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activity were associated with distractible behavior and poor task 
performance. Periods of very low or absent tonic LC activity were 
associated with drowsiness and inattention. Furthermore, periods 
of moderate tonic LC activity were accompanied by large phasic 
increases in LC activity following task-relevant stimuli, whereas 
such phasic LC responses were diminished during periods of ele-
vated or low tonic LC activity. Thus, during alert task performance, 
the pattern of LC activity varied between moderate tonic/large 
phasic activity, and elevated tonic/small phasic activity, which are 
referred to as the phasic and the tonic LC mode, respectively.

According to the adaptive gain theory (Aston-Jones and Cohen, 
2005), the phasic and tonic LC modes promote, respectively, 
exploitative and exploratory control states. In the phasic mode, 
NE is released selectively in response to task-relevant events, which 
promotes task engagement and the optimization of performance 
in the current task (exploitation). In the tonic mode the sustained 
release of NE indiscriminately facilitates processing of all events, 
including non-task-related events, which promotes task disengage-
ment and exploration. The theory further proposes that transitions 
between the phasic and tonic LC modes are driven by assessments 
of task-related costs and rewards (task utility), carried out in ventral 
and medial frontal structures.

IntroductIon
The locus coeruleus (LC) is one of the major brainstem neuromodula-
tory nuclei, with widely distributed, ascending projections throughout 
the neocortex. LC activation results in the release of norepinephrine 
(NE) in cortical areas, which increases the responsivity of these areas 
to their afferent input (Servan-Schreiber et al., 1990; Berridge and 
Waterhouse, 2003). Traditionally, the LC–NE system has been associ-
ated with basic functions such as arousal and the sleep–wake cycle 
(Jouvet, 1969; Aston-Jones et al., 1984), but recent studies have sug-
gested that this system also plays a more specific role in the control of 
behavior (Aston-Jones et al., 1997; Usher et al., 1999; Clayton et al., 
2004). According to an influential recent theory of LC function, the 
adaptive gain theory (Aston-Jones and Cohen, 2005), the LC–NE sys-
tem plays an important role in regulating the balance between exploit-
ing known sources of reward versus exploring alternative options.

Neurophysiological studies in monkeys have revealed sponta-
neous fluctuations of tonic (baseline) LC activity over the course 
of a test session (Kubiak et al., 1992; Aston-Jones et al., 1996). 
Interestingly, these variations in tonic LC activity were closely 
related to the monkeys’ control state: periods of moderate tonic 
LC activity were consistently associated with task engagement and 
accurate task performance, whereas periods of elevated tonic LC 
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2007; De Martino et al., 2008) and citalopram (e.g., Chamberlain 
et al., 2006). Unfortunately, the random-block design intended to 
produce equal numbers of men and women in each treatment 
group was thwarted by early dropouts and planning problems, 
causing a somewhat unbalanced sex distribution. The reboxet-
ine group (8 men, 10 women, mean age = 20.6), the citalopram 
group (8 men, 8 women, mean age = 21.6), and the placebo group 
(10 men, 8 women, mean age = 21.5) had similar mean ages (F(2, 
49) = 1.66, p = 0.20). The study was approved by the medical ethics 
committee of the Leiden University Medical Center and conducted 
according to the Declaration of Helsinki.

Procedure
All participants came to the research center at 8 AM after an over-
night fast (except from water). We instructed participants to abstain 
from caffeine, nicotine, alcohol and other psycho-active substances 
from 10 PM the night prior to the study day. On arrival, participants 
underwent a medical screening. Approximately 1 h after arrival, 
participants in the citalopram group received a capsule with 2 mg 
granisetron, to prevent nausea as a potential side effect of citalo-
pram. Participants in the reboxetine and placebo groups received a 
placebo capsule instead of granisetron. Sixty minutes later, partici-
pants received a capsule with reboxetine, citalopram or placebo.

Peak plasma concentrations of reboxetine and citalopram occur, 
respectively, 2 and 2–4 h after drug administration (Hyttel, 1994; 
Edwards et al., 1995; Dostert et al., 1997; Noble and Benfield, 
1997). Accordingly, the experimental tasks designed to measure 
task (dis)engagement and exploratory behavior were performed 
between 2 and 3 h post-treatment. All participants started with 
the diminishing-utility task, followed by the gambling task1. We 
measured participants’ pupil–iris ratio (Twa et al., 2004) and sub-
jective state at several time points during the study day. Subjective 
state was assessed by means of sixteen 100-mm visual analog scales 
measuring alertness, calmness and contentment (Bond and Lader, 
1974). In addition, at several time points during the study day, we 
measured participants’ adaptive-tracking performance (Borland 
and Nicholson, 1984; see Supplementary Material for a descrip-
tion of the task) and saccadic eye movements (Van Steveninck 
et al., 1989). These measures were part of a more extensive CNS 
test battery, the results of which will be reported more compre-
hensively elsewhere. To assess drug-related effects on subjective 
state, pupil size, adaptive-tracking performance, and saccadic eye 
movements, we compared the pre-treatment values with the aver-
age values from the time points surrounding performance of the 
diminishing-utility task and the gambling task (i.e., 2-3 h post-
treatment). The complete time courses of these measures will be 
reported elsewhere.

dImInIshIng-utIlIty task
Participants performed an auditory pitch-discrimination task 
(Gilzenrat et al., 2010). Each trial began with a sequence of two 
250-ms sinusoidal tones: a reference tone, followed 3 s later by a 

The adaptive gain theory has been supported by computational 
modeling and neurophysiological studies in monkeys (Usher et al., 
1999; Aston-Jones and Cohen, 2005) and, indirectly, by recent pup-
illometry studies in humans (Gilzenrat et al., 2010; Jepma and 
Nieuwenhuis, in press). However, crucial direct empirical tests of 
the theory in human participants have been lacking.

In the present study, we used a pharmacological manipulation to 
test in humans one of the central tenets of the adaptive gain theory, 
namely the assumption that the tonic LC mode promotes an explor-
atory control state. Participants received a single dose of reboxetine 
(a selective NE reuptake inhibitor), citalopram (a selective serotonin 
reuptake inhibitor), or placebo. Acute administration of reboxetine 
has opposing effects in the forebrain (increased NE levels via the 
inhibition of NE reuptake) and in the LC (reduction of firing activity 
via the increased activation of inhibitory α2-autoreceptors; Szabo 
and Blier, 2001). However, microdialysis studies have shown that 
the net effect of these two actions is an increase in NE levels in vari-
ous regions of the brain (for a wide range of reboxetine doses; Page 
and Lucki, 2002; Invernizzi and Garattini, 2004), which supposedly 
resembles the effects of elevated NE release in the tonic LC mode. 
To determine whether potential effects were selective for manipula-
tions of the LC–NE system, we used citalopram as a control drug; 
it increases serotonin but not NE levels (Bymaster et al., 2002). To 
confirm that these drugs at the doses employed in this study were 
pharmacologically active, we determined pupil size and several of the 
most drug-sensitive central nervous system (CNS) effects, including 
adaptive-tracking performance (index of visuomotor coordination 
and vigilance; Van Steveninck et al., 1991, 1993) and saccadic peak 
velocity (index of alertness; Van Steveninck et al., 1991, 1999).

