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Abstract

Objective: This work was designed to study 2,4-
disubstituted  6-fluoroquinolines as antiplasmodial
agents by using in silico techniques, to aid in the design of
novel analogs with high potency against malaria and high
inhibition of Plasmodium falciparum translation elonga-
tion factor 2 (PfeEF2), a novel drug target.

Methods: Quantitative structure-activity relationships
(QSAR) of 2,4-disubstituted 6-fluoroquinolines were
studied with the genetic function approximation tech-
nique in Material Studio software. The 3D structure of

PfeEF2 was modeled in the SWISS-MODEL workspace
through homology modeling. A molecular docking study
of the modeled PfeEF2 and 24-disubstituted 6-
fluoroquinolines was conducted with Autodock Vina in
Pyrx software. Furthermore, the in silico pharmacoki-
netic properties of selected compounds were investigated.
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Results: A robust, reliable and predictive QSAR model
was developed that related the chemical structures of 2,4-
disubstituted 6-fluoroquinolines to their antiplasmodium
activities. The model had an internal squared correlation
coefficient R? of 0.921, adjusted squared correlation co-
efficient R%qj of 0.878, leave-one-out cross-validation
coefficient chv of 0.801 and predictive squared correla-
tion coefficient Rzpred of 0.901. The antiplasmodium ac-
tivity of 6-fluoroquinolines was found to depend on the
n5Ring, GGI9, TDB7u, TDB8u and RDF75i physico-
chemical properties: nSRing, TDB8u and RDF751 were
positively associated, whereas GGI9 and TDB7u were
negatively associated, with the antiplasmodium activity
of the compounds. Stable complexes formed between the
compounds and modeled PfeEF2, with binding affinity
ranging from —8.200 to —10.700 kcal/mol. Compounds
5, 11, 16, 22 and 24 had better binding affinities than
quinoline-4-carboxamide (DDD107498), as well as good
pharmacokinetic properties, and therefore may be better
inhibitors of this novel target.

Conclusion: QSAR and docking studies provided insight
into designing novel 2,4-disubstituted 6-fluoroquinolines
with high antiplasmodial activity and good structural
properties for inhibiting a novel antimalarial drug target.

Keywords: 6-fluoroquinolines; Antimalaria; Homology
modeling; Molecular docking; QSAR; Translation elonga-
tion factor 2

© 2023 The Authors. Published by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Malaria poses a great danger to public health. This dis-
ease is caused by the Plasmodium parasite, which is trans-
mitted between humans by female Anopheles mosquitoes.
Five species of the parasite are pathogenic to humans, among
which Plasmodium falciparum and Plasmodium vivax are the
most threatening.l"2 Malaria caused an estimated 619,000
deaths in 2021, of which 76% (~470,000) were in children
younger than 5 years,” amounting to a child dying from
the disease nearly every minute. The highest malaria
burden is in sub-Saharan Africa, which had an estimated
234 million cases and 593,000 deaths in 2021. Nigeria has
26.6% and 31.3% of the global malaria cases and deaths,
respectively.3 Prevention of malaria through vector control is
challenging, because of increasing mosquito resistance to the
most commonly used insecticides (pyrethroids) in insecticide-
treated nets, and increasing spread of an urban-adapted
mosquito species (Anopheles stephensi).3

Treatment through chemotherapy is challenging because
of rising resistance to many antimalarial drugs and
artemisinin-based combination therapy, a recommended
therapy for P. falciparum (the most deadly parasite)."’
Therefore, new potent antiplasmodial drugs with novel
mechanisms of action must be developed.4 Quinoline-4-
carboxamide (DDD107498) was discovered as a potent

antimalarial compound active against multiple life-cycle
stages of the parasite. The molecular target of this com-
pound is translation elongation factor 2 (eEF2). However,
the interaction of DDD107498 with the target (PfeEF2) is
not well understood.” Hochegger et al. (2019) synthesized
new analogs of quinoline-4-carboxamide to improve the
antiplasmodial activity (in vitro and in vivo) and to under-
stand the structure-activity-relationships of these analogs.4
In silico techniques are computer-aided modeling methods
used in screening chemical databases to identify novel drug
candidate.” This work was aimed at conducting a
quantitative structure-activity relationships (QSAR) study
of quinoline-4-carboxamide analogs (6-fluoroquinolines) to
build a model relating the antiplasmodium activity to the
physicochemical properties of 6-fluoroquinolines, to increase
understanding of the structure-activity-relationships of the
compounds. We additionally performed a molecular docking
study of 6-fluoroquinolines with homology modeled
P. falciparum translation elongation factor 2 (PfeEF2) as the
molecular target, to understand the modes of interaction of
the compounds with the potential target. This information
may be used to design better inhibitors of the novel target as
antimalarial drug candidates.

