deviation of the
model, defined as;

SEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Yexp�Yprd

�2
N� P�1

s
(3)

The built model was validated with the squared correla-
tion coefficient R2; adjusted correlation coefficient R2

adj;

cross-validation coefficient Q2
cv; and external validation

coefficient R2
pred, defined by Eqs. (4)e(7), respectively.15

R2 ¼
�P�

Yexp � ӯexp
��
Yprd � ӯprd

��2
P�

Yexp � ӯexp
�2�

Yprd � ӯprd
�2 (4)

R2
adj ¼

ðn�1Þ�R2 � p
�

N� p�1
(5)

Q2
cv ¼ 1�

P�
Yprd � Yexp

�2P�
Yexp � ӯprd

�2 (6)

R2
pred ¼ 1�

P�
Yprd � Yexp

�2�
Yexp � ӯprd

�2 (7)
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Yexp and Yprd are the experimental and predicted activity
of the training set compounds, respectively, in Eqs. (4) and

(6), and the experimental and predicted activity of the test
set compounds in Eq. (7). ӯprd is the mean experimental
activity of the training set compounds. N and p in Eqs. (3)

and (5) are the number of molecules in the training set and
number of descriptors in the model, respectively.

To validate the reliability of the developed model, we

computed the randomization parameters R2
r, Q

2
r and cR2

p,
which were robust and not obtained by chance. The training
set was used to generate random multi-linear regression

models through random shuffling of the activity of the
compounds (dependent variables) while keeping their de-
scriptors (independent variables) stable. R2

r and Q2
r were

computed as the average of the squared correlation coeffi-

cient and cross-validation coefficient of the random models.
The coefficient of determination cR2

p was computed with
Eq. (8):16

cR2
p ¼ R2x

�
R2 � R2

r

�2
(8)

where R2 is the squared correlation coefficient for the non-
randomized model, and R2

r is the average of the squared

correlation coefficients of the random models.

Descriptor analyses

Inter-correlation among the descriptors in the built model
was verified by correlation analysis of the descriptors. The
variance inflation factor (VIF) for each descriptor was

computed with Eq. (9) to further confirm their inter-
correlation:17

VIFi ¼
1

1� R2
ij

(9)

where VIFi is the variance inflation factor for a descriptor i in

the model, and R2
ij is the correlation coefficient of the mul-

tiple regression between descriptor i and the remaining j
descriptors in the model.

The mean effect (ME) for each descriptor in the model

was computed with Eq. (10) to evaluate the relative influence
of the descriptors in the model:18

MEj ¼
bj
Pi¼n

i¼ 1dijPm
j bj

Pn
i dij

(10)

where MEj is the mean effect for descriptor j in a model, dij
is the value of descriptor j in the descriptor matrix for each
molecule in the training set, bj is the coefficient of
descriptor j in the model, m is the number of descriptors in

the model, and n is the number of molecules in the training
set.

Applicability domain of the model

The applicability domain, described by Williams’s plot of

the built model, was generated with the leverage method (Eq.
(11)) to identify outliers and influential compounds in the
dataset.19
h ¼ X
�
XTX

��1
XT (11)

where X is the descriptor matrix, and XT is the transpose
matrix of X. The leverages of the compounds are the diag-

onal of the matrix h. The warning leverage h* is the
maximum value above which a compound is considered to be
influential, and is expressed as:

h* ¼ 3ðpþ1Þ
n

(12)

where n is the number of compounds in the training set, and
p is the number of descriptors in the model.

Homology modeling

The crystal structure of PfeEF2 has not been elucidated.
Therefore, we used comparative modeling to build the 3D

structure of PfeEF2 and subsequently performed a docking
study. The protein sequence of eEF2 forP. falciparum (isolate
NF54), obtained from UniProtKB (http://www.uniprot.org)
accession code W7JNW7, comprised 832 amino acids.20 The

code was submitted to the SWISS-MODEL workspace
(https://www.swissmodel.expasy.org) to search for evolu-
tionarily related structures matching the target sequence.21

Suitable target-template alignments were identified with the
Basic Local Alignment Search Tool (BLAST) and hidden
Markov models (HMMs) with an HMM-HMMebased
lightning-fast iterative sequence search (HHblits).22,23 The 3D
structure of PfeEF2 was built with the highest ranked target-
template alignment in ProMod3 version 3.2.1.24 The built

structure was assessed with the qualitative model energy
analysis (QMEAN) scoring function and global model
quality estimation.24,25