The adaptive gain theory predicted that the increased tonic NE 
levels that were presumably induced by reboxetine would result in 
more task disengagement and exploratory behavior in the rebox-
etine group compared to the citalopram and placebo groups. We 
used two cognitive tasks to test these predictions. We measured 
task (dis)engagement using a diminishing-utility task (Gilzenrat 
et al., 2010), in which task difficulty and potential reward – two 
determinants of task utility – increased over time. Importantly, 
participants had the opportunity to reset the level of task diffi-
culty and reward, and hence disengage from the current task set. 
We measured exploratory behavior using a gambling task with a 
gradually changing pay-off structure (Daw et al., 2006; Figure 2), 
in which optimal performance required a delicate balance between 
exploitative and exploratory choices.

materIals and methods
PartIcIPants
Fifty-two healthy university students, aged 18–25 years, took part 
in a single experimental session in return for €100,-. After signing 
an informed consent, participants were medically screened within 
3 weeks before study participation. Exclusion criteria included his-
tory or presence of psychiatric disease and evidence of relevant 
clinical abnormalities.

Participants received a single oral dose of 4 mg reboxetine, 30 mg 
citalopram, or placebo in a double-blind, parallel-groups design. 
The doses of reboxetine and citalopram were based on previous 
studies that have found significant behavioral effects using these 
doses of reboxetine (e.g., Tse and Bond, 2002; Miskowiak et al., 

1Due to technical problems, three participants did not complete one of the tasks 
and were excluded from the corresponding analyses. For the diminishing-utility 
task this was the case for one female participant in the citalopram group and one 
male participant in the placebo group, and for the four-armed bandit task this was 
the case for one male participant in the placebo group.
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impossible discrimination trials continued to be presented until 
the participant elected to escape. Accordingly, participants would 
exhaust any real discriminable differences between reference and 
comparison tone after nine correct trials; the tenth and subse-
quent trials within an epoch were impossible to discriminate. 
The feedback signal on impossible-discrimination trials was ran-
domly picked. The same reference tone was presented on each trial 
within a given epoch. After an escape, a new reference tone was 
selected randomly without replacement from the set (400, 550, 
700, and 850 Hz). The set was replenished if all reference tones 
were exhausted. On 50% of the trials, the comparison tone was 
higher in pitch and on the remaining trials it was lower in pitch 
than the reference tone.

gamblIng task
Participants performed a “four-armed bandit” task (Daw et al., 
2006). On each trial, participants were presented with pictures of 
four different-colored slot machines, and selected one by pressing 
the “q”-, “w”-, “a”-, or “s”- key. Participants had a maximum of 
1.5 s in which to make their choice; if no choice was made during 
that interval, a red X appeared in the center of the screen for 4.2 s 
to signal a missed trial (average number = 2.5). If participants 
responded within 1.5 s, the lever of the chosen slot machine was 
lowered and the number of points earned was displayed in the 
chosen machine for 1 s after which the next trial started. The task 
consisted of 300 trials. Importantly, the number of points paid off 
by the four slot machines gradually and independently changed 
from trial to trial (Figure 2; Supplementary Material).

Before the start of the experimental session, participants were 
given 24 practice trials. We instructed the participants that, on top 
of the standard payment for participation in the study, they would 
receive a bonus sum of money that depended on the number of 
points they would obtain in this task, and that the average bonus 
earned in this task was 9 euros. However, we did not tell participants 
how the number of points was converted into euros, or what their 
cumulative point total was. After completion of the study, each 
participant received a bonus of 10 euros.

comparison tone. Participants were instructed to indicate whether 
the comparison tone was higher or lower in pitch than the reference 
tone, and earned points for each correct response. If participants 
responded correctly on a particular trial, the value of that trial 
was added to the participant’s total score. In addition, in the next 
trial, the reward that could be earned increased by five points, and 
the pitch discrimination was made more difficult by halving the 
difference in pitch between the reference and comparison tones. 
Following an incorrect response, the reward value of the subsequent 
trial decreased by 10 points (but with a floor value of zero points), 
and the level of task difficulty remained the same. Importantly, prior 
to each trial, participants had the opportunity to “escape” from the 
current series of discriminations without score penalty and receive 
a new discrimination task (i.e., comparison against a new reference 
tone), with the point value reset to five points and the easiest pitch 
discriminability. Participants were instructed to maximize their 
total score over the 20 min of the experiment.

The task procedure is illustrated in Figure 1. At the start of each 
trial participants were shown a score/value screen that displayed the 
total score accumulated thus far and the point value of the next trial. 
Participants then indicated with a key press whether they wanted to 
“accept” this trial or “escape”. If the participant accepted the trial, a ref-
erence/comparison tone pair followed after a delay of 1 s. Participants 
were instructed to indicate as quickly and accurately as possible 
whether the comparison tone was lower or higher in pitch than the 
reference tone. After a delay of 1 s, the accuracy of the participant’s 
response was indicated by a 250-ms feedback sound: a bell sound for 
correct responses and a buzzer sound for incorrect responses. Two 
seconds after the feedback sound, the next trial started. If participants 
pressed the “escape” button at the score/value screen, a 250-ms “escape 
sound” was played, immediately followed by a new score/value screen. 
We refer to a series of trials accepted by a participant as an “epoch” of 
play. Electing to escape begins a new epoch. We considered the average 
number of trials in an epoch as an index of task (dis)engagement.

