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At the crossroad between biology and mathematical modeling, computational systems

biology can contribute to a mechanistic understanding of high-level biological

phenomenon. But as knowledge accumulates, the size and complexity of mathematical

models increase, calling for the development of efficient dynamical analysis methods.

Here, we propose the use of two approaches for the development and analysis of

complex cellular network models. A first approach, called "model verification" and

inspired by unitary testing in software development, enables the formalization and

automated verification of validation criteria for whole models or selected sub-parts.

When combined with efficient analysis methods, this approach is suitable for continuous

testing, thereby greatly facilitating model development. A second approach, called

"value propagation," enables efficient analytical computation of the impact of specific

environmental or genetic conditions on the dynamical behavior of some models. We

apply these two approaches to the delineation and the analysis of a comprehensive

model for T cell activation, taking into account CTLA4 and PD-1 checkpoint inhibitory

pathways. While model verification greatly eases the delineation of logical rules complying

with a set of dynamical specifications, propagation provides interesting insights into the

different potential of CTLA4 and PD-1 immunotherapies. Both methods are implemented

and made available in the all-inclusive CoLoMoTo Docker image, while the different steps

of the model analysis are fully reported in two companion interactive jupyter notebooks,

thereby ensuring the reproduction of our results.

Keywords: T cell, checkpoint inhibitors, Boolean models, model verification, value propagation

INTRODUCTION

Recent technical developments have allowed scientists to study immunology and health-related
issues from a variety of angles. For many diseases, especially for cancer, the current trend consists
in aggregating data coming from different sources to gain a global view of cell, tissue, or organ
dysfunction. Over the last decades, diverse mathematical frameworks have been proposed to seize
a multiplicity of biological questions (Le Novère, 2015), including in immunology (Kaufman
et al., 1985, 1999; Eftimie et al., 2016; Chakraborty, 2017). However, the increasing complexity of
biological questions implies the development of more sophisticated models, which in turn bring
serious computational challenges.
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Among the mathematical approaches proposed for the
modeling of cellular networks, the logical modeling framework is
increasingly used. In particular, it has been successfully applied
to immunology and cancer, leading to the creation of models
encompassing dozens of components, some including many
inputs components (Grieco et al., 2013; Abou-Jaoudé et al.,
2014; Flobak et al., 2015; Oyeyemi et al., 2015). However, the
large size of recent models hinders the complete exploration
of their dynamical behavior through simulation, especially in
non-deterministic settings.

To address these difficulties, we define and apply a model
verification approach to systematically verify whether a model
complies with a list of known properties. These properties
are defined as model specifications, either at a local (i.e., for
sub-models) or at a global level. This automated verification
procedure fosters confidence during the development of a
complex dynamical model and paves the way to the development
of models with hundreds of nodes.

We further outline and apply a value propagation method,
which enables the assessment of the impact of environmental
or genetic constraints on the dynamical behavior of complex
cellular networks.

These two complementary approaches can be applied to
the development and analysis of large dynamical models, as
illustrated in Figure 1. Noteworthy, they have been implemented
in a multi-platform Docker image combining various
complementary logical modeling and analysis tools (Naldi
et al., 2018b). We further illustrate the power of these methods
through the analysis of an original model. The different steps of
analysis are fully reported in two companion interactive jupyter
notebooks, available with the model on the GINsim website
(http://ginsim.org/model/tcell-checkpoint-inhibitors-tcla4-pd1),
thereby ensuring their reproducibility.

MODEL VERIFICATION

A Software Engineering Framework for
Logical Model Building
One of the main features determining the interest of a
model is its ability to accurately recapitulate salient biological
knowledge. More precisely, this knowledge can be used in
two complementary ways during the model building process.
On the one hand, it is used to define the model architecture,
specifying which biological entities need to be included and
which interactions between these entities need to be encoded.
On the other hand, biological knowledge entails dynamical
properties that must be achieved by the resulting model, whether
transitory or asymptotic, to account for biological observations.
These properties induce satisfaction criteria and must be clearly
specified for rigorous model assessment or comparison with
other models. Failures to reproduce such properties need to
be carefully documented, thereby providing a basis for further
model improvement.