Molecular docking

The modeled PfeEF2 was saved as a PDB file and used as
receptor for docking with 6-fluoroquinolines as ligands. The
ligands were prepared by saving their structures as PDB files

from Spartan software, and the receptor was prepared by
removal of co-crystallized ligands and hetero-atoms in Dis-
covery Studio software.26 Both the ligands and the receptor
were converted to PDBQT files and docked with Autodock

Vina in Pyrx software with a grid box dimension of
75.7994 Å � 100.6790 Å � 118.096 Å, and centers of
75.9456, 38.8172 and �1.2721 (X, Y and Z coordinates,

respectively), to cover the complete surface of the
protein.27,28 The interactions in docked structures were
visualized with Discovery Studio Visualizer.29

In silico drug-likeness and ADMET prediction

In silico prediction of drug-likeness, and adsorption, dis-
tribution, metabolism, excretion and toxicity (ADMET) of
compounds with excellent binding affinity toward PfeEF2

was conducted with the SwissADME and ADMETlab 2.0
online platforms.30,31 These predictions are essential for
evaluating the potential of a potent molecule to have

effective pharmacokinetics and toxicity.32

http://www.uniprot.org
https://www.swissmodel.expasy.org


Table 2: Validation parameters of the model.

Parameter Threshold Model value RemarkR

R2 R2 > 0.6 0.912 Passed5

R2
adj R2

adj > 0.5 0.878 Passed5

F Large 27.001 Passed5

Q2
cv Q2

cv > 0.5 0.801 Passed5

|R2 � Q2
cv| |R2 � Q2

cv| < 0.3 0.111 Passed33

SEE Low 0.505 Passed34

R2
pred R2

pred > 0.5 0.901 Passed5

r2 r2 > 0.6 0.908 Passed35

r0
2 0.908

r00
2 0.898

|r0
2 � �r’0

2| |r0
2 � �r’0

2| < 0.3 0.010 Passed35

K 0.85 < k < 1.15 1.022 Passed35

(r2 � �r0
2)/r2 (r2 � �r0

2)/r2 < 0.1 0.000 Passed35

RNote: r2 and r0
2 are the squared correlation coefficients of the

plot of the experimental versus predicted pIC50 of the test set

compounds with and without intercepts, respectively, and k is the

gradient of the plot with intercept. r’0
2 is the reverse of r0

2.
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Results

The best QSAR model developed on the basis of GFA
that related the chemical structures of the 6-fluoroquinolines

to their antiplasmodial activities is presented below:
Figure 1: (a) Plot of predicted versus experimental pIC50 of the compou

pIC50 of the compounds. (c) Plot of standardized residual activity aga
pIC50 ¼ 2.428645705n5Ring

� 4.587432351GGI9

� 7.127111879TDB7u

þ 7.951073945TDB8u

þ 0.078997316RDF75i

� 8.731499618

Discussion

GFAwas deployed to generate QSARmodels relating the

physicochemical properties of 6-fluoroquinolines with sub-
stitutions at ring positions 2 and 4 to their antiplasmodial
activities. The model that best predicted the antiplasmodial

activity of the compounds is reported herein. The model
surpassed all validation parameters (Table 2) for good
prediction, as indicated by the low residual (difference
between experimental and theoretical activity) values of the

compounds (Table 1). The linearity of the plots of the
model’s predicted and experimental activity (Figure 1a),
and the difference in R2 and Q2

cv of <0.3, further

supported the model’s predictive ability.26 The R2 values
for the random models generated were all below the
minimum value (0.6) for an acceptable model, thus

indicating that the main model was not a product of
chance. This finding was further confirmed by the average
nds. (b) Plot of standardized residual activity against experimental

inst leverage of the compounds (Williams plot).



Table 3: Results for random models.