In the first trial of each epoch, the difference in pitch between 
the two tones was 64 Hz. As noted above, this difference was 
halved following each correct response. If participants correctly 
discriminated a ¼-Hz difference, the tones presented in the next 
trial were impossible to discriminate (i.e., 0 Hz difference), and 
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Figure 1 | illustration of a sample trial in the diminishing-utility task. 
See text for further details.
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Figure 2 | The four-armed bandit task. Participants made repeated choices 
between four slot machines. Unlike standard slots, the mean pay-offs of the 
four machines changed gradually and independently from trial to trial (four 
colored lines). Participants were encouraged to earn as many points as 
possible during the task. Each choice was classified as exploitative or 
exploratory, using a computational model of reinforcement learning.
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results
subjectIve state
The participants assigned to the three treatment groups did 
not differ in their pre-treatment ratings of alertness, calmness 
or contentment (all ps > 0.7; Table 1). To asses the effects of 
reboxetine and citalopram on subjective state we conducted 
analyses of covariance (ANCOVAs) on the subjective ratings 
of alertness, calmness and contentment, with treatment and 
sex as between-subject factors, and the pre-treatment ratings 
as covariate. There were no main effects of treatment or sex, 
and no treatment by sex interactions on any of these ratings 
(all ps > 0.16), suggesting that reboxetine and citalopram did 
not affect subjective state.

non-sPecIfIc central and autonomIc nervous system effects
Figure 3 (left panel) shows the adaptive-tracking performance 
pre-treatment (averaged across 1.5 and 0.5 h pre-treatment) and 
post-treatment (averaged across 2 and 3 h post-treatment) for 
each treatment group. We conducted an ANCOVA on the post-
treatment adaptive-tracking performance with treatment and 
sex as between-subjects factors and pre-treatment performance 
as covariate. This analysis revealed a main effect of treatment 
[F(2, 45) = 5.2, p = 0.009]. There was no main effect of sex [F(1, 
45) = 0.8, p = 0.4] and no interaction between treatment and sex 
[F(2, 45) = 1.1, p = 0.3]. Follow-up comparisons indicated that the 

Analysis
We fitted three reinforcement-learning models to the data. 
All models estimated the pay-offs of each machine on each 
trial, and selected a machine based on these estimations. The 
models differed in how they calculated the estimated pay-offs 
(Supplementary Material). All models selected a machine accord-
ing to the “softmax” rule. This rule assumes that choices between 
different options are made in a probabilistic manner, such that 
the probability that a particular machine is chosen depends on 
its relative estimated pay-off. The exploitation–exploration bal-
ance is adjusted by a parameter referred to as gain, or inverse 
temperature: with higher gain, action selection is determined 
more by the relative estimated pay-offs of the different options 
(exploitation), whereas with lower gain, action-selection is more 
evenly distributed across the different options (exploration). We 
classified each choice as exploitative or exploratory according to 
whether the chosen slot machine was the one with the maximum 
estimated pay-off (exploitation) or not (exploration). In addi-
tion, we calculated the degree of exploration for each explora-
tory choice, by subtracting the estimated pay-off of the chosen 
machine from the maximum estimated pay-off. We assessed the 
value of the gain parameter and the proportion of exploratory 
choices as a function of pharmacological treatment. Only the 
results from the best-fitting model are reported, although the 
other models yielded similar results.

Table 1 | Pre- and post-treatment ratings of alertness, calmness, and contentment in the placebo, citalopram and reboxetine group (SD in 

parentheses).

 Time of measurement Placebo Citalopram reboxetine

Alertness (mm) Pre-treatment 51.2 (7.9) 52.2 (5.3) 50.6 (4.4)

 Post-treatment 50.2 (8.9) 52.4 (6.4) 48.6 (5.5)

Calmness (mm) Pre-treatment 57.5 (9.9) 57.9 (10.2) 56.2 (4.4)

 Post-treatment 59.2 (10.7) 54.9 (9.4) 56.3 (6.1)

Contentment (mm) Pre-treatment 55.9 (7.4) 56.7 (9.1) 55.9 (4.1)

 Post-treatment 57.5 (8.3) 56.4 (8.6) 56.9 (5.2)
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Figure 3 | Adaptive-tracking performance, saccadic peak velocity and pupil–iris ratio pre-treatment and post-treatment, separately for each treatment 
group (error bars indicate standard errors of the mean). PLA, placebo; CIT, citalopram; RBX, reboxetine.
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dImInIshIng-utIlIty task
The progressive increase in both task difficulty and potential reward 
during each series of tone discriminations produces a non-linear 
development of task-related utility. Initially, the increases in reward 
value for correct performance outpace the increases in difficulty, 
such that the expected value (utility) of task performance pro-
gressively increases. However, after several trials, the increases in 
difficulty will lead to sufficient number of errors as to reduce the 
expected value of performance, even in the face of increasing reward 
value for correct responses.

To examine changes in performance and task-related utility 
leading up to and following participants’ choice to “escape” (i.e., 
abandon the current series and start a new one), we averaged trials 
as a function of their position relative to the escape events. For 
this analysis, we considered only escape events that were preceded 
and followed by a minimum of four regular (i.e., non-escape) 
trials. As a measure of task utility, we calculated an estimate of 
expected value for each trial. For a given trial, expected value was 
computed individually for each participant by multiplying the 
point value of the trial (representing the potential reward value if 
the trial was accepted) by the expected accuracy on that trial for 
that participant. Expected accuracy was defined as the probability 
that the participant would give a correct response, given the level 
of difficulty of the required pitch discrimination. To determine 
this, we averaged the accuracy of all other trials for that partici-
pant with the same frequency difference between reference and 
comparison tones.

Figure 4 (left panels) shows the average accuracy and RT on the 
trials flanking an escape for each treatment group. All treatment 
groups showed a sharp decrease in accuracy and an increase in 
RT over the trials leading up to an escape, which was confirmed 
by significant linear trends [F(1, 44) = 462.5, p < 0.001 and F(1, 
44) = 14.3, p < 0.001, respectively]. As expected, performance was 
best on the first trial following an escape, after which accuracy 
gradually decreased and RT increased again [F(1, 44) = 54.5, 
p < 0.001 and F(1, 44) = 35.1, p < 0.001, respectively]. Figure 4 
(right panels) shows how our measure of expected value and 
the actual point value varied across the trials surrounding an 
escape. In all treatment groups, participants on average selected 
to escape when expected value approached the start value of a new 
series of discriminations. Both expected value and point value 
gradually decreased over the trials leading up to an escape [F(1, 
44) = 100.1, p < 0.001 and F(1, 44) = 30.5, p < 0.001, respectively], 
and gradually increased again over the trials following an escape 
[F(1, 44) = 422.1, p < 0.001 and F(1, 44) = 1079.0, p < 0.001, 
respectively]. Importantly, the effects of peri-escape trial position 
on performance and task utility did not interact with treatment 
or sex (all ps > 0.3).

