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Abstract: Power quality analysis issues, especially the measurement of harmonic and interharmonic
in cyber-physical energy systems, are addressed in this paper. As new situations are introduced to
the power system, the impact of electric vehicles, distributed generation and renewable energy has
introduced extra demands to distributed sensors, waveform-level information and power quality
data analytics. Harmonics and interharmonics, as the most significant disturbances, require carefully
designed detection methods for an accurate measurement of electric loads whose information is
crucial to subsequent analyzing and control. This paper gives a detailed description of the power
quality analysis framework in networked environment and presents a fast and resolution-enhanced
method for harmonic and interharmonic measurement. The proposed method first extracts harmonic
and interharmonic components efficiently using the single-channel version of Robust Independent
Component Analysis (RobustICA), then estimates the high-resolution frequency from three discrete
Fourier transform (DFT) samples with little additional computation, and finally computes the
amplitudes and phases with the adaptive linear neuron network. The experiments show that the
proposed method is time-efficient and leads to a better accuracy of the simulated and experimental
signals in the presence of noise and fundamental frequency deviation, thus providing a deeper insight
into the (inter)harmonic sources or even the whole system.

Keywords: harmonics; interharmonics; resolution-enhanced; independent component analysis;
adaptive linear neuron; power quality; cyber-physical energy system

1. Introduction

Cyber-physical energy system (CPES) is about the intersection of the physical and the cyber in
the power grid [1,2]. Specifically speaking, not only the utilities can monitor the consumers’ power
information and make corresponding operations such as providing suggestions for consumption
reducing [3] and disturbances filtering [4], but also the consumers have the choice of the power
consuming behaviors or even proposing demands to utilities, according to the utility-published data
such as the dynamic price and power quality.

The main supporting technologies of achieving the above functionalities are two-way
communication with multi-mode data transmission, dynamic demand response, and power quality
analysis in the appliance level [3,5,6]. In this sense, the fundamental hardware that best connects the
physical with the cyber is called a smart meter [6]. However, existing smart meters are not truly smart,
only parameters such as active/reactive power, power consumption, root mean square of voltage and
current are acquired, and these electric data are gathered every few minutes or hours [6]. Therefore,
smart meters that can provide waveform-level information for power quality analysis are needed, and
in terms of the communication, the power quality analysis framework should be carefully designed.
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In CPES, power quality analysis is not restricted to the classic problems such as the definition
and classification of disturbances, and measurement protocols and standards [7,8] have also been well
established. Therefore, building tools for extracting the fine-grained information inside the power
quality data accurately is of great interest to power quality researchers. In this paper, we take the
harmonic distortion, which is the most common type of power quality disturbance, for example,
low-order harmonics have been extensively discussed in the literature [9–11] because they contribute
the most to related problems such as overheating the rotating machines and degrading the performance
of electronic equipment in the traditional power system. However, as more renewable energy sources
are put into use and microgrids are becoming widespread across the country, excessive interharmonic
pollution has been injected into the system [12], which may indicate many characteristics of the power
equipment within the system [13], and problems caused by frequency deviation and noise are also
getting severe [4]. Therefore, compared to the methods only aiming at low-order harmonics and
regardless of the frequency and noise, resolution-enhanced harmonic and interharmonic measurement
can provide a more comprehensive understanding of the power quality.

Frequency estimation is an important factor to harmonic and interharmonic measurement [14,15].
The standard IEC (International Electrotechnical Commission) 61000-4-7 [8] recommends Fast Fourier
Transform (FFT) and the subgroup method as the tools measuring the harmonics and interharmonics,
with 5 Hz as the frequency resolution. However, the frequency of interharmonics is not an integer of
the fundamental frequency, and fundamental frequency deviation is unavoidable in general; therefore,
harmonic and interharmonic measurement needs higher frequency resolution. Additionally, noise and
time-varying nature of the power signals should also be considered in the design of the measuring
devices and algorithms. Distributed and advanced sensors equipped with advanced algorithms bring us
a deeper and more accurate comprehension of the whole system [15–20]; however, they also make us
confront a tradeoff between accuracy and computational complexity. High-resolution methods usually
need considerable computational cost, thus mostly applied in off-line processing, and low-resolution
methods such as FFT-based methods are more likely to be implemented in real-time hardware in contrast.
In recent years, much attention has been devoted to harmonic and interharmonic estimation, and many
methods have been proposed to achieve a better tradeoff [21–23].

Conventional methods for harmonic and interharmonic analysis can be divided into two
categories: parametric and non-parametric methods. In contrast to non-parametric methods,
parametric methods such as multiple signal classification (MUSIC), the Prony method, estimation
of signal parameters via rotational invariance techniques (ESPRIT) [24–27] achieve higher frequency
resolution and is more suited for the measurement of interharmonic. However, accurate estimation of
these algorithms highly depends on the prior information of the model order, and the algorithms are
time-consuming and not robust to noise and outliers in general. Discrete Fourier transform (DFT) as
the most commonly applied non-parametric method is time-efficient and robust enough; however, its
frequency resolution is restricted by the observation interval, and its result may be deteriorated by
spectral leakage caused by interharmonic and fundamental frequency deviation [28].

Modern methods based on artificial neural networks (ANN) [9,10], adaptive linear neuron
(ADALINE) network [11,21], independent component analysis (ICA) [29,30] and empirical mode
decomposition (EMD) [31,32] have emerged in this field recently. ANN and ADALINE can be applied
in real-time for time-varying power signals; however, traditional ADALINE and ANN methods are
only capable of calculating the harmonic component’s amplitude and phase angle with the frequency
known a priori, and noise and interharmonics have to be pre-filtered for accuracy, thus limiting the
measurement of interharmonics. ICA-based methods formulate the harmonic and interharmonic
estimation into a single-channel independent components extraction problem, and extract pure
sinusoidal signals for subsequent processing, in order to reduce the computation burden. [30] proposes
to leave the computation to the design stage to obtain the best separation row offline, and achieves
accurate estimation results at the sacrifice of the adaptability to noise. EMD-based methods such as
improved EMD with masking signals (IM-EMD) [32] also aim at extracting single-frequency harmonics
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from distorted time-varying power signals, but the masking parameters for IM-EMD are not consistent
in different conditions and lack of self-adaption.