Model R2 Q2

Original 0.912 0.802

Random 1 0.197 �0.779

Random 2 0.212 �1.077

Random 3 0.199 �1.108

Random 4 0.282 �0.515

Random 5 0.271 �0.388

Random 6 0.104 �1.029

Random 7 0.250 �1.413

Random 8 0.399 �0.031

Random 9 0.359 �0.213

Random 10 0.510 �0.046

Random model parameters

Average R2: 0.336

Average Q2: �0.527

Average cRp2: 0.767

Table 4: Pearson’s correlation, VIF and ME of the descriptors in th

Descriptors Inter-correlations

n5Ring GGI9 TDB7u

n5Ring 1.000 �0.329 0.351

GGI9 �0.329 1.000 �0.430

TDB7u 0.351 �0.430 1.000

TDB8u 0.186 �0.281 0.862

RDF75i �0.121 0.651 �0.566

Figure 2: (a) Single sequence alignment of modeled PfeEF2 (model-01

1U2R. (c) 3D structure modeled PfeEF2.
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values of R2
r, Q

2
r and cR2

p (Table 3).15,16 Hence, the built
model was considered robust, reliable and stable. The

distribution of the compounds on opposite sides of the line
0 standardized residual (Figure 1b) indicated the absence
of systematic error in model building.

The five descriptors best relating the structural features of
the studied compounds to their antiplasmodial activities, as
demonstrated in the model, were ring count (n5Ring), to-

pological charge index (GGI9), 3D topological distance
based autocorrelation (TDB7u and TDB8u) and 3D radial
distribution function (RDF75i) descriptors. Pearson’s cor-
relation analysis was performed on the descriptors to verify

their inter-correlation; further verification was performed
with evaluation of VIF. The test results (Table 4) indicated
no significant inter-correlation among the descriptors, on

the basis of VIF values below 10. Therefore, the combination
of descriptors significantly related the antiplasmodial
e model.

VIF ME

TDB8u RDF75i

0.186 �0.121 1.309 0.034

�0.281 0.651 2.107 �0.090

0.862 �0.566 5.036 �3.119

1.000 �0.545 4.523 3.973

�0.545 1.000 2.414 0.202

) with 1U2R (1u2r.1.A) amino acid sequences. (b) 3D structure of



Figure 3: (a) Local quality estimate of the residue graph. (b) Comparison of the modeled PfeEF2 structure with a non-redundant set of

PDB structures. (c) Ramachandran plot of the modeled PfeEF2 for all non-glycine/proline residues.
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activities of the studied compounds to their structures. The

mean effects (Table 4) of the descriptors indicated their
relative strength in influencing the pIC50 of the 6-
fluoroquinolines.

The first descriptor in themodel was n5Ring, defined as the

5-membered ring count. This descriptor relates the present of
5-membered rings in the structures of 6-fluoroquinolines to
their pIC50. The positive coefficient of this descriptor in the

model indicated that the presence of 5-membered rings in the
structures of 6-fluoroquinolines positively contributes to
antiplasmodial activity. The second descriptor in the model

was GGI9, defined as the 9-ordered raw topological charge
index descriptor. This descriptor estimates the charge trans-
fers between pairs of atoms that are nine bonds apart.36 The

negative coefficient for this descriptor in the model
indicated that the presence of two atoms that are nine bonds
apart and have a high electronegativity difference
contributes negatively to 6-fluoroquinoline antiplasmodial

activity. The third and fourth descriptors in the model,
TDB7u and TDB8u, describe topological distance, on the
basis of autocorrelation of lag 7 (TDB7u) and 8 (TDB8u), all

unweighted. This class of descriptors was calculated on the
basis of the average Euclidean distance between all atoms
located at a given topological distance (distance between two

atoms in molecular graph representation).37 For the TDB7u
and TDB8u descriptors, the topological distances
considered were those between two atoms seven and eight
bonds apart, respectively. All atoms were treated equally,

because they were unweighted. An increase in TDB7u was
associated with a decrease in antiplasmodial activity of 6-
fluoroquinolines, because of its negative coefficient in the
model. In contrast, an increase in TDB8uwas associated with

an increase in antiplasmodial activity, because of its positive
coefficient in the model. The fifth descriptor in the model,
RDF75i, is the radial distribution function 075/weighted by

the first ionization potential.38 The descriptor measures the
first ionization potential of an atom or group of atoms at a
radius 4.5 Å from the geometrical center of the molecules.

The positive coefficient for this descriptor in the model
indicated that an increase in its value was associated with
increased antiplasmodial activity of 6-fluoroquinolines.

The domain of applicability for the model was presented
by a Williams plot (Figure 1c), as the area within �3
standardized residuals, and leverage 0e0.950. The
applicability domain showed no outliers, and all compounds

were within �3 standardized residuals. However, the
leverage of one influential compound (compound 27)
exceeded 0.950, the warning leverage for the model. The

structure of this influential compound slightly differs from
that of the other compounds in the dataset (Table 1) and
therefore should not be considered the template when the

model is used to design novel 6-fluoroquinolines.
DDD107498, the template for designing the dataset used

in this work, has been reported to inhibit PfeEF2 as a



Table 5: Docking results between modeled pfeEF2 and selected 6-fluoroquinolines.