Materials and Methods
Data collection

A dataset of 28 compounds of 6-fluoroquinoline de-
rivatives and their in vitro activities against the chloroquine-
sensitive strain NF54 of P. falciparum was obtained from the
literature.* The antiplasmodial activities of the 6-
fluoroquinolines were obtained as ICsy (nM) and converted
to pICsg {—logICso (M)} to normalize the distribution of the
values for QSAR building.” The structures and names of the
6-fluoroquinolines and their respective activities (pICsp) are
presented in Table 1.

Generation of molecular descriptors and pretreatment

The molecular structures of the 6-fluoroquinolines
(Table 1) were drawn with Chemdraw version 12.0.2
software, and their equilibrium geometries were obtained
in Spartan 14 software by optimization with the parametric
semi-empirical (PM6) quantum mechanics method.®” The
molecular descriptors of the optimized 6-fluoroquinolines
were generated with PaDEL-Descriptor software version
2.20.% After redundant and highly correlated descriptors
were removed, normalization with Eq. (1) was performed
to give each descriptor an equal chance of appearing in the
model.” These steps were achieved with Drug Theoretical
and Cheminformatics Laboratory (DTC Lab) pretreatment
and normalization software and the following equation:

Xi - Xmin

X = = 1
" Ximax — Xmin ( )

where X,; and X; are the normalized and unnormalized
descriptor values for molecule i for a particular descriptor,
and Xpin and Xpax are the minimum and maximum values
for the descriptor.
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Table 1: Antiplasmodial activity and leverage of the 6-fluoroquinolines.

C/N Compound Experimental pICs, Theoretical pICs, Residual Leverage
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Table 1 (continued)

C/N Compound Experimental pICs, Theoretical pICsg Residual Leverage
N
N
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Table 1 (continued)
C/N Compound Experimental pICsq Theoretical pICsg Residual Leverage
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Table 1 (continued)

C/N Compound Experimental pICs, Theoretical pICsg Residual Leverage
(0]
HNJ\/\N’\
F O N '\,NT*
26 N’ O 0 6.276 6.489 —0.214 0.356
)
(0]
N
O NH Q
27% F O X 7.056 7.172 —0.117 1.000
O
(O
D
28 S 8.699 7.936 0.763 0.267
T
N’ N7
I
& Test set, C/N = compound number.
odel building and validation SEE
LOF = ——— 2)

The Kennard-Stone algorithm in DTC Lab Data Division
software was used to divide the data into two sets.'” This
algorithm selects training set compounds from the data set
by first selecting two compounds separate from each, other
on the basis of Euclidean distance, and including them
in the training set. Sequentially, the algorithm removes
compounds from the dataset and includes them in the
training set to maximize the Euclidean distance between
the x-vectors of the already selected compound and the
remaining compounds in the dataset. This process is
repeated until the specified number of training set
compounds is selected.'! This algorithm has the advantages
of selecting training set compounds that are uniformly
distributed along the data space and test set compounds
that fall within the measured space. 10

A total of 70% of the data (training set) was used in
building the model, and 30% of the data (test set) was used to
validate the model. The activities (pICsp) of the training set
compounds were used as the dependent variable and their
descriptors served as independent variables in regression
analysis to build the model with the genetic function
approximation (GFA) technique in Material Studio software
version 8.0.'> GFA uses a genetic algorithm to identify the
best model among possible QSAR models. It automatically
selects group of descriptors at random, according to the
user-specified number, and uses them to build regression
models, then assesses the models with the Friedman function
(LOF), a measure of model fitness expressed in Eq. (2).13
Many models are built on the basis of the user-specified
number of generations, and the best model is the one with
the lowest LOF score'* calculated as follows:

(-]
M

where p is the total number of descriptors in the model, ¢ is
the number of terms in the model, M is the number of
compounds in the training set, d is the user-defined
smoothing parameter, and SEE is the standard error of
estimation, which is the same as the standard deviation of the
model, defined as;

( YeXp_ Y/WI) ? (3)