We next examined the average number of accepted trials in an 
epoch. The average number of trials in an epoch did not differ 
between the three treatment groups [F(2, 44) = 0.26, p = 0.77]. 
There was no main effect of sex either [F(1, 44) = 1.08, p = 0.30], 
and no interaction between treatment and sex [F(2, 44) = 0.33, 
p = 0.72]. Furthermore, there was no significant across-subject 
correlation between the mean epoch length and the reboxet-
ine-related change in adaptive-tracking performance [r = 0.43, 
p = 0.08]. Note that, if anything, this correlation showed a trend 

reboxetine group showed worse post-treatment adaptive-tracking 
performance than the placebo group [F(1, 31) = 12.0, p = 0.02], 
whereas there was no difference between the citalopram and the 
placebo group [F(1, 29) = 0.5, p = 0.5]. The difference in post-
treatment adaptive-tracking performance between the reboxetine 
and the citalopram group just failed to reach significance [F(1, 
29) = 3.8, p = 0.06]. These results suggest that reboxetine led to a 
decrease in adaptive-tracking performance.

Figure 3 (middle panel) shows the saccadic peak velocity meas-
ured pre-treatment (averaged across 1.5 and 0.5 h pre-treatment) 
and post-treatment (averaged across 2 and 3 h post-treatment) 
for each treatment group. An ANCOVA on the post-treatment 
saccadic peak velocity with treatment and sex as between-sub-
jects factors and pre-treatment saccadic peak velocity as covariate 
revealed a main effect of treatment [F(2, 45) = 15.3, p < 0.001]. 
There was no main effect of sex [F(1, 45) = 1.8, p = 0.2] and no 
significant interaction between treatment and sex [F(2, 45) = 0.6, 
p = 0.6]. Follow-up comparisons indicated that the reboxetine 
group showed smaller post-treatment saccadic peak velocity than 
the placebo group [F(1, 31) = 5.1, p = 0.03], whereas the citalo-
pram group showed larger post-treatment saccadic peak velocity 
than the placebo group [F(1, 29) = 8.6, p = 0.007]. Thus, both 
reboxetine and citalopram affected saccadic eye movements, but 
the effects were in opposite directions. The time courses of sac-
cadic peak velocity and adaptive-tracking performance showed 
that the effects of reboxetine and citalopram on these measures 
were maximal at the time points surrounding performance of the 
diminishing-utility task and the gambling task, suggesting that 
the drug-related CNS effects were maximal during performance 
of these tasks.

Figure 3 (right panel) shows the pupil–iris ratio measured pre-
treatment (averaged across 1.5 and 0.5 h pre-treatment) and post-
treatment (averaged across 2, 2.5 and 3 h post-treatment) for each 
treatment group. An ANCOVA on the post-treatment pupil–iris 
ratio with treatment and sex as between-subjects factors and pre-
treatment pupil–iris ratio as covariate revealed a main effect of 
treatment [F(2, 45) = 22.1, p < 0.001]. There was no main effect of 
sex [F(1, 45) = 0.1, p = 0.7] and no significant interaction between 
treatment and sex [F(2, 45) = 2.8, p = 0.07]. Follow-up comparisons 
indicated that both the reboxetine group and the citalopram group 
had larger post-treatment pupil–iris ratios than the placebo group 
[F(1, 31) = 7.1, p = 0.01 and F(1, 29) = 44.4, p < 0.001, respec-
tively]. In addition, post-treatment pupil–iris ratio was larger in 
the citalopram group than the reboxetine group [F(1, 29) = 13.7, 
p = 0.001]. Thus, consistent with previous studies (Phillips et al., 
2000; Schmitt et al., 2002), both citalopram and reboxetine led to an 
increase in pupil diameter, and this effect was more pronounced in 
the citalopram group. There is no reliable evidence for direct projec-
tions from the LC to the autonomic nuclei that control the pupil 
(Aston-Jones, 2004), but there are a number of possible indirect 
pathways by which LC manipulation could affect the sympathetic 
nervous system (cf. Berntson et al., 1998). Therefore, it is possible 
that the increase in pupil diameter in the reboxetine group reflects 
drug-induced changes in LC activity. However, it is also possible 
that the pharmacological effects on pupil diameter were produced 
at the level of the autonomic nuclei controlling the pupil, and thus 
reflect other drug actions than changes in LC activity.
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Follow-up contrasts indicated that the male  participants obtained 
significantly more points than the female participants in the 
reboxetine group [t(16) = 3.08, p = 0.007], whereas there were 
no significant sex effects in the placebo and citalopram groups 
(ps > 0.48). An overview of the dependent variables in this task as 
a function of treatment and sex is shown in Table 2. An analysis 
of the improvement in tone-discrimination performance over 
the course of the task (i.e., learning curve) is reported in the 
Supplementary Material.

in the opposite direction than predicted by the adaptive gain 
theory. Mean epoch length was not significantly correlated with 
the drug-related increase in pupil diameter either [r = −0.13, 
p = 0.62 in the reboxetine group; r = 0.24, p = 0.38 in the cita-
lopram group].

There were no effects of treatment or sex on the total number of 
trials completed or total number of points obtained (all ps > 0.3), 
except for a significant interaction between treatment and sex on 
the total number of point obtained [F(2, 44) = 3.68, p = 0.03]. 
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Figure 4 | Dependent measures for peri-escape trials in the three treatment groups. Trial number “0” indicates the escape trial. Left panels: accuracy and 
response time (RT). Right panels: Trial value and its computed expected value. Note that no measures of accuracy and RT are available for escape trials, because, on 
these trials, no comparison tone was presented.

Table 2 | Overview of the dependent variables in the diminishing-utility task, as a function of treatment and sex (SD in parentheses).

 Placebo Citalopram reboxetine

 Men Women Men Women Men Women

Mean epoch length (trials) 10.3 (2.3) 12.1 (4.3) 9.9 (2.5) 10.9 (4.1) 11.0 (3.8) 11.0 (2.3)

Number of escapes 12.8 (3.1) 11.5 (4.0) 13.4 (3.7) 12.9 (5.1) 13.3 (5.9) 11.8 (4.7)

Total score 1694 (380) 1749 (418) 1496 (537) 1674 (404) 1904 (353) 1356 (391)

Total number of trials 136 (3) 136 (3) 135 (3) 136 (3) 138 (3) 132 (3)
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in pupil diameter, but it is unknown whether these pupil modula-
tions were produced by changes in LC activity or by other drug 
influences peripheral to the LC (e.g., on lower medullary NE cell 
groups or autonomic nervous system). Furthermore, previous stud-
ies using the same dose of reboxetine, between-subject designs, 
and similar group sizes have found significant group differences in 
behavioral measures (Tse and Bond, 2002; Miskowiak et al., 2007; 
De Martino et al., 2008). The absence of significant across-subject 
correlations between our measures of disengagement/exploration 
and the reboxetine-related effects on adaptive-tracking perform-
ance suggests that the effectiveness of the reboxetine manipula-
tion in individual participants did not predict their tendency to 
disengage or explore.