Ligand Binding affinity

(kcal/mol)

Hydrogen bonding Hydrophobic interaction Electrostatic interaction

Amino acid (bond length,

Å)

Amino acidbond type Amino acidbond type

5 �10.700 THR323 (2.48)a, TRP317

(2.19)a, ASP322 (2.06)a,

GLY294 (3.13)b

THR218c, PHE79d,

HIS81d, LEU316e,

PRO319f, PRO319f

ASP322g, ARG221h,

ASP322i, ASP322i

11 �10.200 SER107 (2.62)a, SER107

(2.04)a, HIS527 (2.97)a,

THR771 (2.98)a, GLY780

(1.79)a, GLU143 (3.71)b

TYR473c, PHE783d,

SER106j, TYR473f,

ARG775f, MET471f

GLU525g

16 �10.000 SER474 (2.79)a, THR771

(2.84)a, GLY780 (1.98)a
TYR473c, LEU507e,

ARG775f, MET471f
GLU525g

22 �10.200 LYS455 (1.80)a, TYR473

(2.46)a, SER474 (2.38)a,

GLU525 (2.85)a, PHE783

(3.66)b, PRO784 (3.28)b

TYR473c, LEU526e,

LEU526e, HIS102f,

TYR473f, ARG775f,

LEU526f

ALA782g, ASP104i,

GLU525i

24 �10.100 ARG114 (2.65)a, GLN781

(2.73)a, TYR186 (2.23)a,

GLY142 (3.53)b, GLU143

(3.25)b, ASP188 (3.57)b

TYR186d THR185g, ASP728i,

ASP728i

Q4C �9.900 SER107 (2.10)a, SER107

(2.07)a, ARG775 (3.33)b,

GLY780 (3.24)b, ASP104

(3.47)b

TYR473d, TYR473d,

CYS523f, GLY524j,

ARG775f, CYS523f

PHE105g

Q4C ¼ Quinoline-4-carboxamide. aConventional hydrogen bond. bCarbon hydrogen bond. cp- sigma. dp-p. eAlkyl-alkyl. fp-alkyl.
gHalogen. hp-cation. ip-anion. jAmide-p.
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molecular target.4 PfeEF2 is crucial for protein synthesis and

is responsible for the GTP-dependent ribosomal trans-
location along mRNA; therefore, its discovery may open
new avenues for antimalarial drug discovery.39 However, its

crystal structure is not available, and its interaction with
DDD107498 is unclear. Therefore, we designed a
homology model for use in our docking study. The crystal

structure of the closet template was searched with the
protein sequence of eEF2 in P. falciparum (isolate NF54).
ADP-ribosylated ribosomal translocase from Saccharo-
myces cerevisiae (PDB: 1U2R) was identified as the closest

template, with 61.300% identity, 0.480 similarity, 1.000
coverage and 2.600 Å resolution, as determined by X-ray
crystallography.40 Figure 2a shows the single sequence

alignment of modeled PfeEF2 (Figure 2c) with the 1U2R
(Figure 2b) amino acid sequence; amino acids of the 1U2R
that aligned with the model are indicated in bold. The

modeled PfeEF2 had a global model quality estimation
score of 0.790 and QMEAN score of 0.770. The former
scoring function estimates the accuracy of the modeled

structure, whereas the latter assesses the quality of the
model.24,25 The closer the values of the scoring functions
are to 1, the better the built model. Therefore, the modeled
PfeEF2 was considered good and reliable.

The plot in Figure 3a, shows the modeled PfeEF2 local
quality estimate. The plot indicated a good local quality
estimate, because most of the residue scores were close to

1, and the average was 0.770. Figure 3b compares the
structure of the modeled PfeEF2 with the non-redundant
aligned PDB structures, on the basis of a plot of normal-

ized QMEAN scores (Z-scores) against protein sizes (resi-
dues). The plot indicated that the score of the structure of
modeled PfeEF2 (red star) was within that of experimentally
determined structures, on the basis of the number of residues.