Considering the tradeoff between accuracy and computational complexity, numerous
improvements for the above methods have been offered. One method alone has its intrinsic weakness,
and thus hybrid methods like two-stage ADALINE [21], exact model order ESPRIT (EMO-ESPRIT) [33]
and ESPRIT-assisted adaptive wavelet neural network (EA-AWNN) [22] have been proposed to
compensate for each other’s weakness, thus achieving accuracy and time-efficiency simultaneously.
Two-stage ADALINE integrates Prony method to help ADALINE locate every frequency component
accurately. EMO-ESPRIT utilizes a model order estimation algorithm to provide prior information
to ESPRIT for accurate estimation. To handle time-varying signals with higher accuracy, EA-AWNN
leverages ESPRIT’s accurate estimation results to train the adaptive wavelet neural network in real-time.
Furthermore, principles of compressive sensing have also been applied to DFT-based waveform
analysis (CS-DFT) for higher frequency resolution [23], though the estimation accuracy is restricted by
discrete-valued frequency estimates. The main idea of these methods is to first estimate the frequency
using high-resolution methods, and then to estimate the amplitude and phase angle with fast and
adaptive techniques.

This paper gives a detailed description of the power quality analysis framework in networked
environment and presents a fast and resolution-enhanced method for harmonic and interharmonic
measurement. It is based on the single-channel version of Robust ICA [34,35] (SC-RICA) to extract
harmonic and interharmonic components efficiently at first, then leveraging the results computed
by the previous stage. The high-resolution frequency is estimated from three DFT samples [36,37]
with little additional computation, and, finally, the amplitudes and phases are calculated using the
ADALINE [21] network. The experiments show that the proposed method is time-efficient and leads
to a better accuracy of the simulated and experimental signals, and thus provides a deeper insight
of the (inter)harmonic sources and even the whole system. The superiority of the proposed method
is compared with those researched before, and the interference caused by fundamental frequency
deviation and the presence of noise are also considered.

The remainder of this paper is structured as follows. Section 2 introduces the power quality
analysis framework in networked environment. Section 3 formulates the problem and presents the
basic principle of single-channel ICA (SCICA) and ADALINE. Section 4 describes every stage of the
proposed method, and how the single-channel version of RobustICA assists ADALINE in extracting
harmonic and interharmonic components from distorted power signals. The simulated and laboratory
experiments are presented in Section 5 to evaluate the performance of the proposed method, the
distorted power signals are acquired using a prototype system, and high-resolution methods such as
EMO-ESPRIT, MUSIC and CS-DFT are used for comparison. Finally, the conclusion is given in
Section 6.

2. Analysis Framework

As discussed in Section 1, existing smart meters are mainly used for billing purposes and demand
monitoring, and due to the lack of computing resources and waveform measurement devices, they
still cannot fulfill the demands such as power quality analysis in appliance level and the interaction
between computerized instrumentation and physical facilities. Therefore, metering devices should
be modified to make them truly smart and be dispersed throughout the system. Inspired by the
work of nonintrusive load monitoring (NILM) initiated by George W. Hart [38], a nonintrusive,
high-performance monitor can be connected with the total load using the standard revenue meter
socket interface. This extension of the meter leads to very easy installation, removal, and maintenance,
and there is no need to build lines especially for power quality analysis.

Wireless sensor networks (WSNs) are the most promising technology that connects the “last
mile”, which refers to the connection that provides substations and consumers the access to high-speed
and wide-bandwidth core network [39]. Wireless communication technologies help achieve remote
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control and monitoring without cable cost and wired communication infrastructures. Among the
above technologies, cellular networks (3G/4G) and World interoperability for Microwave Access
(WiMAX) are widely adopted in Neighborhood Area Networks (NANs), IEEE (Institute of Electrical
and Electronics Engineers) 802.11 (Wi-Fi) is broadly used in Local Area Networks (LANs), the growing
use of IEEE 802.15.1(Bluetooth) helps connect the Personal Area Networks (PANs), and IEEE 802.15.4
(ZigBee) may become the best choice for WSNs due to its low power consumption, low cost and
self-organization [17,18,40,41]. Leveraging the advantages of WSNs, distributed sensing and state
estimation can be easily realized, and sensors will cooperate against the inherent communication noise
or packet losses to achieve a more robust system-wide observation [2,42,43].

According to the above analysis, the design of the framework for power quality analysis in
networked environment is depicted in Figure 1. Power quality analyzers (PQAs), as the extensions of
the existing smart meters, should be connected in parallel with the smart meters using the same socket
interface. Voltage and current waveforms are acquired and the power-quality-related computing is
done by PQAs. Unlike traditional power systems, in this framework, PQAs are not only deployed at
the point of common coupling, such as substations, but also at the lower level such as residential users,
commercial users, and industrial users, and all the users can be regarded as micro-grids in the future
energy system [4]. As for the smart meters, they mainly act as the agency between users and suppliers.
The communication protocol for smart meters should be well-designed, for example, safety-critical
information such as severe harmonic distortions or lightning impulses should be transmitted at a
high reporting rate and should be high priority. The billing data and demand responses, meanwhile,
can be delayed to some extent. After data acquisition, the data are transmitted through the wireless
network in Neighborhood Area Networks and aggregated to the data concentrator, then the data
are further processed in the control center. Furthermore, the control center can also be considered to
be an information publishing platform, which is capable of announcing power-quality-related alerts
or advice.
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Figure 1. Power quality analysis framework in networked environment.
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3. Theoretical Background

It is assumed that the power signal can be transformed to the frequency domain with
the line spectrum, and the frequency components are finite and sparse. In this section, the
high-frequency-resolution harmonic and interharmonic estimation will be disassembled into three
stages: harmonic and interharmonic extraction, frequency estimation, amplitude and phase angle
estimation. The harmonic and interharmonic extraction stage will be formulated into a single-channel
blind source separation problem, and the amplitude and phase angle estimation will be transformed
to a single-hidden-layer neural network training problem. There will be a preliminary study on the
carefully selected method for each stage, and principles of related methods will be also introduced.

3.1. Problem Statement

The nth sample of a power signal with sampling rate fs can be expressed by a multisine waveform:

y(n) =
M

∑
m=1

Am sin(2πn fm/ fs + ϕm) + ε(n) (1)

where fm is the frequency of the mth harmonic/interharmonic component, Am and ϕm are its
corresponding amplitude and phase angle, and ε(n) is the white Gaussian noise with zero mean.
The goal of harmonic and interharmonic estimation is to calculate the frequency, amplitude and phase
angle of every component in an accurate and fast way.