In the domain of logical modeling applied to cellular
networks, various formal methods have already been proposed
to verify dynamical properties. For example stable states (or

fixed points, characterized by all components being steady at
the same time) tentatively correspond to asymptotic properties
that can used to assess the reproduction of known persistent
biological behavior. More complex asymptotic behaviors include
cyclic attractors, which can be approximate by the computation
of so called trap spaces. Also called stable motifs, trap
spaces are hypercubes in the state space such that all
successors of all states in the hypercube also belong to it
(for synchronous and asynchronous updatings, or any other
updating). These hypercubes then provide an approximation of
complex attractors. Trap spaces and stable states can be defined
as results of a constraint solving system, enabling their efficient
computation (Klarner et al., 2018). Their reachability however
must be assessed separately, often using model checking or
stochastic simulations, which requires longer computations.

Model checking techniques have been successfully applied
to specify and verify temporal constraints on a model
behavior (Monteiro and Chaouiya, 2012; Miskov-Zivanov et al.,
2016; Traynard et al., 2016; Wang et al., 2016).

In any case, whatever the formalism chosen, the building
of a complex dynamical model is intrinsically iterative, as its
establishment is usually incremental and requires continuous
testing and adjustment with reference to a growing body of
biological knowledge.

In the field of software engineering, the similar need to
repeatedly assess criteria of success or failure of a software
program led to the development of powerful software verification
techniques, and in particular to software testing (Myers, 1979),
which main goal is to assess whether a software meets a
series of well-defined requirements. More importantly, such
assessments must be repeated as soon as a new piece of code
or specification is added. Software testing aims to check whether
newly introduced modification might break any of the previous
performances. In particular, software verification includes the
notion of unit testing, where suites of tests describe the expected
behavior associated with individual units composing a program.
This idea can be transposed from computer science to model
building and has been successfully applied in the context of
other modeling frameworks (Hoops et al., 2006; Lopez et al.,
2013; Sarma et al., 2016; Boutillier et al., 2018), but not yet to
logical modeling.

Here, we transpose the unit testing approach to integrate
a comprehensive series of verifiable criteria, from the early
stages of model conception, in order to automate the dynamical
evaluation of logical models. The core idea is to split the
biological knowledge on which a model is based into individual
verifiable criteria that can be formalized as specifications
(Figures 1, 2). In this respect, individual units of knowledge,
derived from the scientific literature or biological experiments,
must be formulated into stable or dynamical properties. Each
specification, coupling a property with an expected value,
can serve as a basis to define a test case for a model.
Testing such a specification amounts to compute an “observed”
value based on the model and compare this value to the
expected one.

In practice, the CoLoMoTo notebook environment (Naldi
et al., 2018b) provides a Python API for several software
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FIGURE 1 | Description of the proposed workflow for the development and analysis of dynamical logical models. The novel methods described in this article are

emphasized with blue fonts. Starting with the delineation of a molecular map integrating the available scientific knowledge, we derive a regulatory graph and logical

rules to generate a logical model, and induce dynamical specifications serving as test cases to verify the model. Moreover, when the available knowledge is specific to

a smaller part of the regulatory graph, a sub-model us extracted to perform local tests. We further implemented an analysis and visualization method, called Value

propagation, to assess the impact of environmental and genetic perturbations. Figure 3 zooms into this part of the workflow and describes it in more details. The use

of model verification, sub-model extraction and value propagation is illustrated in two reproducible and editable Jupyter notebooks, taking advantage of the

CoLoMoTo Interactive notebook framework (Naldi et al., 2018b). This framework is available inside the CoLoMoTo Docker image together with packaged libraries for

the analysis of dynamical logical models of biological networks.