SEE =
N — P-1

The built model was validated with the squared correla-
tion coefficient Rz; adjusted correlation coefficient Rzadj;
cross-validation coefficient QZCV; and external validation
coefficient Rzpred, defined by Eqs. (4)—(7), respectively.13

_ { Z ( YL’XI’ - yexp) (Yprd - yprd) }2

“ S (Yesp = Yerp) (Ypra = Ypra) “)

Fai = % )

0= 172(’%1——?«\77)22 ©
X (Yexp = Ypra)

R = 1- S (Ypra = Ye)’ o

( Yé’«\'ﬁ - yprd)z
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Yexp and Ypq are the experimental and predicted activity
of the training set compounds, respectively, in Eqs. (4) and
(6), and the experimental and predicted activity of the test
set compounds in Eq. (7). ¥pra is the mean experimental
activity of the training set compounds. N and p in Egs. (3)
and (5) are the number of molecules in the training set and
number of descriptors in the model, respectively.

To validate the reliability of the developed model, we
computed the randomization parameters Rzr, er and chp,
which were robust and not obtained by chance. The training
set was used to generate random multi-linear regression
models through random shuffling of the activity of the
compounds (dependent variables) while keeping their de-
scriptors (independent variables) stable. Rzr and er were
computed as the average of the squared correlation coeffi-
cient and cross-validation coefficient of the random models.
The coe;fﬁcient of determination chp was computed with
Eq. (8):"”

cR:=Rx (R —R)’ ®)

where R? is the squared correlation coefficient for the non-
randomized model, and R, is the average of the squared
correlation coefficients of the random models.

Descriptor analyses

Inter-correlation among the descriptors in the built model
was verified by correlation analysis of the descriptors. The
variance inflation factor (VIF) for each descriptor was
computed with Eq. (9) to further confirm their inter-
correlation:

1

VIF; =
1— R,?],

(€]

where VIF; is the variance inflation factor for a descriptoriin
the model, and Rzij is the correlation coefficient of the mul-
tiple regression between descriptor i and the remaining j
descriptors in the model.

The mean effect (ME) for each descriptor in the model
was computed with Eq. (10) to evaluate the relative influence
of the descriptors in the model:'®

6‘21::7’116[['
ME, = Z=i=1V 10
DB dy (10

where ME; is the mean effect for descriptor j in a model, dj;
is the value of descriptor j in the descriptor matrix for each
molecule in the training set, Bj is the coefficient of
descriptor j in the model, m is the number of descriptors in
the model, and n is the number of molecules in the training
set.

Applicability domain of the model

The applicability domain, described by Williams’s plot of
the built model, was generated with the leverage method (Eq.
(11)) to identify outliers and influential compounds in the
dataset.””

h=x(xTx)"'x7 an

where X is the descriptor matrix, and XT is the transpose
matrix of X. The leverages of the compounds are the diag-
onal of the matrix h. The warning leverage h* is the
maximum value above which a compound is considered to be
influential, and is expressed as:
3 1
p = 30th (12)
n

where n is the number of compounds in the training set, and
p is the number of descriptors in the model.

Homology modeling

The crystal structure of PfeEF2 has not been elucidated.
Therefore, we used comparative modeling to build the 3D
structure of PfeEF2 and subsequently performed a docking
study. The protein sequence of eEF2 for P. falciparum (isolate
NF54), obtained from UniProtKB (http://www.uniprot.org)
accession code W7JNW7, comprised 832 amino acids.”’ The
code was submitted to the SWISS-MODEL workspace
(https://www.swissmodel.expasy.org) to search for evolu-
tionarily related structures matching the target sequence.21
Suitable target-template alignments were identified with the
Basic Local Alignment Search Tool (BLAST) and hidden
Markov models (HMMs) with an HMM-HMM—based
lightning-fastiterative sequence search (HHblits).zz’23 The3D
structure of PfeEF2 was built with the highest ranked target-
template alignment in ProMod3 version 3.2.1.>* The built
structure was assessed with the qualitative model energy
analysis (QMEAN) scoring function and global model
quality estimation.”*?