As the sampled power signal sequence y(n) = [y(n), y(n− 1), ..., y(n− N + 1)]T with dimension
N is formed by a linear combination of the fundamental frequency component and its
harmonics/interharmonics, and harmonics/interharmonics meet the condition that they are orthogonal
and thus statistically independent of each other, extracting harmonic/interharmonic components from
a single measurement channel can be treated as an extreme case of an underdetermined ICA problem.
It is also known as single-channel independent component analysis. The work [34,44] explains when
and how standard ICA can perform source separation from a single sensor and how SCICA can be
applied in the analysis of electroencephalogram (EEG) and electrocardiograph (ECG) signals. The
work [29,30] applies SCICA for harmonic component extraction from power system signals. Referring
to the above works, an improved SCICA is proposed in this paper to speed up the algorithm and is
proven robust enough to Gaussian noise.

In order to achieve resolution-enhanced frequency analysis at the expense of little computation,
DFT-based high-resolution methods are preferred. In this paper, once single-frequency waveforms
are obtained, the resolution-enhanced frequency can be directly calculated from only three DFT
samples, the related signal processing techniques are presented in detail in [36,37]. Notably, it can be
proved that the algorithm needs little additional computation and is robust enough to noise aiming
at single-frequency signals. With the high-resolution frequencies and the original signal, the final
problem is how to determine the amplitude and phase angle of each frequency component accurately
in real-time. ADALINE has been widely applied in the harmonic estimation due to its self-adaption to
noise and rapid convergence. In addition, the traditional ADALINE’s shortcoming can be overcome by
the integration of proper frequency estimation methods just like the work in [21]. Therefore, ADALINE
is a good choice for amplitude and phase angle estimation.

3.2. Principle of Single-Channel Independent Component Analysis

Independent component analysis (ICA) is a widely-used blind source separation method and can
estimate independent sources based on the model of the mixture without any further prior knowledge.
The process of applying single-channel independent component analysis (SCICA) to single-sensor
signals can be regarded as adding harmonic/interharmonic extraction filter to a time-delayed model
of signals.
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In order to construct a time-delayed model for the ICA problem, the observed time series y(n)
with dimension N can be separated into a sequence of contiguous blocks:

x(n) = [y(n), y(n− 1), ..., y(n− D + 1)]T (2)

where D is the number of the blocks, and the superscript T represents transposition. x as the mixed
signal matrix can be decomposed into the matrix product of mixing matrix and independent sources:

x(n) = Es(n) (3)

where ED×D denotes the mixing matrix that linearly combines the sources to form a mixture of
harmonics and interharmonics, s is a D× N matrix comprising the statistically independent sources
such as pure sine waveforms with disjoint frequency spectra. To estimate the s from x, the inverse
equation can be expressed by

ŝ(n) = H · x(n) (4)

where H = E−1 is the separation matrix, and ŝ is the estimation of the original sources.
Thus, a standard ICA algorithm can be applied to x(n) and learn the sparse features of the

measured signal, and the most common method to obtain the separation matrix is the FastICA
algorithm. FastICA uses nonGaussianity as the statistical property of the signals for source separation,
and Kurtosis is one of the classic measures for nonGaussianity estimation of zero-mean random
variables. For better estimation, x should be preprocessed using principal component analysis or
Whitening technique to make all the vectors of x have unit variance and uncorrelated.

To optimize the ICA algorithm, the fixed-point and gradient algorithm based on Kurtosis have
been proposed in the literature. The kurtosis is the fourth standardized moment and also one of the
classic measures of whether there are problems with outliers in a data set, namely, the estimation of
non-Gaussianity for ICA. However, the presence of sub-Gaussian or super-Gaussian sources brings
increased estimation error and computational complexity to the algorithms, and saddle points and
spurious local extrema in the contrast functions are also not considered. Therefore, referring to the
RobustICA algorithm [35] in this work, the Kurtosis contrast function is used as the objective function,
and the optimal step size technique is integrated to complement the cost efficiency and robustness.
In addition, preprocessing techniques are unnecessary, which simplifies the process.

3.3. Principles of ADALINE

ADALINE is a single-hidden-layer neural network with a linear transfer function and has been
extensively used in signal processing, control systems and error cancellation. Recently, this technique
also emerges in the harmonic and interharmonic analysis [11,21,45]. Regardless of the zero-mean noise,
the estimated signal ŷ(n) with known fundamental frequency and unknown amplitudes, phase angles
can be represented as:

ŷ(n) =
M

∑
m=1

[
Âm cos ϕ̂m sin(2πnm f0/ fs ) + Âm sin ϕ̂m cos(2πnm f0/ fs )

]
(5)

Then, substitute Âm cos ϕ̂m, Âm sin ϕ̂m, 2πnm f0/ fs with Ŵ2m−1, Ŵ2m, θ̂m so that

ŷ(n) =
M

∑
m=1

(Ŵ2m−1 sin θ̂m + Ŵ2m cos θ̂m) = ŴT · X̂(n) (6)

where Âm and ϕ̂m denote the estimated amplitudes and phase angles of the signal, and
Ŵ = [Ŵ1 Ŵ2 · · · Ŵ2m−1 Ŵ2m]

T , X̂(n) = [sin θ̂1 cos θ̂1 · · · sin θ̂m cos θ̂m]T .
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Based on each given input and target vector, the adaptive linear neuron network adjusts the
weights and biases at each time step to minimize the sum-squared error of recent input and target
vectors. The amplitude and phase of the mth frequency component are expressed by:

Âm =

√
(Ŵ2m)

2
+ (Ŵ2m-1)

2 (7)

ϕ̂m = tan−1 (Ŵ2m/Ŵ2m−1
)
− π ≤ ϕ̂m ≤ π (8)

Traditional ADALINE is only capable of computing the amplitudes and phase angles with known
frequency as above. However, the presence of fundamental frequency deviation and interharmonics is
usually not negligible in the practical situation, and it will cause serious interference to the convergence
speed and accuracy of traditional ADALINE. Therefore, in this paper, the frequency deviation and
interharmonics have been considered as the power signal is modeled, and gradient- or Jacobian-based
methods have been tested for training the adaptive linear neuron network.

4. Proposed Method for Harmonics and Interharmonics Measurement

In this section, detailed description and improvement of the proposed method will be presented
based on the preliminaries. It will also be discussed how the proposed method obtains a better fusion of
harmonic and interharmonic extraction, frequency estimation, amplitude and phase angle estimation.
In the end of this section, the overall process for the measurement of harmonic and interharmonics
will be sketched.