tools, enabling the definition of a wide range of dynamical
analyses for the computation of observed values. Individual
test cases can be assembled into a library, also called testing

suite. Existing tools and packages enabling software testing
can then be applied to automatically assess whether a model
satisfies (or not) a series of specifications. In this study,
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FIGURE 2 | Sub-model extraction for local model verification. When the available knowledge is fragmentary and covers the behavior of only a subset of components,

verification becomes difficult at the global scale of the model. Based on this partial information, a series of specifications can still be defined for a sub-model which,

after extraction using bioLQM’s submodel() function, can then be rigorously tested.

we used the python package “unittest,” taking advantage
of its seamless integration into the CoLoMoTo interactive
notebook. This unit-testing package is integrated by default
into the recent versions of the Python standard library
(http://python.org).

Local Verification of Sub-Models Can Cope
With Sparsity of Biological Knowledge
Biological knowledge reported in the scientific literature
is often insufficient to evaluate a comprehensive model,
which may encompass hundreds of nodes. In particular,
observations regarding component activity often relate
to only a limited subset of nodes of the model. This
greatly complicates the definition of specifications for the
whole model.

Given a comprehensive model and a set of components
of interest, one can extract a sub-model containing these
core components, along with their associated logical rules.
Components appearing in these logical rules but not in the

selected set are considered as external inputs of the sub-model
(Figure 2). This functionality has been implemented in the
“submodel” function of the Java bioLQM library (Naldi, 2018)
according to the following procedure.

Let M = (V , f ) be a model, where V is the set
of components, and f the update function. For each c in
V , fc is the logical function associated to the component
c and R(c) is the set of its regulators (i.e., components
that intervene in the logical rule). Given a list of selected
components C ⊂ V :

1. S = ∅

2. for each component c ∈ C: S = S+ {c} + R(c)
3. create the sub-model M′ = (S, f ′) such that for each

component c in S: f ′c =

{

fc if R(c) ⊂ S

c otherwise

As shown in the application below, the delineation of such sub-
models can greatly facilitate the definition and verification of
local specifications.
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FIGURE 3 | The principle of logical value propagation analysis is illustrated

with a simple example involving two core nodes, D and E, and four input

nodes, A, B, C, and F. The value 1 is assigned to the node C and then

propagated through the model. The assignment C:1 implies the evaluation of

D to 1. Consequently, the function assigned to node E becomes “not F.” In

other words, assigning the value 1 to node C activates node D independently

from the value of its other inputs, while node E becomes completely

dependent on the value of node F.

Value Propagation Enables the Evaluation
of the Impact of a Given Cellular
Environment on Model Dynamics
The core idea of value propagation is presented in Figure 3. Given
a set of logical rules and a cellular context, an iterative algorithm
enables the computation of the dynamical consequences of the
cellular context on all the components of the model.

First, the cellular context is formalized by assigning constant
values to some components of the model. Next, we apply a
recent model reduction technique reported by Saadatpour et al.
(2013). Briefly, for each constant node, the corresponding value
is inserted into the logical rule associated with each of its target
nodes. Each logical rule is then simplified using Boolean algebra.
If the rule simplifies to a constant, this fixed value is further
propagated into the logical rules of downstream nodes. This
process is iterated until no further propagation or simplification
can bemade on the logical rules of themodel. In contrast with the
approach of Saadatpour et al., which aims at producing a reduced
model, we focus principally on the outcome of the propagation of
fixed values.

The result of value propagation can be very informative by
itself. Indeed, the resulting stabilized values provide insights into
the impact of a given (single or multiple) perturbation on the
model, revealing which elements are consequently constrained
to become activated or inactivated, vs. which elements keep
some degree of freedom. Furthermore, this method greatly
eases the comparison of the impacts of different biological
contexts on network dynamics by performing a differential
analysis of the corresponding lists and target values of fixed
components. This method has multiple advantages when applied
to complex networks, as it can be used efficiently on models
with large numbers of components. It further simplifies the
computation of attractors (stable states or even simple or
complex cycles). Interestingly, Saadatpour and collaborators
showed that this method conserves the stable states and complex
attractors under the fully asynchronous updating assumption
(Saadatpour et al., 2013).

