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Moving beyond species: fungal function 
in house dust provides novel targets 
for potential indicators of mold growth 
in homes
Neeraja Balasubrahmaniam1,2,3, Jon C. King1,2,3, Bridget Hegarty4 and Karen C. Dannemiller2,3,5* 

Abstract 

Background  Increased risk of asthma and other respiratory diseases is associated with exposures to microbial 
communities growing in damp and moldy indoor environments. The exact causal mechanisms remain unknown, 
and occupant health effects have not been consistently associated with any species-based mold measurement 
methods. We need new quantitative methods to identify homes with potentially harmful fungal growth that are 
not dependent upon species. The goal of this study was to identify genes consistently associated with fungal growth 
and associated function under damp conditions for use as potential indicators of mold in homes regardless of fungal 
species present. A de novo metatranscriptomic analysis was performed using house dust from across the US, incu-
bated at 50%, 85%, or 100% equilibrium relative humidity (ERH) for 1 week.

Results  Gene expression was a function of moisture (adonis2 p < 0.001), with fungal metabolic activity increasing 
with an increase in moisture condition (Kruskal–Wallis p = 0.003). Genes associated with fungal growth such as sporu-
lation (n = 264), hyphal growth (n = 62), and secondary metabolism (n = 124) were significantly upregulated at elevated 
ERH conditions when compared to the low 50% ERH (FDR-adjusted p ≤ 0.001, log2FC ≥ 2), indicating that fungal func-
tion is influenced by damp conditions. A total of 67 genes were identified as consistently associated with the elevated 
85% or 100% ERH conditions and included fungal developmental regulators and secondary metabolite genes such 
as brlA (log2FC = 7.39, upregulated at 100% compared to 85%) and stcC (log2FC = 8.78, upregulated at 85% compared 
to 50%).

Conclusions  Our results demonstrate that moisture conditions more strongly influence gene expression of indoor 
fungal communities compared to species presence. Identifying genes indicative of microbial growth under damp 
conditions will help develop robust monitoring techniques for indoor microbial exposures and improve understand-
ing of how dampness and mold are linked to disease.
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Introduction
Exposure of asthmatics to mold in housing costs $22.4 
billion per year in the United States alone [1, 2]. Water-
damaged and moldy homes are consistently associated 
with asthma, respiratory and allergic health outcomes, 
in both children and adults [3–12]. These health effects 
disproportionately affect low-income and minority com-
munities, including those with substandard housing con-
ditions [6, 13]. These residents are often renters and/or 
may not have the resources for appropriate remediation 
of mold-damaged homes [14].

Health effects from damp homes are most strongly 
associated with subjective measures of mold such as 
visual inspection and detection of moldy odor compared 
to any available quantitative mold measure [3]. Repeated 
evidence suggests that it is microbial growth occurring 
in response to indoor dampness that mediates the link 
between exposures and health effects [3, 15–17]. Tradi-
tional methods to measure indoor mold using counts of 
microbial spores [18] and fungal indicators like glucans 
and ergosterol have not shown consistent associations 
with health effects [19]. Next-generation DNA sequenc-
ing-based tools using sequence analysis of microbes [20] 
have not yet been able to identify specific species as a 
consistent microbial signature of dampness [21–25]. 
Solely analyzing species composition changes in response 
to moisture is not sufficient to quantify microbial growth 
due to the influence of sampling site [21, 26, 27].

There is an urgent research need to develop new tools 
that improve building diagnosis and clearance certifi-
cation for mold industry practitioners [23]. Microbial 
communities that grow in response to damp conditions 
express genes and have specific metabolic pathways 
and functional changes regardless of species that are 
present that may be strongly associated with negative 
health outcomes. Analysis of gene expression and meta-
bolic changes in microbial communities have repeatedly 
acted as early and sensitive predictors of environmental 
shifts in other systems [28, 29]. Changing environmen-
tal factors like temperatures and moisture result in fun-
gal growth with increased production of volatile organic 
compound emissions (VOCs) and mycotoxins [30–36]. 
Damp conditions lead to increased fungal allergen 
potency and metabolic activity that can result in degra-
dation of chemicals such as phthalate esters in the dust 
[37, 38]. Growing fungal communities in house dust at 
elevated moisture conditions results in increased expres-
sion of genes encoding secondary metabolites, allergens, 
and pathogenicity factors [38, 39]. Fungal growth results 
in increased allergen release [40] and is also associated 
with proteins like hydrophobins and proteases that have 
direct impacts on evading host immune system response 
during exposure and correlate to asthma severity [41, 42]. 