4.1. Harmonic and Interharmonic Extraction

In this paper, unlike methods that use the FastICA algorithm to obtain the separation matrix,
the algorithm named RobustICA is tested to achieve better performance on convergence speed, and
sphering and whitening is not required as preprocessing as opposed to most ICA algorithms. The
RobustICA technique is based on optimization of the Kurtosis contrast function, and it uses the optimal
step-size technique to optimize the Kurtosis in the search direction. In particular, kurtosis contrast can
be used in the source extraction with super-Gaussian sources included. Kurtosis is one of the classic
measures for estimation of non-Gaussianity for ICA. Denote the Kurtosis of α by Kurt(α) and it is
defined by:

Kurt(α) =
E[α4]− 2E2[α2]− |E[α2]|2

E2[α2]
(9)

where E[·] denotes the mathematical expectation. Due to the coefficients such as step size, the
learning rate in the iteration process directly affects the convergence speed, and the balance between
convergence speed and accuracy is highly dependent on the step size. The optimal step size that
maximizes the absolute Kurtosis function based on exact line search can be represented by

µopt = arg max
µ
|Kurt(h + µg)| (10)

where h is a separating vector, and the search direction g is typically the gradient g = ∇wKurt(h).
One iteration of RobustICA performs an optimal step-size optimization as follows:

step 1: The optimal step-size polynomial coefficient is given by p(µ) =
4
∑

i=0
aiµ

i, {ak}4
k=0 can be

obtained from the measured signal and the values of g and h.
step 2: Extract optimal step-size polynomial roots {µi}4

i=0.
step 3: Select the root µopt leading to the absolute maximum of the contrast along the search direction.
step 4: Update h = h + µoptg.
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The stopping criterion for extracting one component is similar to that of FastICA. However, due
to not applying the dimension reduction tricks like PCA, after every harmonic/interharmonic related
component is extracted, the iterations for the remaining components will be a waste of time. In order to
speed up this process, and also for the convenience of frequency estimation in the next stage, an
additional stopping criterion is set according to the spectral energy ratio of each extracted component.

The proposed method SC-RICA is summarized as follows:

step 1: Construct the SCICA model.
step 2: Update the separating vector h iteratively using the optimal step-size method as mentioned.
step 3: Extract harmonic or interharmonic component ŝ = h · x with the optimized separating vector.
step 4: Calculate the DFT coefficients S of the extracted ŝ and estimate the spectral energy ratio around

the grid kp with the peak value of the magnitude.
step 5: If the spectral energy ratio exceeds the empirical threshold, loop from step 2. If not, break the

loop and output ŝ, S, kp of every extracted component.

4.2. Frequency Estimation

The mth extracted harmonic/interharmonic component is close to the single-tone waveform
observed under white Gaussian noise

ŝ(m)(n) = A(m) cos(2πn fm/ fs + ϕ(m)) + εext(n) (11)

where the superscript (m) indicates the index of the extracted component. The parameter of a
sinusoidal waveform observed under white Gaussian noise is typically estimated with a coarse to fine
strategy. First, DFT coefficients without interpolation are calculated for a coarse frequency estimate and
the peak value of them is determined. Then, a resolution-enhanced search around the peak is provided.

Assuming the frequency of the extracted component is

fm = fs(kp + δ)/N (12)

where kp is the index of the maximum DFT magnitude coefficient and |δ| < 1/2 represents the space
between the true frequency point and the nearest discrete grid point. N is the sample size of the signal.
The target at this stage is to estimate δ from samples around the peak in the DFT spectrum.

As mentioned above, after calculating the DFT coefficients of a single-tone waveform observed
under white Gaussian noise, most of the signal energy will focus around the grid of kp in the Fourier
domain due to spectral leakage. Additionally, fm generally is not exactly at the grid of kp unless fm is a
multiple of the frequency resolution fs/N.

However, leveraging the information around the grid of kp such as its neighbor kp−1 and kp+1,
a more accurate frequency estimation will be obtained. The method proposed by Candan [37] is
summarized as below:

step 1: Calculate the windowed DFT coefficients of the extracted harmonic/interharmonic component:

Sk =
N−1

∑
i=0

wi ŝ(m)e−
j2πik

N , k = {0, 1, 2, ..., N} (13)

step 2: Find the index of the maximum DFT magnitude coefficient:

kp = arg max
k=1,2...N/2

|Sk| (14)
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step 3: Select a window and calculate the window dependent function:

fw(α) =
N−1

∑
n=0

w[n]ej(2πnN)α (15)

f ′w(α) =
j2π

N

N−1

∑
n=0

nw[n]ej(2πn/N)α (16)

where w(n) is the real-valued window, and f ′w(α) is the first derivative of fw(α).
step 4: Calculate the bias correction factor of the selected window function:

cN =
Q2

0
P1Q0 + P0Q1

(17)

where

P0 = Im ag{ fw(1)− fw(−1)} (18)

P1 = f ′w(1)− f ′w(−1) (19)

Q0 = 2 fw(0)− fw(1)− fw(−1) (20)

Q1 = Im ag{2 f ′w(0)} − f ′w(1)− f ′w(−1)} (21)

step 5: Estimate δ using the following equation:

δ̂ = cNReal

{
Skp−1 − Skp+1

2Skp − Skp−1 − Skp+1

}
(22)

step 6: Estimate fm of the extracted component with the function given in Equation (12).

The result of the first two steps has been already obtained in the stage of harmonic and
interharmonic extraction. Further proof and derivation can be found in [36,37]. The method of
this stage obtains resolution-enhanced frequency estimation without much additional computation,
and it been proved robust in the presence of noise. Due to some interfering components that may be not
filtered out completely, the application of the window function alleviates the problem to some extent.

4.3. Amplitude and Phase Angle Estimation

Once all the high-resolution frequency components are obtained, the estimation of amplitudes and
phase angles can be considered as learning a linear or nonlinear mapping between appropriate inputs
and outputs. Unlike traditional ADALINE, the fundamental frequency deviation and interharmonics
have been considered at this stage. Regardless of the zero-mean noise, the estimated signal ŷ can be
represented as:

ŷ(n) =
M

∑
m=1

[
Âm cos ϕ̂m sin(2πn f̂m/ fs ) + Âm sin ϕ̂m cos(2πn f̂m/ fs )

]
(23)

Then, substitute Âm cos ϕ̂m, Âm sin ϕ̂m, 2πn f̂m/ fs with Ŵ2m−1, Ŵ2m, θ̂m, so that

ŷ(n) =
M

∑
m=1

(Ŵ2m−1 sin θ̂m + Ŵ2m cos θ̂m) = ŴT · X̂(n) (24)

where f̂m, Âm, ϕ̂m denote the estimated frequencies, amplitudes and phase angles of the signal, and
Ŵ = [Ŵ1 Ŵ2 · · · Ŵ2m−1 Ŵ2m]

T , X̂(n) = [sin θ̂1 cos θ̂1 · · · sin θ̂m cos θ̂m]T .
In this situation, the neural network architecture is constructed with X̂(n) as the input and the

original signal y in the time domain as the target output. In addition, there is no bias connected to the
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network layers, and the transfer function is linear rather than hard-limiting, which allows its outputs
to take on any value. The mean squared normalized error with regularization can be taken as the
cost function

J(Ŵ) =

[
1
N

N

∑
i=1

(
1
2
||ŴX̂(i)− yi||2)

]
+

λ

2

2M

∑
i=1

(Ŵi)
2 (25)

where the subscript i indicates the index of a vector element, N denotes the sample size of the power
signal, M denotes the number of frequency components, and λ is the weight decay parameter that
controls the relative importance of the two terms in the definition of J(Ŵ).