This method was extended to multilevel models and
implemented into the Java bioLQM library (Naldi, 2018).
In this implementation, the fixed components are conserved
during value propagation, enabling a direct comparison of the
propagated effects of alternative perturbations.

The power of this approach is demonstrated on a concrete
example in the following section.

APPLICATION: ASSESSING THE EFFECT
OF CHECKPOINT BLOCKADE THERAPIES
ON T CELL ACTIVATION

Biological Background
Over the last decades, immunotherapies have been the subject
of intense studies and led to great advances in the field of
cancer treatment. Through the years, it has then been recognized
that T cells often display a reduced ability to eliminate cancer
cells, and that expression of co-inhibitory receptors at their
surface accounts for this compromised function. Receptors
like Cytotoxic T-lymphocyte protein 4 (CTLA4, also known
as CD152) (Walunas et al., 1994; Leach et al., 1996) and
Programmed cell death protein 1 (PD-1, also known as PDCD1
or CD279) (Ishida et al., 1992) have been particularly studied in
that context. Antibodies blocking the pathways downstream of
these co-inhibitors (checkpoint blockade therapies) have become
standard treatment for metastatic melanoma (Robert et al., 2011;
Simpson et al., 2013) and other cancers (Ribas and Wolchok,
2018), including non-small cell lung cancer, renal cell carcinoma,
Hodgkin’s lymphoma, Merkel cell carcinoma and many others.
The successes of these studies led to an increasing interest in T
cell co-inhibitory receptors.

Nevertheless, a clear understanding of the mechanisms at
work inside T cells remains elusive. Therapies targeting CTLA4
or PD-1 show different immune adverse effects (June et al., 2017),
while the corresponding intra-cellular mechanisms remain to be
clarified. Moreover, a rationale for the educated development
of new immunotherapies focusing on other receptors or
combinations of receptors is clearly needed. Co-inhibitory
receptors are legions at the surface of T cells (Brownlie and
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FIGURE 4 | Regulatory graph of the T cell activation model. The global layout is similar to the molecular map (cf. Supplementary Figure 1 and Supplementary

File 1), with ligands/receptors and proximal signaling at the top, and the nucleus-related events at the bottom of the graph. In between, the model encompasses

interconnected pathways and signaling cascades related to cytoskeleton remodeling, the MAPK network, calcium fluxes, metabolic shifts, and NF-κB, to name a few.

Boolean components are denoted by ellipsoids whereas rectangles denote ternary components. Green arcs denote activation events, red blunt arcs denotes

inhibitions, while blue arcs denote dual regulations. The gray arcs represent interactions created during the translation of the molecular map into the regulatory graph,

but that are not yet integrated at the dynamical level (i.e., not taken into account in the logical rule).

Zamoyska, 2013) and biology of T cell activation or tolerance
involves activation or repression of highly interconnected and
complicated pathways (Baumeister et al., 2016).

Given the central role of T cells in many medical
contexts, several mathematical frameworks have been applied
to model T cell activation. Recent examples include rule-
based approaches (Chylek et al., 2014), ordinary differential
equations (Perley et al., 2014), and logical models (Oyeyemi et al.,
2015; Rodriguez-Jeorge et al., 2019; Sanchez-Villanueva et al.,
2019), considering different biomedical contexts as diverse as
HIV infection or neonate vaccination. To our knowledge, none of
them specifically focused on the impact of co-inhibitory receptors
on T cell activation or tolerance.