Analyzing gene expression in the fungal communities in 
dust may yield promising options to help identify the best 
associations between potential microbial indicators of 
damp indoor environments and health effects.

The goal of this study is to identify genes consistently 
associated with fungal growth in indoor dust under damp 
conditions. These genes may be used in the future to 
inform the design of better indicators of moisture dam-
age in homes that may be associated with human health 
effects. We performed a de novo metatranscriptome 
assembly on dust collected from different homes across 
the US and incubated them at 3 different relative humid-
ity levels in laboratory chambers. We investigated pro-
cesses associated with fungal growth enriched at elevated 
moisture conditions and discovered upregulated fungal 
genes from these growth pathways. The final set of genes 
are potential targets to use in homes to indicate harm-
ful fungal growth regardless of the species present. Such 
genes and their products, after further validation, can 
be used as diagnostic indicators of moisture damage in 
homes. The results of this work, through the use of novel 
tools, identify microbial targets of moisture signature in 
homes and can provide a novel perspective to further the 
understanding of the health implications of dampness 
exposures.

Methods
Participant recruitment and dust collection
Floor dust samples were collected from nine different 
non-moisture damaged homes across the US from May 
2021 to November 2021. Overall methods are shown in 
Fig.  1. Three homes were from Ohio, and the remain-
ing six were homes from six different states in the US 
(Table  S1, Fig.  2). Due to COVID-19 restrictions, we 
used an online approach for participant recruitment and 
instructions for dust collection by participant. Using par-
ticipant-collected dust as a surrogate for collection by a 
project staff has shown to be equally effective for studies 
reporting allergen concentration in dust [43, 44]. Partici-
pants were initially recruited via social media, and addi-
tional recruitment and screening were completed over 
email.

A Qualtrics survey (Qualtrics, Provo, UT) contain-
ing the consent form, as well as questions on relevant 
home and indoor environmental measures, was used for 
screening participants. Participants were asked if there 
was any evidence of present water damage, moisture, 
leaks (such as damp carpet or leaky plumbing), or visible 
mold inside their homes. If participants answered in the 
affirmative, then these homes were not recruited for our 
study. The survey also contained information about the 
floor area and flooring type that was vacuumed, the fre-
quency of vacuuming, types of floor cleaning, the number 
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Fig. 1  Overview of methods
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of occupants (adults and children), number of pets (dogs, 
cats, birds, and other furry pets) as well as any prior his-
tory of moisture damage and mold in participants’ homes 
within the last 5 years.

One home located in Texas was initially recruited but 
due to consistently low quality of the extracted RNA, the 
dust was not included in sequencing and was excluded 
from this study. Two of the homes had potential mois-
ture damage even though the participants answered in 
the negative to “Is there evidence of water damage, mois-
ture, or leaks (such as damp carpet or leaky plumbing)?” 
(Table  S1). One home (dust sample ID: KS, Table  S1) 
reported to have a temporary leak that occurred after 
heavy rains and was gone within 24  h, and the other 
reported to have a leak more than 10  years ago (dust 
sample ID: WA, Table S1). These two samples were not 
excluded because they did not meet the extent of mois-
ture damage necessary for exclusion criteria due to the 
extent of the damage and length of time since the dam-
age, respectively.

Dust collection instructions were sent to the par-
ticipants over email. Participants were asked to col-
lect floor dust (> 25  g), emphasizing collection from 
the main living areas inside their homes (living room 
and bedroom) using their home vacuum. If the home 
vacuum did not contain a vacuum bag, participants 
were asked to remove dust from the canister and place 
it in a zip top bag. Participants were then asked to 
ship their collected dust to our lab or have it dropped 

off to a designated location for us to pick up. Once we 
received the dust, all dust was screened to eliminate 
for the presence of SARS CoV-2, using a previously 
described protocol [45], and no dust samples were 
excluded. Recruitment and dust collection procedures 
were approved by The Ohio State University Behavioral 
Institutional Review Board (IRB) under study number 
019B0457 for the duration of the study.

The collected dust was then hand-sieved to 300 µm to 
remove larger-sized dust particles. Sieved dust samples 
were stored in enclosed jars within a dark chamber cov-
ered in parafilm at 25 °C prior to chamber experiments. 
Dust for RNA analysis were sieved within 10  days of 
receipt and chamber experiments were performed within 
3  weeks after sieving. Dust used for DNA extractions 
were stored for up to several months after sieving prior to 
incubations. DNA and RNA extractions were performed 
exactly 1  week after incubation began. Dust was trans-
ferred directly into the first extraction step without freez-
ing. Dust was never frozen to maintain intact microbial 
communities.