Our goal is to minimize J(Ŵ) as a function of Ŵ. To train the neural network, we initialize each
Ŵi to a small random value near zero, then update the weight values using some network training
function, such as gradient- or Jacobian-based methods. As the network’s weight, input and transfer
functions have derivative functions, a scaled conjugate gradient backpropagation is used to calculate
derivatives of the cost function with respect to the weight variable.

One iteration of gradient descent updates the Ŵ as follows:

Ŵi := Ŵi − β
∂

∂Ŵi
J(Ŵ) (26)

α
∂

∂Ŵi
J(Ŵ) :=

[
1
N

N

∑
i=1

β
∂

∂Ŵi
J(Ŵ; X(i), y(i))

]
+ λŴi (27)

where β denotes the learning rate.
By repeatedly taking steps of gradient descent to reduce the cost function J(Ŵ), and setting

appropriate stopping criterion, the neural network will be well trained and W will contain the
information of amplitudes and phases. Then, the amplitude and phase of the mth frequency component
are expressed by

Âm =

√
(Ŵ2m)

2
+ (Ŵ2m-1)

2 (28)

ϕ̂m = tan−1 (Ŵ2m/Ŵ2m−1
)
− π ≤ ϕ̂m ≤ π (29)

This hybrid method consists of three stages: harmonic and interharmonic extraction, frequency
estimation, amplitude and phase angle estimation. Extracting pure sinusoids is the guarantee of the
resolution-enhanced frequency estimation, and frequency estimation is an important factor to accurate
harmonic and interharmonic measurement. In summary, the overall process for the measurement of
harmonics and interharmonics can be sketched as follows:

step 1: Construct the time-delayed model as the input of SC-RICA.
step 2: Extract the harmonic/interharmonic components using SC-RICA.
step 3: Output the DFT coefficients of each extracted component and the index with the maximum

magnitude to the next step.
step 4: Estimate the high-resolution frequency of each component from three DFT samples.
step 5: Take the estimated frequency as the input of ADALINE, and the original signal as the output.

Train the neural network until meeting the stopping criterion.
step 6: Calculate amplitudes and phase angles of extracted components of the measured power signal.

5. Performance Evaluation

The experiments are organized as follows: Section 5.1: synthesized power signals including
harmonics, interharmonics are analyzed, fundamental frequency deviation and noise are also
considered. Section 5.2: PWM (pulse width modulation) VSI (voltage source inverter) induction
motor drives as loads in an IEEE 14 bus system are simulated by SimPowerSystemsTM (MathWorks,
Natick, MA, USA), and the emitted harmonic and interharmonic disturbances are measured and
then analyzed. Section 5.3: laboratory experiments are conducted on a prototype system which is
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designed according to the proposed power quality analysis framework in networked environment.
At the moment of switching, the microgrid from grid-connected mode to isolated mode, and the
estimation results of the fundamental frequency variation are analyzed and compared in the presence
of harmonics. In addition, field experimental signals with harmonic and interharmonic currents
injected by regularly fluctuating loads such as laser printers are acquired and analyzed. Section 5.4:
the results of simulation and field experiments are analyzed, and the characteristics of the proposed
method are also discussed.

5.1. Measurement of Synthesized Harmonics and Interharmonics with Frequency Deviation and Noise

In order to illustrate the performance of the proposed method, synthesized power signals
including harmonics and interharmonics are generated, and the methods are implemented in MATLAB
with a desktop personal computer having an Intel Core i5-3470 processor ( Intel Corporation, Santa
Clara, CA, USA) and an 8-GB random access memory. The parameters of the signal are listed in
Table 1. There are eight components represented as component numbers from one to eight, and they
are spectrally disjoint. It can be seen from Table 1 that the fundamental frequency deviation has been
considered within a 50 Hz power system, and 0.1 Hz as the fundamental frequency deviation is
an acceptable assumption. The synthesized power signals mainly consist of fundamental, 3rd, 5th
harmonics and five interharmonic components around them. To ensure that the synthesized signals
are close to real power signals, the amplitudes of harmonics and interharmonics range from around
3% to 60% of the fundamentals.

Table 1. Parameters of the synthesized signal with eight components.

Component No. 1 2 3 4 5 6 7 8

f (Hz) 16.4 49.9 83.7 116.1 149.7 183.2 216.3 249.5
A (pu) 1.80 3.10 0.90 0.30 0.10 0.16 0.13 0.10
ϕ (rad) −π

2 −π
2 0 π

2
π
2 0 3π

4 −π
4

For comparison, white Gaussian noises with zero mean are randomly generated and added to
the pure synthesized signals, and the signal to noise ratio (SNR) is set to 40 dB. K synthesized signals
have been sampled with size N = 1000 and sampling frequency 5 kHz. Three methods are chosen:
EMO-ESPRIT [33], MUSIC [25], and CS-DFT [23]. As the computation times of all four methods have
positive correlations with the number of harmonic and interharmonic components in the synthesized
signals, and all the synthesized signals are composed of eight harmonic/ interharmonic components,
for a fair and reasonable comparison, the model orders of MUSIC and EMO-ESPRIT are strictly set
to 16, and the dimensions of the autocorrelation matrix are tuned to be as small as possible without
sacrificing the estimation accuracy. Similarly, CS-DFT terminates the algorithm when the iteration
number of the support recovery exceeds 16, and the interpolation factor of CS-DFT is set to 10 as [23]
suggested. In terms of the proposed method, it stops the harmonic extraction when 16 components
have been extracted and terminates the adaptive linear neural network training when the gradient is
below 1.00× 10−6.