Molecular docking

The modeled PfeEF2 was saved as a PDB file and used as
receptor for docking with 6-fluoroquinolines as ligands. The
ligands were prepared by saving their structures as PDB files
from Spartan software, and the receptor was prepared by
removal of co-crystallized ligands and hetero-atoms in Dis-
covery Studio software.”® Both the ligands and the receptor
were converted to PDBQT files and docked with Autodock
Vina in Pyrx software with a grid box dimension of
75.7994 A x 100.6790 A x 118.096 A, and centers of
75.9456, 38.8172 and —1.2721 (X, Y and Z coordinates,
respectively), to cover the complete surface of the
protein.y’zx The interactions in docked structures were
visualized with Discovery Studio Visualizer.”’

In silico drug-likeness and ADMET prediction

In silico prediction of drug-likeness, and adsorption, dis-
tribution, metabolism, excretion and toxicity (ADMET) of
compounds with excellent binding affinity toward PfeEF2
was conducted with the SwissADME and ADMETIab 2.0
online platforms.’’*! These predictions are essential for
evaluating the potential of a potent molecule to have
effective pharmacokinetics and toxicity.32
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Table 2: Validation parameters of the model.

Parameter Threshold Model value Remark®
R? R > 0.6 0.912 Passed’
R%.4i R%.4; > 0.5 0.878 Passed’
F Large 27.001 Passed’
Q% Q%, > 0.5 0.801 Passed’
IR? — Q% R? — Q% < 0.3 0.111 Passed’”
SEE Low 0.505 Passed®*
R ed R%,eq > 0.5 0.901 Passed’
r2 2> 0.6 0.908 Passed’”
¢ 0.908

r'é 0.898

Ité — —r'd| ¢ — —r’'d¢l < 0.3 0.010 Passed™
K 085<k<1.15 1.022 Passed’”
(r2 = —roz)/r2 (r2 = —roz)/r2 < 0.1 0.000 Passed™

RNote: 1* and 13 are the squared correlation coefficients of the
plot of the experimental versus predicted pICsy of the test set
compounds with and without intercepts, respectively, and k is the
gradient of the plot with intercept. r’3 is the reverse of r3.

Results

The best QSAR model developed on the basis of GFA
that related the chemical structures of the 6-fluoroquinolines
to their antiplasmodial activities is presented below:

pICsp = 2.428645705n5Ring
— 4.587432351GGI9
— 7.127111879TDB7u
+ 7.951073945TDB8u
+ 0.078997316RDF75i
— 8.731499618

Discussion

GFA was deployed to generate QSAR models relating the
physicochemical properties of 6-fluoroquinolines with sub-
stitutions at ring positions 2 and 4 to their antiplasmodial
activities. The model that best predicted the antiplasmodial
activity of the compounds is reported herein. The model
surpassed all validation parameters (Table 2) for good
prediction, as indicated by the low residual (difference
between experimental and theoretical activity) values of the
compounds (Table 1). The linearity of the plots of the
model’s predicted and experimental activity (Figure la),
and the difference in R? and Q2CV of <0.3, further
supported the model’s predictive ability.26 The R? values
for the random models generated were all below the
minimum value (0.6) for an acceptable model, thus
indicating that the main model was not a product of
chance. This finding was further confirmed by the average

10 4 N
* 37
7 2V
2 ¥ g 2 -
£ 6 N S o
£ 24 tx # Training Set 811 <« A A,
g A Test Set g 0 ¥7‘.:. +®%A
1 .
M 2.9 g . z *A # Training Set
k=T *
0 | ‘ ‘ § A Test Set
0 5 10 15 A-271 a
Experimental pICy, 3 - *
Experimental pICy,
(a) (b)
3
E
S & .
75]
=1 * W Ae 4 & -
'QE 0ol & ¢ *7 A o A ¢ Training Set
= o o * a27  ATest Set
E-14 * o
<
§-2 - A
xR
-3 T ’\ T T T 1
0 0.19 038 057 076 095 114
Leverages

(c)

Figure 1: (a) Plot of predicted versus experimental pICsg of the compounds. (b) Plot of standardized residual activity against experimental
pICs of the compounds. (c) Plot of standardized residual activity against leverage of the compounds (Williams plot).
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Table 3: Re

sults for random models.

Model R2 Q?
Original 0.912 0.802
Random 1 0.197 —0.779
Random 2 0.212 —1.077
Random 3 0.199 —1.108
Random 4 0.282 —0.515
Random 5 0.271 —0.388
Random 6 0.104 —1.029
Random 7 0.250 —1.413
Random 8 0.399 —0.031
Random 9 0.359 —0.213
Random 10 0.510 —0.046
Random model parameters

Average R>: 0.336

Average Q*: —0.527

Average cRp”: 0.767

values of Rzr, Q2r and chp (Table 3).15’16 Hence, the built
model was considered robust, reliable and stable. The
distribution of the compounds on opposite sides of the line
0 standardized residual (Figure 1b) indicated the absence
of systematic error in model building.