In this study, we applied the logical framework to integrate
current data on CTLA4 and PD-1 pathways and assess
their impact on T cell activation. Our goal was triple.
First, we wanted to create a comprehensive model building
upon extensive knowledge encoded into a molecular map

(see next section). Second, using model verification and
a specific unit test suite, we aimed to firmly anchor the
model at both the global and local scale into the collected
biological knowledge. Third, using value propagation, we
aimed to provide a tool for the comparative analysis of
intra-cellular consequences when targeting CTLA4 vs. PD-1
T-cell co-receptors.

Comprehensive Molecular Mapping of T
Cell Activation Network
Prior to mathematical modeling, knowledge about biological
entities involved in T Cell activation was collected from available
pathway databases, including Reactome (Fabregat et al., 2016),
PantherDB (Mi et al., 2013), ACSN (Kuperstein et al., 2015),
and WikiPathways (Slenter et al., 2018). Moreover, the scientific
literature indexed in the PubMed database was further explored
and carefully curated. Using the software CellDesigner (version
4.3.1) (Funahashi et al., 2008), this knowledge was encoded in a
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molecular map describing reactions between biological entities
(either proteins, RNAs, genes, complexes, or metabolites). Each
biological entity included in the map was annotated with a
series of standard identifiers, including UniProtKB accession
number, recommended and alternative names, gene name and
synonyms, and cross-references to unique HGNC identifiers
and approved symbols. The annotations also reference relevant
scientific articles, including PubMed identifier, first and last
authors, year of publication, and a list of observations extracted
from these publications.

Our T cell activation map currently encompasses 726
biological entities, in different states (active/inactive, with
or without post-translational modifications), and 539
reactions involving these entities (Supplementary Figure 1

and Supplementary File 1). Globally, the map currently
integrates information from 123 scientific articles, which are
cited in the annotations of the entities and reactions of the map.

Logical Modeling of T Cell Activation
Using the logical modeling software GINsim (version
3.0.0b) (Naldi et al., 2018a), we then manually derived a
regulatory graph encompassing 216 nodes and 451 arcs
(Figure 4) from the content of the molecular map. One by
one, biological entities represented in the molecular map were
re-created as components of the logical model. In most of
the cases, the representation of entities having different states
was further compressed into a single component summarizing
their activity in the TCR signaling cascade. Furthermore, to
obtain a dynamical logical model, a specific logical rule must be
assigned to each node. In many cases, this can be achieved rather
easily based on published data. For more complex situations,
a default generic logical rule was initially considered, where all
activators are needed for the activation of a component (using
the AND operator) and where only one inhibitor is sufficient to
repress it (using the OR and NOT operators), which served as
a basis for further rule refinement. In some cases, however, in
particular when a component is the target of various regulatory
interactions or when metabolites are involved, finding direct
support for a specific rule may be tricky or impossible. Hence,
the delineation of consistent logical rules for a complex model
is often the result of an iterative process, starting with generic
rules and progressively correcting them based on the results of
various analyses.

Hereafter, we demonstrate how we can take advantage
of the methods presented in the previous sections to ease
rule refinement by model verification. We first defined a
series of properties expected for the model (see examples in
Table 1). Next, stable states and/or trap spaces were computed
and automatically compared with these properties (cf. first
Jupyter notebook provided on the model web page at http://
ginsim.org/model/tcell-checkpoint-inhibitors-tcla4-pd1). After
some iterative runs of the notebook, manual refinements lead us
to a set of rules complying with all the tests.

For example, the Endoplasmic Reticulum (ER) serves as a
reservoir for calcium ions. This reservoir can be emptied through
activation of the Inositol 1,4,5-trisphosphate receptor (IP3R1).
When empty, this reservoir can be filled through activation of the

TABLE 1 | Global specifications used to assess the T cell activation model and

example of local specifications for the calcium signaling module (Cf. Figure 2).