The model had a Z-score of �1.200, thus indicating good
agreement with an experimental structure of similar size.41

Figure 3c shows the Ramachandran plot of modeled

PfeEF2 for all non-glycine/proline residues. This plot pro-
vided insight into the backbone dihedral angles of amino
acid residues in PfeEF2 against energetically favored regions

of dihedrals of protein residues in general. In the plot, the
green contour indicates the favored regions; 95.410% of
residues were Ramachandran favored, and the MolProbity
score was 1.88.

All 28 compounds in our dataset were docked with the
modeled pfeEF2, and their binding affinities ranged
from �8.200 to �10.700 kcal/mol, thereby indicating strong

interaction of the compounds with the amino acids of
PfeEF2. DDD107498, which was experimentally suggested
to form a stable complex with PfeEF2, was docked and

found to have a binding affinity of �9.900 kcal/mol.39 This
binding affinity was greater than that of five compounds in
the dataset (Table 5), thus indicating that the compounds

formed more stable complexes with the target than
DDD107498, and consequently may be better inhibitors.
Compound 5 had the best binding affinity (�10.700 kcal/
mol), possibly because of its better interaction with the

target. Figure 4 shows the structures of the interactions of
compound 5 with PfeEF2. The interactions involved the
following: (1) Three conventional hydrogen bonds: one of

bond length 2.480 Å from a hydrogen on THR323 to
fluorine in the quinoline moiety of the compound; one of
bond length 2.190 Å from the nitrogen of the quinoline

moiety of the compound to oxygen in TRP317; and one
of bond length 2.06 Å from the nitrogen of the
carboxamide group of the compound to oxygen in the



Figure 4: 3D and 2D structures of compound 5 and PfeEF2 interactions.
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ASP322 residue. (2) A carbon hydrogen bond of bond

length 3.139 Å from the methyl carbon of the 2-{4-
[(morpholin-4-yl)methyl]phenyl} substituent of the com-
pound to oxygen in the GLY294 residue. (3) A halogen

interaction between the carbon of the ASP322 residue and
fluorine in the quinoline moiety. (4) Three electrostatic in-
teractions: one of p-cation type between the amino group of

ARG221 and the p-orbital of the N-benzyl substituent in
the carboxamide group, and two of p-anion type from ox-
ygen in the ASP322 residue to two rings of the quinoline
moiety. (5) Six hydrophobic interactions: one of p-sigma

type from carbon in the THR218 residue to the phenyl ring
of the quinoline moiety; two of p-p type between the p-
orbital in the PHE79 and HIS81 residues, and the p-orbital
of the N-benzyl substituent in the carboxamide group; one
of alkylealkyl type between the alkyl carbon in LEU316
and the morpholin carbon of the 2-{4-[(morpholin-4-yl)

methyl]phenyl} substituent; and two p-alkyl type between
PRO319 and the two rings of the quinoline moiety.

No correlation was observed between the binding affin-

ities of the docked compounds and their antiplasmodial ac-
tivity against a chloroquine-sensitive strain (PfNF54), thus
indicating the possibility of multiple targets for the
compounds. However, the results provide insight into the

binding nature of PfeEF2 and may be used in designing good
inhibitors.

Table 6 presents the predicted ADMET and drug-likeness

properties of the five compounds with the best binding af-
finity. The partition coefficient (logP � 5), molecular weight
(<500 g/mol), H-bond acceptors (�10) and H-bond donors

(�5), on the basis of Lipinski’s rule, were predicted for the
compounds.42 The results indicated that compounds 5 and
24 had no violations, whereas compounds 11, 16 and 22
each had one violation of Lipinski’s rule (Table 6). The

compounds satisfying Lipinski’s rule (fewer than two
violations) therefore were considered orally active.42 The
water solubility (log mol/L) of the compounds indicated

that compounds 5 and 11 were moderately soluble (�6 log
mol/L < �4), and compounds 16, 22 and 24 were soluble
(�4 log mol/L < �2). Therefore, the compounds are not

expected to have poor oral absorption.43 The polar surface
areas (Å2) of the compounds were within the satisfactory
range and hence were considered orally bioavailable.

Similarly, zero pan assay interference compounds (PAINS)
alerts were obtained for all compounds, thus indicating
that they may serve as lead compounds.44



Table 6: In silico drug-likeness and ADMET properties of the most inhibitory compounds.