The two experimental tasks we used to measure exploratory 
behavior and task (dis)engagement seem well suited for detecting 
individual differences in control state. The n-armed bandit task with 
non-stationary pay-off structure is the most commonly used para-
digm for studying the exploration–exploitation trade-off in rein-
forcement-learning research (Sutton and Barto, 1998). Combined 
with computational modeling, it allows a formal description of par-
ticipants’ choice behavior and provides an index of their tendency 
to explore. The diminishing-utility task is a more novel paradigm in 
which task engagement is modulated by means of dynamic changes 
in task-related utility. Importantly, the opportunity to “escape” from 
the current task set provides an overt behavioral index of disengage-
ment. In line with a previous study using this task (Gilzenrat et al., 
2010), we found that participants behaved optimally on average, 
and chose to disengage from the current task set when estimated 
task utility approached the baseline utility of a new task set. In 
addition, in a recent study using the same gambling task as used 
here (Jepma and Nieuwenhuis, in press) we have found that changes 
in utility measures and pupil diameter leading up to the switch 
from an exploitative to an exploratory choice strategy were similar 
to those leading up to an “escape” in the diminishing-utility task 
(Gilzenrat et al., 2010). This suggests that disengagement in the 
diminishing-utility task and exploration in the gambling task are 
both driven by decreases in task utility. That said, optimal explo-
ration strategies in our experimental tasks may differ from those 
needed in the real world; the changes in pay-offs and task-related 
utility in our tasks developed gradually and relatively slowly over 
time, which may not correspond to the dynamics of utility changes 
in real-world environments (Cohen et al., 2007).

Although disengagement and exploration are both considered 
behaviors indicative of an exploratory control state associated with 
the tonic LC mode, it is important to note that disengagement in the 
diminishing-utility task (i.e., choosing to “escape” from the current 
series of tone discriminations) is not equivalent to exploration in 
the gambling task, which may explain the absence of a correlation 
between our measures of disengagement and exploratory behavior. 
The development of a computational model for the diminishing-
utility task is an important objective for future studies, as this will 
allow a more formal description of participants’ behavior in this 
task and a better comparison with exploratory behavior in other 
tasks.

One possible explanation for the absence of reboxetine effects 
on our measures of task disengagement and exploratory behavior 
is that the LC–NE system is not involved in regulating the balance 

gamblIng task
Each participant’s tendency to make exploratory choices is reflected 
in the estimated gain parameter of the reinforcement-learning 
model: a lower value of the gain parameter indicates a more explor-
atory choice strategy (Materials and methods; Supplementary 
Material). The value of the gain parameter did not differ between 
the three treatment groups [F(2, 45) = 0.70, p = 0.51; Table S1] 
or between the male and female participants [F(2, 45) = 2.50, 
p = 0.12]. In addition, we classified each choice as exploitative or 
exploratory according to whether the chosen slot machine was the 
one with the maximum estimated pay-off (exploitation) or not 
(exploration). The proportion of exploratory choices did not dif-
fer between the three treatment groups [28%, 32%, and 27% in 
the placebo, citalopram and reboxetine group, respectively; F(2, 
45) = 0.92, p = 0.41] or between male and female participants 
[26% versus 31%; F(2, 45) = 2.43, p = 0.13]. The three treatment 
groups did not differ in the degree of exploration of the explora-
tory choices either (section Analysis); the degrees of exploration 
in the placebo, citalopram and reboxetine groups were 0.39, 0.37, 
and 0.37, respectively (F(2, 45) = 0.43, p = 0.65).

Neither the value of the gain parameter nor the proportion of 
exploratory decisions was significantly correlated with the reboxet-
ine-related change in adaptive-tracking performance [gain param-
eter: r = 0.41, p = 0.09; proportion exploration: r = −0.25, p = 0.32]. 
Our measures of exploration were not significantly correlated with 
the drug-related increase in pupil diameter either (ps > 0.15 in the 
reboxetine group; ps > 0.35 in the citalopram group).

There were no across-subject correlations between our measure 
of task disengagement in the diminishing-utility task (mean epoch 
length) and our measures of exploration in the gambling task (value 
gain parameter and proportion of exploratory choices; ps > 0.8). 
This suggests that the disengagement and exploration measures in 
these tasks reflect separate aspects of the exploratory control state 
hypothesized to be mediated by the tonic LC mode.

dIscussIon
The present study provided the first direct test in humans of one 
of the central tenets of the adaptive gain theory of LC function 
(Aston-Jones and Cohen, 2005), namely the assumption that an 
elevated level of tonic LC–NE activity (tonic LC mode) promotes 
a more exploratory control state. Contrary to predictions of the 
adaptive gain theory, we found no evidence that the increased NE 
levels induced by reboxetine were associated with task disengage-
ment or exploratory behavior in our experimental tasks.

Our null effects cannot be explained by a general ineffectiveness 
of our pharmacological manipulations, since there were signifi-
cant drug effects on several central and autonomic nervous system 
parameters. Reboxetine caused reductions in adaptive-tracking per-
formance and in saccadic peak velocity, which corroborates pre-
vious findings suggesting the involvement of the noradrenergic 
system in visuomotor control of movements (Wang et al., 2009). 
Citalopram increased saccadic peak velocity, which is in line with 
the mild stimulating properties of the SSRI on the electroencepha-
logram (Itil et al., 1984; Saletu et al., 2002). The time course of 
the effects suggests that reboxetine was maximally effective during 
performance of the diminishing-utility task and gambling task. In 
addition, both citalopram and  reboxetine resulted in an increase 
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in the current task. Similarly, disengaging from the current task 
set in the diminishing-utility task serves the higher-level goal of 
maximizing the total score obtained in the task. Such controlled, 
top–down driven exploration and disengagement within the current 
task context might be mediated by different neural mechanisms 
and/or neuromodulatory systems than random, bottom–up driven 
exploration exceeding the current task context. Controlled explora-
tion presumably requires cognitive control functions that rely on 
the prefrontal cortex (PFC), which is supported by the finding of 
PFC activation during exploratory decisions in the four-armed 
bandit task (Daw et al., 2006). There is also some evidence that 
the dopamine system plays a role in the regulation of a particular 
type of controlled exploration (Frank et al., 2009). Our findings 
suggest that the LC–NE system may not be involved in controlled 
exploration. However, our study leaves open the possibility that the 
LC–NE system is involved in random exploration exceeding the 
current task context. Random exploration is likely to be associated 
with an increased sensitivity to bottom–up activation, resulting 
from a global increase in neuronal responsivity. The widespread 
projection system of the LC and the neuromodulatory effects of NE 
on cortical neurons suggest that the LC–NE system is well suited 
to produce such global changes in responsivity.