Context Expected behavior (active or

inactive components)

Global specifications

No stimulation

Active: Quiescence, Glycogenesis

Non-optimal stimulation

(antagonist or low/high

dosage/affinity)

Active: Anergy (DGKA), Quiescence,

Glycogenesis

Optimal stimulation Active: Differentiation, IL2,

Proliferation, Growth, Actin

polymerization, Actin contraction

CTLA4 stimulation Active: Quiescence

PD-1 stimulation Active: Quiescence

Local specifications for the calcium module

Absence of IP3R

stimulation, Calcium in ER

Active: Calcium_ER; Inactive: IP3R1

Absence of IP3R

stimulation, Calcium in the

cytoplasm

Active: Calcium_ER; Inactive: IP3R1

IP3R stimulation, Calcium in

ER

Active: IP3R1, Calcineurin; Inactive:

Calcium_ER

After verification, named components should have a value of 0 if specified as inactive,
while active components should have a value of 1 or 2. Verification of local specifications
requires the extraction of a sub-model from the global model. These verifications
and literature references are detailed in the companion CoLoMoTo notebooks. ER:
Endoplasmic Reticulum.

Sarcoplasmic/endoplasmic reticulum calciumATPase 2 (SERCA)
pumps. A default logical rule for a node representing the presence
of this Calcium quantity (Calcium_ER) is then “SERCA AND
NOT IP3R1.” To check the behavior of the corresponding
logical sub-model, we defined a test checking whether whenever
Calcium_ER was evaluated to TRUE, SERCA was evaluated
to FALSE (see test “test_calc_tp_rest_ER1_SERCA0”). However,
consecutive model verification failed, allowing us to notice that
the default rule implied that SERCA should be always TRUE for
Calcium_ER to be TRUE. The rule was then corrected to take into
account the fact that Calcium_ER should stay TRUE whenever it
would reach this value in absence of IP3R1.

In the first Jupyter notebook provided as Supplementary

Material, we include all the code enabling the verification of our
final model, which encompasses 36 unit tests split in four test
suites. On a MacBook Pro using macOS 10.13 High Sierra, with
a 2.3 GHz Intel Core i7 and 16GB 1600 MHz DDR3, all the tests
were run in 87s.

The four test suites cover themost complex parts of themodel,
some of them particularly difficult to define. These suites use sub-
models, whose delineation was guided by known pathways and
practical knowledge gained by the modeler during the assembly
of the molecular map. The Calcium module test suite covers a
sub-model related to the fluxes of Calcium ions between different
cellular compartments, namely the endoplasmic reticulum, the
cytoplasm, and the extracellular region. The LCK module test
suite is centered on the Tyrosine-protein kinase Lck (LCK). This
kinase is known to have multiple sites of phosphorylation, whose
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FIGURE 5 | Visualization of the results of the propagation analyses for CTLA4 vs. PD-1 activation. Gray nodes correspond to inputs. Nodes in yellow are frozen OFF

upon any of CTLA4 or PD-1 (PDCD1) activation. Nodes in orange are frozen ON (i.e., with level 1 or 2) for each of these conditions. Nodes in light blue are frozen OFF

only for CTLA4 activation (i.e., they remain free upon PD-1 activation). Nodes in dark blue are frozen ON (i.e., with level 1 or 2) only upon CTLA4 activation (i.e., they

remain free upon PD-1 activation). Upon PD-1 activation, the corresponding node (PDCD1) is the only one that gets specifically frozen (ON, shown in dark green).

Nodes in white remain free for both conditions.

collective status determines the tridimensional conformation and
thus the activity of the enzyme (Ventimiglia and Alonso, 2013).
The Cytoskeleton module test suite covers the cytoskeleton
remodeling events occurring during T cell activation, and
has strong connections with the Calcium sub-model. Finally,
the Anergy/activation/differentiation module covers a less
documented module encompassing the nucleus compartment
and gene transcription.