The tested signals in Section 5.1 are synthesized with the parameters in Table 1 so that the actual
values of parameters such as amplitudes and phase angles are known. Therefore, we can use the
difference between the actual and estimated value to evaluate the algorithms. The total relative errors
(TRE) of amplitude estimation is used for performance evaluation and defined as

TRE =
K

∑
k=1

(
|Aactual(k)− Aestimated(k)|

Aactual(k)
× 100%)/K (30)

where Aactual(k) means the measured component’s amplitude of the kth sampled signal. The total
relative errors of amplitude estimation using different methods are depicted in Figure 2. It can be
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observed that the proposed method achieves better amplitude estimation than the others, and its TRE
varies from 0.04% to 1.08% in this case, and the value of TRE is highly related to the amplitude ratio of
harmonic to fundamental, the TRE of harmonics and interharmonics with relatively high ratio is small,
and vice versa. However, in the presence of interharmonics and frequency deviation, the performance
of CS-DFT is less stable than others, as the actual frequency component is not lying on the fine grids
in the frequency domain. The average computation times of EMO-ESPRIT, MUSIC, CS-DFT and the
proposed method are also shown in Table 2.
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Figure 2. Total relative errors of amplitude estimation.

Table 2. Comparison of computation times.

CS-DFT EMO-ESPRIT MUSIC Proposed

Average Computation Time (ms) 487.2 116.3 529.8 64.1

To evaluate the amplitude estimation accuracy under different signal-to-noise ratios (SNRs),
the algorithms have also been implemented on the system constructed as follows. The signals are
synthesized using the parameters given in Table 1 on the personal computer. Then, the arbitrary
function generator AFG3102 (Tektronix, Beaverton, OR, United States) receives the instructions through
ethernet and outputs the signals with additive zero mean Gaussian white noise. Noisy signals are
collected by oscilloscope DSO7032B (Agilent, Santa Clara, CA, United States) via BNC (Bayonet
Neill-Concelman) connector and sent to another PC for subsequent processing.

The signals of each signal-to-noise ratio have been acquired 100 times, and the total relative
amplitude error in this case is defined as the total relative error of the average amplitude of all the
frequency components. The total relative amplitude errors calculated using EMO-ESPRIT, MUSIC,
CS-DFT and the proposed method under different signal-to-noise ratios are depicted in Figure 3.
According to IEC standard 61000-4-7 [8], the signal-to-noise ratio is limited to not below 20 dB in
the power system, so that the SNR in this case is set from 20 dB to 60 dB. It can be noticed that
the total relative amplitude errors of EMO-ESPRIT, MUSIC and the proposed method significantly
decrease as the SNR increases, although the proposed method does not obviously overmatch the
other two methods when the SNR is beyond 60 dB and the noise is negligible. The proposed method
is much more robust when the SNR is between 20 dB and 60 dB, and SNR in this range is very
common in ordinary power systems. On the contrary, due to the relatively low frequency resolution of
CS-DFT, which is restricted by the discretized and uniformly-spaced frequency grid, the presence of
fundamental frequency deviation and interharmonics causes inevitable amplitude estimation error to
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CS-DFT results. Although CS-DFT has the potential to deal with low-SNR power signals, the frequency
obtained by support recovery will not fall on the nearest frequency grid with high probability if the
SNR is below 20 dB, and thus the performance of frequency estimation will be significantly weakened.
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Figure 3. The total relative error of amplitude estimation under different signal-to-noise ratios.

5.2. Simulation Results from the PWM VSI Induction Motor Drive

Adjustable speed drives are widely used in various industries and can be regarded as main loads,
adjustable speed drives usually utilize interlinked frequency converters which are just the sources
of interharmonics. These interharmonics vary with the load frequency due to the propagation of
load current into the DC (direct current) link. To evaluate the proposed method on experimental
signals closer to operating conditions, a PWM (pulse width modulation) VSI (voltage source inverter)
induction 3HP motor drive as a load in an IEEE 14 bus system is built using SimPowerSystemTM,
and the interharmonics produced by PWM adjustable speed drive are considered not negligible.
The induction motor drive mainly consists of a three-phase AC (alternating current) supply, a PWM
inverter which is built using a universal bridge, an induction motor driving a mechanical load and a
three-phase diode rectifier converting AC to DC. The simulation of this system is discretized with a
2 µs time step and lasts for 1 second, and the motor speed set point is 1000 rpm. Specific simulation
parameters are shown in Table 3.

Table 3. Simulation parameters.

AC Supply PWM Inverter

Source voltage Power frequency Source resistance Source inductance Device type Carrier frequency

220 V 50 Hz 0.02 Ω 0.05 mH IGBT/Diodes 4.5 kHz

Induction Motor DC Link

Rated power Rated voltage Operating speed Equivalent resistance Equivalent Inductance Capacitance

2238 VA 220 V 1000 rpm 0.435 Ω 2 mH 3400 µF

The distorted signal depicted in Figure 4 is captured at the steady operation period, after reducing
the sampling points through downsampling, and the data sampled at 5 kHz is sent to the algorithms.
The resolution-enhanced harmonic and interharmonic measurement techniques such as MUSIC,
EMO-ESPRIT, CS-DFT and the proposed method generally assume that the distorted signals are sparse
in frequency domain. According to the theoretical interharmonic frequency of the source current of this
motor drive [13], the current signals captured at the steady operation period can be considered to be
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sparse with line spectrum. Because the frequency spectrum of the waveform at the acceleration period
is not a line spectrum and of no concern in this paper, only the waveform at the steady operation
period is set as input to algorithms. In order to be seen clearly, Figure 5 plots the frequency spectrum
below 500 Hz and there are much more harmonic and interharmonic components not shown in the
figure, and for simple comparison, a zero-padded DFT is plotted in the frequency spectrum.
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Figure 4. Measured current waveform of the induction motor drive. 0–1s: steady operation condition.0 50 100 150 200 250 300
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Figure 5. Calculated current spectrum of the induction motor drive with the proposed method.
A zero-padded discrete Fourier transform (blue) is plotted for comparison.

As actual harmonic and interharmonic components in the signals of Section 5.2 are unknown,
simply calculating the parameters such as amplitudes and phase angles for comparison is meaningless.
Therefore, different from TRE, reconstruction error [9,22] of the measured signals as a more suitable
candidate is used as the evaluation criterion

εr =

√√√√ 1
N · y2

rms

N

∑
n=1

[yre(n)− yms(n)]
2 (31)

where yre is the signal reconstructed using the result produced by some method, yms is the measured
signal and yrms is the root mean square of yms.