The five descriptors best relating the structural features of
the studied compounds to their antiplasmodial activities, as
demonstrated in the model, were ring count (n5Ring), to-
pological charge index (GGI9), 3D topological distance
based autocorrelation (TDB7u and TDB8u) and 3D radial
distribution function (RDF75i) descriptors. Pearson’s cor-
relation analysis was performed on the descriptors to verify
their inter-correlation; further verification was performed
with evaluation of VIF. The test results (Table 4) indicated
no significant inter-correlation among the descriptors, on
the basis of VIF values below 10. Therefore, the combination
of descriptors significantly related the antiplasmodial

Table 4: Pearson’s correlation, VIF and ME of the descriptors in the model.

Descriptors Inter-correlations VIF ME
n5Ring GGI9 TDB7u TDB8u RDF75i

n5Ring 1.000 —0.329 0.351 0.186 —0.121 1.309 0.034

GGI9 —0.329 1.000 —0.430 —0.281 0.651 2.107 —0.090

TDB7u 0.351 —0.430 1.000 0.862 —0.566 5.036 —3.119

TDB8u 0.186 —0.281 0.862 1.000 —0.545 4.523 3.973

RDF75i —0.121 0.651 —0.566 —0.545 1.000 2.414 0.202
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Figure 2: (a) Single sequence alignment of modeled PfeEF2 (model-01) with 1U2R (1u2r.1.A) amino acid sequences. (b) 3D structure of
1U2R. (¢) 3D structure modeled PfeEF2.
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Figure 3: (a) Local quality estimate of the residue graph. (b) Comparison of the modeled PfeEF2 structure with a non-redundant set of
PDB structures. (¢) Ramachandran plot of the modeled PfeEF2 for all non-glycine/proline residues.

activities of the studied compounds to their structures. The
mean effects (Table 4) of the descriptors indicated their
relative strength in influencing the plICsy of the 6-
fluoroquinolines.

The first descriptor in the model was nSRing, defined as the
S-membered ring count. This descriptor relates the present of
S-membered rings in the structures of 6-fluoroquinolines to
their pICsg. The positive coefficient of this descriptor in the
model indicated that the presence of 5-membered rings in the
structures of 6-fluoroquinolines positively contributes to
antiplasmodial activity. The second descriptor in the model
was GGI9, defined as the 9-ordered raw topological charge
index descriptor. This descriptor estimates the charge trans-
fers between pairs of atoms that are nine bonds apart.36 The
negative coefficient for this descriptor in the model
indicated that the presence of two atoms that are nine bonds
apart and have a high electronegativity difference
contributes negatively to 6-fluoroquinoline antiplasmodial
activity. The third and fourth descriptors in the model,
TDB7u and TDB8u, describe topological distance, on the
basis of autocorrelation of lag 7 (TDB7u) and 8 (TDB8u), all
unweighted. This class of descriptors was calculated on the
basis of the average Euclidean distance between all atoms
located at a given topological distance (distance between two
atoms in molecular graph representation).37 For the TDB7u
and TDB8u descriptors, the topological distances
considered were those between two atoms seven and eight

bonds apart, respectively. All atoms were treated equally,
because they were unweighted. An increase in TDB7u was
associated with a decrease in antiplasmodial activity of 6-
fluoroquinolines, because of its negative coefficient in the
model. In contrast, an increase in TDB8u was associated with
an increase in antiplasmodial activity, because of its positive
coefficient in the model. The fifth descriptor in the model,
RDF75i, is the radial distribution function 075/weighted by
the first ionization potential.38 The descriptor measures the
first ionization potential of an atom or group of atoms at a
radius 4.5 A from the geometrical center of the molecules.
The positive coefficient for this descriptor in the model
indicated that an increase in its value was associated with
increased antiplasmodial activity of 6-fluoroquinolines.

The domain of applicability for the model was presented
by a Williams plot (Figure Ic), as the area within +3
standardized residuals, and leverage 0—0.950. The
applicability domain showed no outliers, and all compounds
were within +3 standardized residuals. However, the
leverage of one influential compound (compound 27)
exceeded 0.950, the warning leverage for the model. The
structure of this influential compound slightly differs from
that of the other compounds in the dataset (Table 1) and
therefore should not be considered the template when the
model is used to design novel 6-fluoroquinolines.