Drug-likeness Compounds

5 11 16 22 24

Partition coefficient (logP) 4.700 3.770 3.990 3.520 3.100

Molecular weight 469.550 577.690 563.710 547.660 491.060

Number of H-bond acceptors 5 8 8 7 7

Number of H-bond donors 1 1 1 1 1

Number of rotatable bonds 7 11 11 9 8

Lipinski’s violations 0 1 1 1 0

Water solubility (log mol/L) �5.193 �4.159 �3.440 �2.849 �2.563

Polar surface area (Å2) 54.460 87.240 70.170 78.010 60.940

PAINS alert 0 0 0 0 0

Absorption

Caco-2 permeability (log cm/s) �4.935 �4.989 �5.197 �5.134 �4.899

Human intestinal absorption (%) 99.700 99.900 99.900 99.800 99.300

Distribution

Volume distribution (L/kg) 2.328 1.830 2.109 2.319 2.357

BBB penetration (log cm/s) �0.188 �0.072 �0.038 �0.041 �0.010

Metabolism

CYP1A2 inhibitor No No No No No

CYP2C19 inhibitor No Yes Yes Yes No

CYP2C9 inhibitor Yes Yes No No No

CYP2D6 inhibitor Yes Yes Yes Yes Yes

CYP3A4 inhibitor Yes Yes Yes Yes Yes

Excretion

Half-life 0.015 0.017 0.017 0.072 0.029

Toxicity

Ames toxicity 0.833 0.289 0.046 0.030 0.144

Rat oral acute toxicity 0.436 0.426 0.326 0.786 0.429

Carcinogenicity 0.092 0.388 0.088 0.125 0.088
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The Caco-2 permeability (>�5.15 log cm/s) of all com-

pounds except compound 16 (<�5.15 log cm/s), and the
intestinal absorption (>30%) of all compounds, indicated
good absorption potential. The volume distribution

(0.04 < VD < 20 L/kg) of the compounds indicated good
distribution characteristics, and the bloodebrain barrier
(logBBB cm/s>�1) of the compounds indicated their ability
to cross the barrier and thus not cause any problems with the

central nervous system.32 Metabolism of the compounds was
predicted on the basis of their interaction with cytochrome
P450 (CYP) (Table 6). All compounds were found to be

inhibitors of CYP2D6 and CYP3A4, but not CYP1A2.
Compounds 5 and 11 were found to be inhibitors of
CYP2C9, whereas compounds 16, 22 and 24 were not.

Compounds 11, 16 and 22 were found to be inhibitors of
CYP2C19, whereas compounds 5 and 24 were not.
Investigation of the interactions of molecules with CYP

isoforms is key to understanding drug metabolism.6 The
excretion of the compounds was verified by prediction of
their half-lives in terms of the probability (from 0 to 1) of
having a long half-life. The half-lives of the compounds

(Table 6) indicated high clearance. The toxicity prediction is
given as the probability (from 0 to 1) of being toxic. The
results (Table 6) indicated that the compounds had low

probabilities of being toxic, except for compounds 5 and
22, which had high probabilities of Ames and rat oral
acute toxicity, respectively. Therefore, only compound 5

might be mutagenic, and compound 22 might have toxicity
to mammals.32 The ADMET results indicated good

pharmacokinetic properties; therefore, the studied
compounds may be considered for drug development.

Conclusion

This work developed a robust and reliable QSAR model
that relates the structures of 2,4-disubstituted 6-

fluoroquinolines to their antiplasmodium activity, on the
basis of GFA. The model had R2, R2

adj, Q
2
cv, and R2

pred

values of 0.921, 0.878, 0.801 and 0.901, respectively. Our

findings indicated that the n5Ring, GGI9, TDB7u, TDB8u
and RDF75i descriptors were the physicochemical properties
most strongly associated with 6-fluoroquinoline anti-

plasmodium activity. n5Ring, TDB8u and RDF75i were
positively associated, whereas GGI9 and TDB7u were
negatively associated, with the antiplasmodium activities of
the compounds. A docking study indicated formation of

stable complexes between the compounds and modeled
PfeEF2, with binding affinities ranging from �8.200
to �10.700 kcal/mol. Compounds 5, 11, 16, 22 and 24 had

better binding affinity than DDD107498 and good phar-
macokinetic properties; therefore, these compounds may
serve as better inhibitors of this novel target. Our findings

may be used to design novel 2,4-disubstituted 6-
fluoroquinolines with high antiplasmodial potency and
good structural properties of inhibiting the novel antima-

larial drug target PfeEF2.
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