The statistical characteristics of the reconstruction error computed from 100 random samples of
the measured signals are shown in Table 4, and high-resolution methods such as CS-DFT, EMO-ESPRIT,
MUSIC are used for comparison. Because the model order of the measured signal in this case is large
and unknown, it is assumed that the model order for MUSIC is 100. As CS-DFT and the proposed
method are based on iteration, only appropriate stopping criterion is set. The result shows that the
proposed method outperforms the other methods in terms of the reconstruction error, and CS-DFT also
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performs well because the actual frequency components are just lying near the interpolated frequency
grid, although with relatively low frequency resolution. However, EMO-ESPRIT and MUSIC achieve
unsatisfactory performance because the order of the covariance matrix is hard to tune, and, for MUSIC,
the estimated model order is different from the actual signals.

Table 4. Reconstruction error of the measured signals for Section 5.2.

Reconstruction Error CS-DFT EMO-ESPRIT MUSIC Proposed method

Mean 3.8× 10−2 4.9× 10−2 4.6× 10−2 2.4× 10−2

Max 3.9× 10−2 5.0× 10−2 4.7× 10−2 2.9× 10−2

Standard Deviation 6.5× 10−4 5.1× 10−4 2.1× 10−4 7.0× 10−3

To fulfill the demands such as power quality analysis in appliance level and the interaction
between computerized instrumentation and physical facilities, a deeper insight of the (inter) harmonic
sources can also be obtained. The theoretical interharmonic frequency fih of the source current of this
motor drive is given by the following expression fih = |(p1m± 1) f1 ± p2n f2|, where m = 0, 1, 2...,
n = 1, 2, 3..., p1 = 6, p2 = 2 are known a priori and denote the numbers of pulses of the rectifier and
inverter, respectively, f1 denotes the fundamental frequency of the supply, and f2 is the load frequency.
Therefore, the load frequency can be estimated from the frequency spectrum. From the spectrum
presented in Figure 5, fundamental frequency, 5th, and 7th harmonics are the main components of
this distorted signal, and there are interharmonics with frequencies of 120.5 Hz, 179.5 Hz, 279.5 Hz,
320.5 Hz, 420.5 Hz. f1 = 50.0 Hz is the fundamental frequency; therefore, f2, estimated with the above
equation, is about 35.3 Hz and very close to the load frequency calculated from the stator current
waveform. It can be seen that the accurate measurement of harmonic and interharmonic with the
proposed method has revealed some intrinsic information of the electric equipment, and it provides
useful knowledge for subsequent analyzing such as harmonic and interharmonic source location or
fault location, and assists the control center to achieve a more sophisticated control for (inter)harmonic
mitigation or even power quality enhancement. Conceivably, this kind of processing and analyzing
techniques will be significantly beneficial for digital modernization.

5.3. Laboratory Experiments on the Prototype System

The prototype system for power quality analysis in networked environment has been built under
the laboratory environment. The nonlinear loads are distributed according to the application scenarios.
For instance, fluorescent lighting and uninterrupted power supply (UPS) systems form the main loads
for commercial users, laser printers and personal computers are chosen as the loads in offices, and the
loads of AC/DC rotors emerge for industrial users. Voltage and current signals of all the consumers
are simultaneously acquired by a National Instruments (Austin, TX, USA) Ethernet RIO Expansion
Chassis NI 9148 equipped with voltage modules (National Instruments NI 9225, 50 kS/s sample rate,
300 Vrms measurement range, 24-bit resolution) and current modules (National Instruments NI 9227,
50 kS/s sample rate, 5 Arms measurement range). The signals are further processed by intelligent
information processing techniques, and then the harmonic and interharmonic estimation results are
transmitted through ZigBee network, and CC2430 from Texas Instruments (Dallas, TX, USA) is chosen
as the core chip of the ZigBee end device. Given the possible power failure, the ZigBee end device can
be powered by either an external power supply or an internal battery. All of the power quality data in
the laboratory will be aggregated to ZigBee coordinators and further processed in the control center
deployed on a personal computer. Furthermore, the control center can also be considered to be an
information publishing platform that is capable of announcing power-quality-related alerts, electricity
usage, price and so on. In this prototype, web services for obtaining the harmonic and interharmonic
estimation results are deployed on the Internet, and for demonstration purposes, visualized results are
depicted on a remote tablet computer (Nexus 10, Google, Mountain View, CA, USA) in real-time. All of
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above components constitute the prototype for power quality analysis in networked environment, and
the laboratory experiments as follows are conducted in this prototype system.

The first result discussed in this section refers to the estimation of the fundamental frequency
variation in the presence of harmonics. This experiment is conducted in the prototype system
mentioned above, and a SANTAK (Shenzhen, China) C3K UPS serves as a standby. Initially, the
microgrid where a DC motor is running is connected to the power grid. Then, the external supply is
interrupted around the time of 4.0 s. Finally, the UPS serves as the main supply to the end.

To capture the slight variation of the fundamental frequency under the distortion of harmonics,
only current signal acquisition devices are deployed. To evaluate the estimation result in the presence
of harmonics, the fundamental frequency of the distorted current signal is computed with the proposed
method, EMO-ESPRIT and MUSIC. The result of CS-DFT is not depicted because the frequencies
obtained by CS-DFT are discrete in a fine frequency grid, and the interpolation factor of CS-DFT is
advised to be not much larger than the order of 10 in [23]; otherwise, the numerical conditioning tends
to get worse. In this paper, the interpolation factor of CS-DFT is set to 10, which means its frequency
resolution is 0.5 Hz. This resolution is inadequate for tracking the slight variation of fundamental
frequency. Therefore, aiming at the estimation of the fundamental frequency variation, EMO-ESPRIT
and MUSIC are chosen for comparison. The result is depicted in Figure 6. From the computed value
of the fundamental frequency, it can be seen that the variations estimated by all methods are much
more stable when the UPS takes over because the system of the microgrid is less complicated, and
there is a sudden change at around 4.0 s just as the external supply interrupts. Because all the methods
belong to batch processing techniques, the analyzed window length and moving step are set to 200
and 40 ms, respectively. Although the computed frequency varies slightly from about 49.99 Hz to
50.03 Hz, both EMO-ESPRIT, MUSIC and the proposed method track the actual frequency well with
little deviation, and it can be inferred that the result of the proposed method is more in accordance
with the ground truth.

The second result of this section refers to the parameter estimation of another important type of
load. Experimental signals comprising harmonics and interharmonics are acquired and the laboratory
setup is given in the prototype mentioned above. Apart from the PWM VSI induction motor drive,
regularly fluctuating loads such as welder machines and laser printers can also be harmonic and
interharmonic sources. Here, laser printers are used as the fluctuating loads in the system, the load is
fed by a 220 V, 50 Hz single-phase AC supply with a miniature circuit breaker. For current waveform
measurement, NI 9227 as a current input module is in series with the AC supply and the loads, and
gives a multi-channel measurement of the waveforms. Then, an Ethernet RIO with an NI 9227 inserted
sends the multi-channel waveform data to the power quality analysis units for subsequent processing.