DDD107498, the template for designing the dataset used
in this work, has been reported to inhibit PfeEF2 as a
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Table 5: Docking results between modeled pfeEF2 and selected 6-fluoroquinolines.

Ligand Binding affinity Hydrogen bonding Hydrophobic interaction Electrostatic interaction
(e el Amino acid (bond length, Amino acid®°"d ¥pe Amino acid®"d ¥pe

A)

5 —10.700 THR323 (2.48)*, TRP317 THR218°, PHE799, ASP3228, ARG221",
(2.19)*, ASP322 (2.06)*, HIS81¢, LEU316°, ASP322, ASP322!
GLY294 (3.13)° PRO319", PRO319f

11 —10.200 SER107 (2.62)*, SER107 TYR473¢, PHE783¢, GLUS5258
(2.04)%, HIS527 (2.97)%, SER106/, TYR473f,
THR771 (2.98)%, GLY780 ARG775", MET471¢
(1.79)%, GLU143 (3.71)°

16 —10.000 SER474 (2.79)*, THR771 TYR473¢, LEU507, GLUS5258
(2.84)%, GLY780 (1.98)* ARG775", MET471F

22 —10.200 LYS455 (1.80)*, TYR473 TYR473¢, LEU526°, ALA782¢, ASP104',
(2.46)%, SER474 (2.38)%, LEU526%, HIS102, GLU525!
GLUS525 (2.85)%, PHE783 TYR473f, ARG775",
(3.66)°, PRO784 (3.28)° LEU526"

24 —10.100 ARG114 (2.65)*, GLN781 TYR186¢ THR185%, ASP728',
(2.73)%, TYRI186 (2.23)%, ASP728!
GLY142 (3.53)°, GLU143
(3.25)°, ASP188 (3.57)°

Q4C —9.900 SER107 (2.10)%, SER107 TYR473¢, TYR473¢, PHE1058

(2.07)%, ARG775 (3.33)°,
GLY780 (3.24)°, ASP104
(3.47)°

CYS523", GLY524),
ARG775", CYS523f

Q4C = Quinoline-4-carboxamide. *Conventional hydrogen bond. ®Carbon hydrogen bond. °7- sigma. Ym-m. SAlkyl-alkyl. ‘r-alkyl.

£Halogen. M-cation. ‘-anion. JAmide-Tr.

molecular target.4 PfeEF2 is crucial for protein synthesis and
is responsible for the GTP-dependent ribosomal trans-
location along mRNA; therefore, its discovery may open
new avenues for antimalarial drug discovery.’” However, its
crystal structure is not available, and its interaction with
DDD107498 is unclear. Therefore, we designed a
homology model for use in our docking study. The crystal
structure of the closet template was searched with the
protein sequence of eEF2 in P. falciparum (isolate NF54).
ADP-ribosylated ribosomal translocase from Saccharo-
myces cerevisiae (PDB: 1U2R) was identified as the closest
template, with 61.300% identity, 0.480 similarity, 1.000
coverage and 2.600 A resolution, as determined by X-ray
crystallography.40 Figure 2a shows the single sequence
alignment of modeled PfeEF2 (Figure 2c) with the 1U2R
(Figure 2b) amino acid sequence; amino acids of the 1TU2R
that aligned with the model are indicated in bold. The
modeled PfeEF2 had a global model quality estimation
score of 0.790 and QMEAN score of 0.770. The former
scoring function estimates the accuracy of the modeled
structure, whereas the latter assesses the quality of the
model.”*? The closer the values of the scoring functions
are to 1, the better the built model. Therefore, the modeled
PfeEF2 was considered good and reliable.

The plot in Figure 3a, shows the modeled PfeEF2 local
quality estimate. The plot indicated a good local quality
estimate, because most of the residue scores were close to
1, and the average was 0.770. Figure 3b compares the
structure of the modeled PfeEF2 with the non-redundant
aligned PDB structures, on the basis of a plot of normal-
ized QMEAN scores (Z-scores) against protein sizes (resi-
dues). The plot indicated that the score of the structure of
modeled PfeEF2 (red star) was within that of experimentally

determined structures, on the basis of the number of residues.
The model had a Z-score of —1.200, thus indicating good
agreement with an experimental structure of similar size.!!
Figure 3c shows the Ramachandran plot of modeled
PfeEF2 for all non-glycine/proline residues. This plot pro-
vided insight into the backbone dihedral angles of amino
acid residues in PfeEF2 against energetically favored regions
of dihedrals of protein residues in general. In the plot, the
green contour indicates the favored regions; 95.410% of
residues were Ramachandran favored, and the MolProbity
score was 1.88.