Comparison of the Impacts of CTLA4 and
PD-1 Co-Inhibitory Receptors Through
Value Percolation
Based on the model described in the preceding section, a
comparative propagation analysis was performed to visualize
the respective effects of CTLA4 and PD-1 receptor activation
on model dynamics. Figure 5 displays the value propagation
for each condition on a single regulatory graph, using a

color code to distinguish the different situations (component
inhibition/activation in one or both conditions). The value
propagation for the two conditions are further shown separately
in the second companion notebook (available at http://ginsim.
org/model/tcell-checkpoint-inhibitors-tcla4-pd1). This analysis
reveals that the activation of the CTLA4 receptor impacts most
pathways of the model, impeding in particular the remodeling of
the cytoskeleton and the metabolic switch associated with bona
fide T cell activation. In contrast, the activation of the PD-1
receptor leads to more limited effects, predominantly freezing the
components of the NF-κB pathway.

A more refined comparative analysis of value propagation
from these two receptor activations entails the observation that
the set of nodes frozen by the propagation of PD-1 activation
is completely included inside the set of nodes frozen by the
propagation of CTLA4 activation (see Table 2). Furthermore, the
values of the components frozen in both propagation studies are
the same. Interestingly, a set of nodes related to calcium influx
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from and to the endoplasmic reticulum remain unfixed by any of
the propagation analyses. This could be an artfact of the positive
feedback loops added on the nodes representing the Calcium ion
levels in different compartments and would need to be further
investigated. A more detailed biological interpretation of these
results is proposed in the following section.

CONCLUSIONS AND PROSPECTS

In this study, we have implemented and applied two
complementary methods enabling a specification-oriented
model building approach, thereby easing the delineation and
analysis of highly complex logical models. In this respect, the
building of a knowledge base, e.g., in terms of a molecular
map, is an important first step. In the molecular map (provided
as the Supplementary File 1), we have integrated the most
relevant biological references available on T cell activation and
inhibition pathways.

This map is clearly due to evolve, in particular thanks
to the generation and analysis of novel high-throughput data
(see e.g., the recent extensive analysis of the TCR signalosome
by Voisinne et al., 2019). But any modification needs to be
manually propagated to the dynamical model. To date, methods
to derive proper dynamical models from such molecular maps
are still in their infancy. In the particular case of the Boolean
framework, only one automated approach has been recently
proposed (Aghamiri et al., 2020). However, a limitation of this
approach is the generation of generic logical rules based on
static knowledge. Hence, the methods presented here could be
used to advantageously refine these rules, taking into account
additional biological knowledge about the behavior of the system
under study.

We used the information gathered in our T cell activation
map to build a dynamical logical model encompassing over
200 components and 450 interactions. For such a complex
model, defining the logical rules in concordance with biological
knowledge is a difficult and error-prone process, usually
involving iterative trial simulations, where failures are identified
to suggest potential improvements. Hence, listing comprehensive
and consistent model specifications is a crucial step for model
construction. These specifications can be revised as the modeler
deepens his understanding of the biological processes under
study. Noteworthy, such systematic testing procures a sense of
confidence during the development process.

In the unit tests developed for our model, the definition of
sub-models was guided by biological knowledge and pathway
definitions, while relying partly on the modeler intuition. This
step could be improved by community analyses of the regulatory
graph to improve their definition.

Model checking techniques have been previously applied
to assess model behavior through systematic cycles of model
refinements (see e.g., Traynard et al. (2016) and reference
therein). Model verification, as defined here, is a generalization
of this approach, as it can rely on any available analysis as
long as its result can be compared to an expected outcome. In

TABLE 2 | Quantification of the model nodes impacted by the propagation of

CTLA4 or PD-1 persistent activation.