The current waveform depicted in Figure 7 is a measured time waveform of the regularly
fluctuating load from the chosen channel. It can be observed from the spectrum in Figure 8 that,
firstly, the amplitudes calculated by the proposed method are not equal to the peak values of the
zero-padded DFT. They are usually larger than the peak values due to the spectrum leakage. Secondly,
the frequencies calculated by the proposed method are also not exactly on the discrete frequency grid
of the zero-padded DFT. In addition, there are mainly fundamental, 3rd, and 5th harmonic components
each with two interharmonics distributed around them, and the frequency distribution is similar to
the mathematical model of the regular fluctuating load [13]. Thus, the modulation frequency can be
inferred to be around 34.0 Hz. Apart from the applications presented in Section 5.2, non-intrusive
appliance load monitoring is highly dependent on the information extracted from this waveform-level
data which is also addressed for power quality analysis in networked environment, and the monitoring
and control will be zoomed to the appliance level. It can be inferred that the success of this research
will create truly smart PQAs or smart meters.
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Figure 6. Estimation of the fundamental frequency variation in the presence of harmonics using (a) the
proposed method; (b) EMO-ESPRIT; and (c) MUSIC.
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Figure 7. Measured current waveform of the regularly fluctuating load from the chosen channel.
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Figure 8. Calculated current spectrum of the regularly fluctuating load with the proposed method.
A zero-padded discrete Fourier transform (blue) is plotted for comparison.
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5.4. Discussion

Simulation and laboratory experiments have been conducted in this work. Apart from the
enhanced resolution and accuracy shown in the experiments, some other technical characteristics
should be noticed.

Compared to classic and state-of-art methods with high frequency resolution, the proposed
method is remarkably accurate in parameter estimation. This proves that extracting harmonic and
interharmonic components is beneficial to subsequent processing, and resolution-enhanced frequency
can be acquired with only three DFT coefficients. Furthermore, the proposed method is relatively
adaptable to noise and fundamental frequency deviation. It achieves the best performance under
SNR between 20 dB and 60 dB among the four methods observed from Figure 3, and the noise in this
range is quite common in electric power systems [8]. Although MUSIC, EMO-ESPRIT achieve better
performance than the proposed method when SNR exceeds 60 dB and CS-DFT prevails when SNR is
below 20 dB, they are not engineering-practical enough. This is mainly due to the careful selection and
improvement of the method in each stage. In the harmonic and interharmonic extraction stage, unlike
traditional ICA, sub-Gaussian or super-Gaussian sources are considered in SC-RICA. In the parameter
estimation stage, DFT and ADALINE are robust to noise in nature. Furthermore, the frequency of the
proposed method lies in the continuous domain. This provides a more precise result than CS-DFT in
the presence of fundamental frequency deviation and interharmonics.

From the view of computational complexity, the proposed method is less demanding than other
existing high-resolution methods, and utilizes the least computing resource among these four methods
without sacrificing the accuracy. Relatively, MUSIC, EMO-ESPRIT and CS-DFT are still suitable for
offline analysis, limited by their high computational burden [14,23]. As for the proposed method,
although it is a hybrid, cascading method, it has been examined that one separation row can be achieved
in only one iteration with the help of optimal step-size optimization in the harmonic and interharmonic
extraction stage, and the separation results are fully acceptable for the subsequent processing. In
addition, fine frequencies can be estimated with little additional computation using the method
described in Section 4.2, and ADALINE can obtain a fast convergence in no more than 10 iterations.
Specifically, the most computation-intensive part is the harmonic and interharmonic extraction. To
speed up the convergence of ICA, the optimal step-size optimization is performed using an exact line
search technique, although the computational complexity per iteration of RobustICA (5D · N + 12N)
is more than twice the FastICA (2D · N + 2N). The convergence of RobustICA is remarkably faster
than that of FastICA, and, generally, the acceptable separation vector can be achieved in no more
than one iteration. In addition, ADALINE and FFT are highly parallelizable tasks, and they can
both be implemented efficiently on a field-programmable gate array (FPGA). In contrast, the iterative
greedy support recovery of CS-DFT adds too much additional computation, and the computation
times of subspace methods such as MUSIC and EMO-ESPRIT highly depend on the dimension of the
covariance matrix.

However, some restrictions have been found during the experiments. The individual components
are extracted iteratively and the ADALINE network’s size and convergence speed are dependent
on the number of components. Therefore, the proposed method still needs much time when there
are excessive harmonic and interharmonic components. Furthermore, the proposed method is a
batch processing technique and mainly focuses on the power signals with a line spectrum. More
precisely, short-term steady-state measurements of the harmonic and interharmonic is a concern in this
paper. From the experiment results, it could be inferred that the proposed method is appropriate to be
implemented on power quality analyzers for high-resolution analysis of harmonics and interharmonics,
and after fine-grained information being accurately extracted, many power-quality-related applications
will profit in this networked environment for power quality analysis.
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6. Conclusions

In this paper, power quality issues in a cyber-physical energy system have been addressed and
a resolution-enhanced approach to harmonic and interharmonic estimation has been proposed for
power quality analysis in networked environment. Considering that microgrids are widespread, and
with higher harmonic and interharmonic distortion in the future, a power quality analysis framework
is designed deploying power quality analyzers closer to the consumers for lower-level sensing and
control, and the wireless sensor network is also emphasized for more effective data transmission. In
such a framework, the proposed method utilizes the single-channel version of RobustICA to extract
harmonic and interharmonic components in a time-efficient way. Then, high-resolution frequencies are
obtained from three DFT samples with little additional computation. Finally, amplitudes and phases
are calculated with the ADALINE network to improve the adaptivity to noise. The proposed method
has been tested on synthetic and experimental harmonic and interharmonic signals, and accurate
amplitude estimation and resolution-enhanced frequency estimation can be achieved time-efficiently
in the presence of noise and fundamental frequency deviation. From the view of accuracy and
computational complexity, the proposed method obtains a better tradeoff compared to the existing
methods, and it is more suitable to be implemented in hardware for high-resolution measurement
of harmonic and interharmonic. Although the proposed method reduces the computational burden
considerably, the computation time is still much higher than most of the DFT-based techniques.
Therefore, future work will be focused on the further reduction of the computational time.
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