All 28 compounds in our dataset were docked with the
modeled pfeEF2, and their binding affinities ranged
from —8.200 to —10.700 kcal/mol, thereby indicating strong
interaction of the compounds with the amino acids of
PfeEF2. DDD107498, which was experimentally suggested
to form a stable complex with PfeEF2, was docked and
found to have a binding affinity of —9.900 kcal/mol.*” This
binding affinity was greater than that of five compounds in
the dataset (Table 5), thus indicating that the compounds
formed more stable complexes with the target than
DDD107498, and consequently may be better inhibitors.
Compound 5 had the best binding affinity (—10.700 kcal/
mol), possibly because of its better interaction with the
target. Figure 4 shows the structures of the interactions of
compound 5 with PfeEF2. The interactions involved the
following: (1) Three conventional hydrogen bonds: one of
bond length 2.480 A from a hydrogen on THR323 to
fluorine in the quinoline moiety of the compound; one of
bond length 2.190 A from the nitrogen of the quinoline
moiety of the compound to oxygen in TRP317; and one
of bond length 2.06 A from the nitrogen of the
carboxamide group of the compound to oxygen in the
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Figure 4: 3D and 2D structures of compound 5 and PfeEF2 interactions.

ASP322 residue. (2) A carbon hydrogen bond of bond
length 3.139 A from the methyl carbon of the 2-{4-
[(morpholin-4-yl)methyl]phenyl} substituent of the com-
pound to oxygen in the GLY294 residue. (3) A halogen
interaction between the carbon of the ASP322 residue and
fluorine in the quinoline moiety. (4) Three electrostatic in-
teractions: one of T-cation type between the amino group of
ARG221 and the T-orbital of the N-benzyl substituent in
the carboxamide group, and two of T-anion type from ox-
ygen in the ASP322 residue to two rings of the quinoline
moiety. (5) Six hydrophobic interactions: one of T-sigma
type from carbon in the THR218 residue to the phenyl ring
of the quinoline moiety; two of -7t type between the T-
orbital in the PHE79 and HIS81 residues, and the m-orbital
of the N-benzyl substituent in the carboxamide group; one
of alkyl—alkyl type between the alkyl carbon in LEU316
and the morpholin carbon of the 2-{4-[(morpholin-4-yl)
methyl]phenyl} substituent; and two T-alkyl type between
PRO319 and the two rings of the quinoline moiety.

No correlation was observed between the binding affin-
ities of the docked compounds and their antiplasmodial ac-
tivity against a chloroquine-sensitive strain (PfNF54), thus
indicating the possibility of multiple targets for the

compounds. However, the results provide insight into the
binding nature of PfeEF2 and may be used in designing good
inhibitors.

Table 6 presents the predicted ADMET and drug-likeness
properties of the five compounds with the best binding af-
finity. The partition coefficient (logP < 5), molecular weight
(<500 g/mol), H-bond acceptors (<10) and H-bond donors
(<5), on the basis of Lipinski’s rule, were predicted for the
compounds.42 The results indicated that compounds 5 and
24 had no violations, whereas compounds 11, 16 and 22
each had one violation of Lipinski’s rule (Table 6). The
compounds satisfying Lipinski’s rule (fewer than two
violations) therefore were considered orally active.”> The
water solubility (log mol/L) of the compounds indicated
that compounds 5 and 11 were moderately soluble (—6 log
mol/L < —4), and compounds 16, 22 and 24 were soluble
(—4 log mol/L < —2). Therefore, the compounds are not
expected to have poor oral absorption.43 The polar surface
areas (Az) of the compounds were within the satisfactory
range and hence were considered orally bioavailable.
Similarly, zero pan assay interference compounds (PAINS)
alerts were obtained for all compounds, thus indicating
that they may serve as lead compounds.44
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Table 6: In silico drug-likeness and ADMET properties of the most inhibitory compounds.
Drug-likeness Compounds