Impact of value propagation CTLA4 ON PD-1 ON Intersection

Frozen inactive nodes 105 47 47

Frozen active nodes 28 13 12

Free nodes 29 102 28

After propagation, the nodes of the model can remain free (not fixed) or become frozen
inactive (value 0) or frozen active (value 1, or potentially higher in the case of multilevel
components). The model encompasses a total of 216 nodes, including 14 inputs and
40 nodes not affected by CTLA4 or PD-1 activation. Interestingly, PD-1 itself is the only
single node specifically frozen by its activation (and not by the activation of CTLA4).
Furthermore, each of 59 nodes affected by the two perturbations is frozen to the same
value in both cases. Details of the computation method can be found in the companion
CoLoMoTo notebooks.

our hands, in the course of model building, the unit testing
approach, strongly anchored to available knowledge, proved
to be very efficient to assess and improve model consistency
with respect to a list of biological specifications, without the
need of time-consuming and costly simulations. Implemented
in the CoLoMoTo Interactive notebook framework (Naldi et al.,
2018b), this approach enabled us to define a model recapitulating
the most salient properties observed in response to T cell
activation, including quiescence, anergy, and differentiation.

The use of model checking techniques could be further
extended to assess the sensitivity of model behavior to the
choice of specific logical rules. Such extension is hindered by the
exponential increase of the number of possible logical rule, as the
number of regulators increases. We would thus need a rationale
to explore the space of logical rules. A first step in this direction
can be found in Abou-Jaoudé and Monteiro (2019).

The approach presented here could also be improved by
taking into account and tracking uncertainty during model
conception (Thobe et al., 2018), or yet by taking advantage
of computational repairing methods (Gebser et al., 2010) to
identify more precisely remaining inconsistencies with biological
data. Furthermore, other software engineering techniques, such
as code coverage, could be borrowed to further improve
model building and verification. Code coverage computes
how much of a program’s code is covered by unit tests.
Similarly, one could design a method computing the fraction
of the components of a model that is effectively covered
by specifications.

Value propagation analysis of our large and complex
regulatory graph proved to be biologically insightful. Indeed,
this straightforward approach enabled us to clearly contrast the
respective impacts of CTLA4 and PD-1 on T cell activation
in our model, providing some rationale for their differential
effects in current therapeutic studies. Indeed, anti-CTLA4
immunotherapies are known for their strong adverse effects
related to autoimmunity and immunotoxicity (June et al., 2017).
Anti-CTLA4 immunotherapies are currently combined with
anti-PD-1 immunotherapy, known for its milder impact on the
immune system.
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Interestingly, the state of the node representing the Interleukin
2 (IL2) cytokine activation illustrates the differences of action
of these receptors. Activation of the IL2 gene depends mainly
on the activation of three transcription factors: the Nuclear
Factor of Activated T cells (NFAT), the AP1 complex, and
the Nuclear factor NF-kappa-B (NF-κB) (Smith-Garvin et al.,
2009). When NFAT and AP1 are both active, they form a
complex and together bind a regulatory region of the IL2
gene. In absence of AP1, NFAT induces a different program
leading to cellular anergy (Macian, 2005; Smith-Garvin et al.,
2009): activation of Diacylglycerol Kinase (DGK) prevents
DAG-mediated activation of RasGRP1, which regulates the
threshold for T cell activation (Roose et al., 2007; Das et al.,
2009).

Our comparative propagation analysis reveals that while the
activation of the CTLA4 receptor leads to a general inactivation
of the three transcription factors regulating IL2 production,
activation of the PD-1 receptor leads only to the inactivation
of NF-κB and FOS (a member of the AP1 complex), thereby
preventing the formation of the NFAT/AP1 complex, but
enabling the activation of DGK. This observation is consistent
with the proposal to target DGK isoforms as a complement of
checkpoint immunotherapy (Riese et al., 2016; Jung et al., 2018).

As a next step, new co-inhibitory receptors recently under
study, such as the Hepatitis A virus cellular receptor 2 (also
known as TIM3) or the Lymphocyte activation gene 3 protein
(LAG-3) (Anderson et al., 2016), could be easily added to the
model described here, provided sufficient information could
be gathered regarding their interacting partners. Applying
propagation analysis in this context would be greatly insightful
for future therapy developments.
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