The idea that the tonic LC mode promotes a more random 
type of exploration outside the current task context is supported 
by findings that drug-related increases in tonic NE levels improve 
attentional-set shifting and reversal learning in rats and monkeys 
(Devauges and Sara, 1990; Lapiz and Morilak, 2006; Lapiz et al., 
2007; Seu et al., 2008), whereas noradrenergic lesions impair atten-
tional-set shifting (Tait et al., 2007; McGaughy et al., 2008; Newman 
et al., 2008). These functions require the adaptation of behavior 
according to unexpected changes in the task environment, which 
depends on a shift of attention to previously irrelevant stimulus 
dimensions. These types of attention shifts are likely to be facilitated 
by random exploration (although an increased learning rate may 
provide an alternative explanation). Investigating the noradrenergic 
modulation of random exploration outside the current task context 
in humans is an important objective for future studies.

The distinction between controlled and random exploration 
might be related to the proposed distinction between expected 
and unexpected uncertainty (Yu and Dayan, 2005). Yu and Dayan 
have proposed that acetylcholine signals expected uncertainty (i.e., 
anticipated variation in task outcome), whereas NE signals unex-
pected uncertainty (i.e., unanticipated changes in the task con-
text resulting in strong violations of top–down expectations; see 
Bouret and Sara, 2005, for a similar account). Yu and Dayan have 
also proposed that the NE-related signaling of unexpected uncer-
tainty facilitates the learning of predictive relationships within a 
behavioral context, and therefore accelerates the detection of a 
change in task contingencies, which could explain the improve-
ments in attentional-set shifting associated with increased tonic 
NE levels. Yu and Dayan’s account thus suggests that the tonic 
LC mode boosts learning about new predictive relationships in 
noisy and changing environments. This account is closely related 
to the adaptive gain theory’s assumption that the tonic LC mode 
promotes exploration, at least when applied to random explora-
tion exceeding the current task context, since this type of explo-
ration is likely to facilitate the learning of contextual changes. 

between exploitative and exploratory control states in humans. 
The adaptive gain theory is based on findings from neurophysi-
ological studies in monkeys using relatively simple target-detection 
tasks, and it is possible that the results from these studies cannot be 
generalized to the regulation of control state in humans. Moreover, 
although it is intuitively appealing to interpret the observations 
of increased distractibility, labile attention, and impaired focused 
performance during elevated tonic LC–NE activity in animals as 
reflections of an exploratory control state (Aston-Jones and Cohen, 
2005), it is important to note that the neurophysiological studies 
did not explicitly investigate the exploration–exploitation trade-off; 
the proposed link between the tonic LC mode and an exploratory 
control state is an assumption. Because we did not find evidence 
for this assumption, it seems appropriate to consider alternative 
explanations for the distractible behavior associated with the tonic 
LC mode. When taking a reinforcement-learning model perspec-
tive, it may be possible to explain the behaviors observed in the tonic 
LC mode by changes in reinforcement-learning parameters other 
than the exploration parameter. One possibility is that high LC–NE 
activity increases the rate at which action values are updated based 
on new information (i.e., the learning rate parameter). This hypoth-
esis would be compatible with a recent proposal that increased NE 
levels boost the learning of new task contingencies (Yu and Dayan, 
2005). In line with this hypothesis, the estimated learning rate of 
the reinforcement-learning model that we fit to the choice data of 
the gambling task was somewhat larger in the reboxetine group 
than in the other treatment groups (Table S2 and Figure S1 in 
Supplementary Material). However, because of the very high learn-
ing rates associated with this task, this result must be interpreted 
with caution. Alternatively, high LC–NE activity may increase the 
importance attached to immediate versus delayed rewards (i.e., 
the future-reward discount factor). Support for this hypothesis 
comes from findings from a recent study in mice that suggest that 
drug-induced increases in NE levels impair the ability to take future 
rewards into account, which would lead to the impulsive selection 
of options with short-term rewards (Luksys et al., 2009). Luksys 
et al. suggested that the distractible behavior observed in animals 
with elevated LC–NE activity can be produced by an increased 
devaluation of future, relative to immediate, rewards combined 
with high exploitation (as opposed to exploration; see Doya, 2002, 
for a similar proposal). Thus, the behaviors associated with the tonic 
LC mode that have been interpreted as indices of an exploratory 
control state by the adaptive gain theory may also be explained 
by modulations of other reinforcement-learning parameters. To 
further address this issue, future studies need to dissociate the role 
of the LC–NE system and other neuromodulatory systems in the 
regulation of different components of reinforcement learning and 
decision making.

Another possibility is that the tonic LC mode promotes a type 
of exploratory behavior and disengagement that was not measured 
in the present study. It is likely that exploration is not a single 
process but comprises several distinct functions involving different 
neural mechanisms. An important aspect may be whether explo-
ration is driven by top–down motives or by bottom–up stimula-
tion. Exploratory behavior in the four-armed bandit task may be 
referred to as “controlled” or “systematic” exploration, since it is 
aimed at obtaining information in order to optimize performance 
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The detection of unexpected uncertainty might be an important 
factor in driving the LC towards a more tonic LC mode. However, 
how assessments of unexpected uncertainty interact with assess-
ments of task-related utility on different timescales to regulate LC 
mode and control state remains to be investigated. An interesting 
speculation is that the degree of unexpected uncertainty deter-
mines how much weight is given to assessments of long versus 
short-term utility, such that long-term utility has relatively less 
influence in situations of high unexpected uncertainty. In terms of 
reinforcement-learning models, this would be similar to the sug-
gested modulation of the learning rate parameter by the volatility 
of the environment (Behrens et al., 2007).