5 11 16 22 24

Partition coefficient (logP) 4.700 3.770 3.990 3.520 3.100
Molecular weight 469.550 577.690 563.710 547.660 491.060
Number of H-bond acceptors 5 8 8 7 7
Number of H-bond donors 1 1 1 1 1
Number of rotatable bonds 7 11 11 9 8
Lipinski’s violations 0 1 1 1 0
Water solubility (log mol/L) —5.193 —4.159 —3.440 —2.849 —2.563
Polar surface area (A2) 54.460 87.240 70.170 78.010 60.940
PAINS alert 0 0 0 0 0
Absorption
Caco-2 permeability (log cm/s) —4.935 —4.989 —5.197 —5.134 —4.899
Human intestinal absorption (%) 99.700 99.900 99.900 99.800 99.300
Distribution
Volume distribution (L/kg) 2.328 1.830 2.109 2.319 2.357
BBB penetration (log cm/s) —0.188 —0.072 —0.038 —0.041 —0.010
Metabolism
CYP1A2 inhibitor No No No No No
CYP2C19 inhibitor No Yes Yes Yes No
CYP2C9 inhibitor Yes Yes No No No
CYP2D6 inhibitor Yes Yes Yes Yes Yes
CYP3A4 inhibitor Yes Yes Yes Yes Yes
Excretion
Half-life 0.015 0.017 0.017 0.072 0.029
Toxicity
Ames toxicity 0.833 0.289 0.046 0.030 0.144
Rat oral acute toxicity 0.436 0.426 0.326 0.786 0.429
Carcinogenicity 0.092 0.388 0.088 0.125 0.088

The Caco-2 permeability (>—5.15 log cm/s) of all com-
pounds except compound 16 (<—5.15 log cm/s), and the
intestinal absorption (>30%) of all compounds, indicated
good absorption potential. The volume distribution
(0.04 < VD < 20 L/kg) of the compounds indicated good
distribution characteristics, and the blood—brain barrier
(logBBB cm/s > —1) of the compounds indicated their ability
to cross the barrier and thus not cause any problems with the
central nervous system.32 Metabolism of the compounds was
predicted on the basis of their interaction with cytochrome
P450 (CYP) (Table 6). All compounds were found to be
inhibitors of CYP2D6 and CYP3A4, but not CYPIA2.
Compounds 5 and 11 were found to be inhibitors of
CYP2C9, whereas compounds 16, 22 and 24 were not.
Compounds 11, 16 and 22 were found to be inhibitors of
CYP2C19, whereas compounds 5 and 24 were not.
Investigation of the interactions of molecules with CYP
isoforms is key to understanding drug metabolism.® The
excretion of the compounds was verified by prediction of
their half-lives in terms of the probability (from 0 to 1) of
having a long half-life. The half-lives of the compounds
(Table 6) indicated high clearance. The toxicity prediction is
given as the probability (from 0 to 1) of being toxic. The
results (Table 6) indicated that the compounds had low
probabilities of being toxic, except for compounds 5 and
22, which had high probabilities of Ames and rat oral
acute toxicity, respectively. Therefore, only compound 5
might be mutagenic, and compound 22 might have toxicity

to mammals.”> The ADMET results indicated good
pharmacokinetic  properties; therefore, the studied
compounds may be considered for drug development.

Conclusion

This work developed a robust and reliable QSAR model
that relates the structures of 2.4-disubstituted 6-
fluoroquinolines to their antiplasmodium activity, on the
basis of GFA. The model had R2, Rzadj, QQCV, and Rzpred
values of 0.921, 0.878, 0.801 and 0.901, respectively. Our
findings indicated that the n5Ring, GGI9, TDB7u, TDB8u
and RDF75i descriptors were the physicochemical properties
most strongly associated with 6-fluoroquinoline anti-
plasmodium activity. n5Ring, TDB8u and RDF75i were
positively associated, whereas GGI9 and TDB7u were
negatively associated, with the antiplasmodium activities of
the compounds. A docking study indicated formation of
stable complexes between the compounds and modeled
PfeEF2, with binding affinities ranging from —8.200
to —10.700 kcal/mol. Compounds 5, 11, 16, 22 and 24 had
better binding affinity than DDD107498 and good phar-
macokinetic properties; therefore, these compounds may
serve as better inhibitors of this novel target. Our findings
may be used to design novel 24-disubstituted 6-
fluoroquinolines with high antiplasmodial potency and
good structural properties of inhibiting the novel antima-
larial drug target PfeEF2.
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