Finally, it is important to note that although microdialysis 
studies have shown that a single dose of reboxetine increases NE 
concentrations, these studies, due to their limited temporal resolu-
tion, do not provide unequivocal evidence that this reflects purely 
an increase in tonic NE levels. Since the effects of selective NE 
reuptake inhibitors on the phasic LC response in awake animals 
are not known, we cannot exclude the possibility that our rebox-
etine manipulation also affected phasic LC activity and NE release, 
for example via modulations of the electrotonic coupling strength 
between LC neurons (Alvarez et al., 2002). Thus, determining the 
exact effects of selective NE reuptake inhibitors on the phasic and 
tonic components of LC–NE activity will be important for a better 
understanding of their effects on cognition. In addition, the effects 
of pharmacologically increasing NE levels on control state might 
depend on individual differences in baseline (pre-treatment) NE 
level. Accordingly, individual differences in baseline NE level could 
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suPPlementary materIal
adaPtIve-trackIng task
The adaptive-tracking task is a pursuit-tracking task (Borland and 
Nicholson, 1984). A target circle moves randomly on a computer 
screen, and the participant must try to keep a marker dot inside 
the moving circle by operating a joystick. The mean velocity of the 
moving circle is automatically adjusted to match the participant’s 
skill. If the participant is successful in maintaining the dot inside 
the circle, the velocity of the moving circle gradually increases. 
Conversely, if the participant cannot maintain the dot inside the cir-
cle, the velocity is reduced. The task lasts 3.5 min, including a run-in 
period of 0.5 min during which no data is recorded. Performance 
is measured as the percentage of time that the participant is able 
to keep the dot in the circle. The adaptive-tracking task has proved 
to be useful for measurement of CNS effects of alcohol, various 
psychoactive drugs, and sleep deprivation (Cohen et al. 1985; Van 
Steveninck et al., 1991, 1999).

Pay-off structure of the gamblIng task
The number of points paid off by slot machine i on trial t ranged 
from 1 to 100, drawn from a Gaussian distribution (standard devia-
tion σ

o
 = 4) around a mean μ

i,t
 and rounded to the nearest integer. 

At each trial, the means diffused in a decaying Gaussian random 
walk:

μ
i,t + 1

 = λμ
i,t

 + (1 − λ)θ + ν
The decay parameter λ was 0.9836, the decay center θ was 50, 

and the diffusion noise ν was zero-mean Gaussian (standard devia-
tion σ

d
 = 2.8). We used three instantiations of this process; one is 

illustrated in Figure 2.

descrIPtIon of the reInforcement-learnIng models
We fitted three reinforcement-learning models to the choice data 
of the gambling task. All models consisted of a mean-tracking rule 
that tracked the expected pay-offs of each machine ( ˆ

,µi t), and a 
choice rule that selected a machine based on these estimations. 
The estimated pay-offs were calculated as follows:

model 1 (mean Pay-off estImatIon wIthout decay;  
dayan and abbott, 2001)
When a participant chooses machine c on trial t and receives pay-off 
r, the estimated pay-off of the chosen machine is updated accord-
ing to:

ˆ ˆ ˆ
, ,µ µ κδc t c t t

post pre= +

with prediction error δ − µt t c tr= ˆ
,  and learning rate parameter κ̂. 

The estimated pay-offs of the unchosen machines do not change.

model 2 (mean Pay-off estImatIon wIth decay)
The chosen machine’s estimated pay-off is updated as in model 1:

ˆ ˆ ˆ
, ,µ µ κδc t c t t

post pre= +

In addition, the estimated pay-offs of all machines, regardless 
of choice, are updated in time according to:

ˆ ˆ ˆ ( ˆ )ˆ
, ,µ λµ λ θi t i t+ = + −1 1pre post

in which λ̂ is the decay parameter (a smaller value of λ̂ indicates a 
faster decay rate) and θ̂ is the decay-center parameter.

model 3 (kalman fIlter; daw et al., 2006)
The pay-offs of the machines are updated as in model 2. In addi-
tion to tracking the mean pay-offs ( ˆ

,µi t), this model also tracks 
the uncertainties about these pay-offs ( ˆ

,σi t
2 , i.e., the variance of the 

expected pay-off distributions) which determine the trial-specific 
learning rates κ

t
. When a participant chooses machine c on trial 

t and receives pay-off r, the estimated pay-off distribution of the 
chosen machine ( ˆ , ˆ

, ,µ σ2
c t c t
post post) is updated according to:

ˆ ˆ

ˆ ( ) ˆ
, ,

, ,

µ = µ κ δ

κ σ
c t c t t t

c t t c t

post pre

post pre

+

= −σ2 21

with prediction error δ µt t c,tr= − ˆ pre and learning rate 
κ σ σ σt c t c t o= +ˆ /( ˆ ˆ ), ,

2 2 2pre pre .
Then, the estimated prior pay-off distributions of all machines on 

the subsequent trial (trial t + 1) are updated in time according to:

ˆ ˆ ˆ ( ˆ )ˆ

ˆ ˆ ˆ ˆ

, ,

, ,

µ λµ λ θ

σ λ σ2

i t i t

i t i t

+

+

= + −

= +
1

1

1pre post

2pre 2post σσd
2

In all models, the selection of a machine on each trial was deter-
mined by a softmax rule; the probability P

i,t
 of choosing machine i 

on trial t as the function of the estimated pay-offs was:

Pi t

i,t

j,tj

,

exp

exp
=

( )
( )∑

β
β

pre

pre

 

with exploration parameter β (referred to as the gain, or inverse 
temperature).

We fitted each model to the participants’ choice data by maxi-
mizing the log-likelihood of the observed choices. To optimize 
the parameter fits, we used a non-linear optimization algorithm 
(Matlab’s F

min
 search function; Lagarias et al., 1998), together with 

a search of different starting values. The trials in which no response 
was made within the 1.5-s time limit were omitted. The pay-off 
tracking parameters ( ˆ , ˆ ˆκ λ, θand ) were shared by all participants 
that had received the same pharmacological treatment, whereas 
the exploration parameter (β) was estimated separately for each 
participant. Parameter σ̂o in model 3 was fixed at 4. Estimation 
of parameter σ̂din model 3 resulted in extreme values for most of 
the participants, suggesting unreliable fits. Therefore, we fixed this 
parameter at 50, which is similar to the best fitting σ̂d parameter 
found in a previous study (Daw et al., 2006). Large values of σ̂d  
induce high learning rates, indicating that the expected pay-offs 
are determined primarily by the most recent experience with each 
machine. Given that the estimated learning rate parameters in mod-
els 1 and 2 were very near or even slightly above 1 as well (Table S1), 
and that previous studies have also associated this task with high 
learning rates (Daw et al., 2006; Jepma and Nieuwenhuis, in press), 
the oversensitivity to the most recent pay-off of each machine seems 
to be characteristic of participants’ choice behavior in this task.

To compare the adequacy of the three models in explaining the 
observed data we used the Bayesian information criterion (BIC; 
Raftery, 1996), a statistical criterion for model selection. The BIC 

µ̂
µ̂



Frontiers in Human Neuroscience www.frontiersin.org August 2010 | Volume 4 | Article 170 | 12

Jepma et al. NE and exploration

which was best described by a linear improvement over the 
four sequential bins [F(1, 44) = 15.9, p < 0.001]. This learning 
effect interacted with treatment at a trend level [F(6, 132) = 2.1, 
p = 0.057], but did not differ between the male and female par-
ticipants (p = 0.48). Follow-up comparisons indicated that the 
learning curve in the reboxetine group differed from those in 
the placebo and citalopram groups [F(3, 93) = 2.5, p = 0.07 and 
F(3, 87) = 2.7, p = 0.05, respectively]; whereas the placebo and 
citalopram groups showed a significant linear improvement over 
the four consecutive bins (linear trend effect ps < 0.002 for both 
groups), the effect of trial bin in the reboxetine group was best 
described by a cubic trend [F(1, 17) = 11.8, p = 0.003] reflecting 
the initial decrease in performance in trial bins 2 and 3 followed 
by an increase in performance in the last bin.

bootstraP analysIs of the shared Parameters In the 
reInforcement-learnIng model
To approximate the distribution of the shared parameters,  
( ˆ , ˆ , ˆλ θ κand ), we conducted a bootstrap analysis (Efron and 
Tibshirani, 1993). For each treatment group, the computer gener-
ated 2162 bootstrap sets by sampling with replacement from the 
original group of participants; each bootstrap set had the same 
number of “participants” as the original data set. Model 2 was fit-
ted to the choice data from each bootstrap set, which resulted in a 
bootstrap sampling distribution for each parameter in each treat-
ment group (Figure S2).

To assess whether the ˆ , ˆ , ˆλ θ κand  parameter values differed 
between the three treatment groups we determined the 95% con-
fidence interval of each parameter in each group (Table S2). The 
distributions of the λ̂ parameter suggest that λ̂  is larger in the 
citalopram group than in the other two groups, indicating a slower 
decay rate (i.e., slower forgetting of the estimated values) in the 
citalopram group. However, the bootstrap-based 95% confidence 
interval of the citalopram group partly overlaps with that of the 
other treatment groups, hence the difference misses significance. 

is an increasing function of the residual sum of squares from 
the estimated model, and an increasing function of the number 
of free parameters to be estimated. Thus, the best model is the 
model with the lowest BIC value. In addition, the raw BIC val-
ues were transformed to a probability scale (BIC model weights 
or “Schwarz weights”), enabling a more intuitive comparison of 
the probabilities of each model being the best model, given the 
data and the set of candidate models (Wagenmakers and Farrell, 
2004). Table S1 shows the estimated parameter values and the 
BIC values and model weights of each model. Model 2 (mean 
pay-off estimation with decay) provided by far the best fit to the 
choice data.

tone-dIscrImInatIon learnIng curves In the 
dImInIshIng-utIlIty task
To examine whether the three treatment groups showed dif-
ferent rates of improvement in tone-discrimination perform-
ance over the course of the task (i.e., different learning curves), 
we divided all trials in four equally sized consecutive trial bins, 
separately for each participant and each level of task difficulty, 
and assessed the mean percentage of correct tone discrimina-
tions in each trial bin (Figure S1). The trials with impossible 
discriminations (i.e., 0 Hz tone differences) were excluded from 
the analysis. There was a significant main effect of trial bin on 
tone- discrimination performance [F(3, 132) = 10.1, p < 0.001], 
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Figure S1 | Learning curves illustrating the change in tone-
discrimination performance over the four consecutive trial bins in the 
diminishing-utility task, separately for each treatment group (error bars 
indicate standard errors of the mean).

Table S1 | Mean parameter estimates and fit information for the three 

models, separately for each treatment group (SD in parentheses).

  Model 1 Model 2 Model 3

β Placebo 0.095 (0.028) 0.137 (0.042) 0.197 (0.058)

 Reboxetine 0.105 (0.039) 0.152 (0.081) 0.245 (0.129)

 Citalopram 0.093 (0.035) 0.135 (0.053) 0.157 (0.061)

λ̂ Placebo − 0.73 0.70

 Reboxetine − 0.73 0.65

 Citalopram − 0.85 0.84

θ̂ Placebo − 45.9 45.6

 Reboxetine − 45.6 45.3

 Citalopram − 49.7 49.5

κ̂ Placebo 0.93 1.07 −
 Reboxetine 1.03 1.17 −
 Citalopram 0.86 1.01 −
−LL Placebo 4380 3789 3821

 Reboxetine 4415 3751 3780

 Citalopram 4349 3858 3901

BIC Placebo 8913 7757 7804

 Reboxetine 8994 7691 7732

 Citalopram 8842 7885 7954

p Placebo <0.001 >0.999 <0.001

 Reboxetine <0.001 >0.999 <0.001

 Citalopram <0.001 > 0.999 <0.001

Model 2 provided the best fit to the data.
Note: Model 1, mean pay-off estimation without decay; Model 2, mean pay-off 
estimation with decay; Model 3, pay-off distribution estimation with decay; 
-LL, negative log likelihood (smaller values indicate better fit); BIC, Bayesian 
information criterion; p, BIC model weight.
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The trend for a slower decay rate in the citalopram group may be 
consistent with findings that serotonin manipulations affect the 
sensitivity for short- versus long-term consequences of actions (e.g., 
Schweighofer et al., 2008). The values of θ̂ and κ̂ did not differ 
significantly between the three groups, although there was a trend 
for a somewhat higher learning rate in the reboxetine group.
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Table S2 | The 2.5, 50 and 97.5 percentile of the bootstrap sampling 

distributions of the ˆ , ˆ , ˆλ θ κand  parameters.

 Percentile

  2.5 50 97.5

λ̂ Placebo 0.31 0.73 0.85

 Reboxetine 0.20 0.73 0.84

 Citalopram 0.78 0.85 0.89

 Placebo 42.4 45.9 49.6θ̂
 Reboxetine 40.1 45.7 49.9

 Citalopram 45.1 49.7 53.5

 Placebo 0.17 1.05 1.22κ̂
 Reboxetine 0.49 1.16 1.30

 Citalopram 0.89 1.00 1.09

The 2.5 and 97.5 percentiles indicate the lower and upper bound of the 95% 
confidence interval.
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Figure S2 | Bootstrap distributions of the λ̂ (decay parameter; larger 
values indicate slower decay rate), θ̂ (decay center), and κ̂ (learning rate) 
parameters in each treatment group.