Chamber experiments
For the chamber experiments, 100 mg aliquots of sieved 
dust were incubated in glass chambers at 25  °C for a 
period of 1 week, at relative humidities of 50%, 85%, and 
100% ERH [17]. A total of 27 dust samples were incu-
bated (9 sites × 3 ERH conditions). Additional samples 
or replicates were not included due to the increased 

Fig. 2  Locations of participating homes that donated dust to the study. Dust from 9 homes, indicated by the pink colored dots, was collected 
and included for all experiments, sequencing, and downstream analysis. Dust from one home, indicated by the grey dot (located in Texas), 
was collected but excluded before sequencing due to low quality of extracted RNA. Number of collection sites (homes) within each location are 
shown by the numbers within the pink and grey colored dots. There were 3 collection sites in Ohio
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computational time and cost needed to include more 
samples in our bioinformatics pipeline and the costs 
associated with RNA sequencing. Previous studies 
have shown when using replicate samples of dust, gene 
expression of samples cluster by moisture condition [38]. 
Relative humidity levels in the glass chambers were main-
tained using salt solutions or distilled water, as detailed 
in previous work [21]. Fifty percent and 85% ERH were 
maintained by using salt solutions with water activities of 
0.5 aw and 0.85 aw, respectively, and distilled water was 
used to maintain an ERH of 100%. The water activities 
of these salt solutions were tested for accuracy using an 
AquaLab™ Dew Point Water Activity Meter (Decagon 
125 Devices) with a margin of error of ± 0.005.

RNA extractions and nucleic acid sequencing
Immediately following the 1-week incubation, RNA was 
extracted from incubated dust using a previously used 
modified protocol of the Qiagen RNeasy PowerMicrobi-
ome extraction kit (Qiagen, Hilden, Germany) [38]. To 
prevent RNA degradation from RNases, the manufactur-
er’s protocol was modified to use 10 × the concentration 
of β-mercaptoethanol in the first step and 70% ethanol in 
place of PM4 in the RNA binding step. Extracted RNA 
was immediately frozen at − 80 °C prior to use and trans-
ported on dry ice.

To ensure high RNA quality and integrity, all RNA 
extracts were analyzed using the High Sensitivity RNA 
ScreenTape analysis on the Agilent 4200 TapeStation 
Bioanalyzer (Agilent, Santa Clara, CA, USA) at The 
Genomics Shared Resource Center (The Ohio State Uni-
versity Comprehensive Cancer Center Shared Resources, 
Columbus, OH, USA).

RNA extracts were then sent to the Yale Center for 
Genomic Analysis (Yale University, New Haven, CT, 
USA) where they were reverse transcribed and then 
sequenced on a NovaSeq 2 × 100 lane with 25 million 
reads per sample. RNASeq library preparation was per-
formed using the NEB Next Single Cell/Low Input RNA 
Library Prep Kit (New England Biolabs, USA) and the 
NEB Ultra II FS (New England Biolabs, USA) workflow 
for Illumina. The polyA selection protocol was used to 
select for eukaryotic mRNA. Sequence data was submit-
ted to GenBank under accession number PRJNA1072816.

Initial processing, metatranscriptome assembly, 
and transcript quantification
Processing of sequenced reads followed protocols previ-
ously described [37, 38]. FastQC (v.0.12.0) was used for 
quality assessment of sequences [46]. rCorrector (v.1.0.6) 
was utilized to correct erroneous k-mers created due to 
sequencing errors [47]. After correction, reads deemed 

unfixable by rCorrector were filtered out using the Tran-
scriptomeAssemblyTools package [48].

De novo metatranscriptome assembly was conducted 
using Trinity (v.2.12.0) [49] with default settings and was 
run on the Ohio Supercomputer (Ohio Supercomputer 
Center, Ohio). Trimmomatic within the Trinity pipeline 
was used to remove poor-quality reads and contigs with a 
length less than 300 base pairs (bp) [50, 51]. Contigs from 
the Trinity assembly were clustered using CD-HIT-EST 
(v.4.8.1) based on 80% sequence similarity [52, 53]. These 
clusters from CD-HIT-EST represent all expressed con-
tigs and constitute the full transcriptome.

Abundance estimation and alignment were run within 
the Trinity pipeline with default parameters. RSEM 
(v.1.3.3) was used to estimate transcript abundance in 
each sample and to determine transcript-level expression 
counts of the RNA-Seq fragments for each transcript 
using alignment-based quantification [54]. Bowtie2 was 
used to align the quality trimmed paired-end reads after 
Trimmomatic to the full transcriptome created using 
CD-HIT-EST [55]. Read coverage was then quantified 
using Samtools to capture read alignment statistics for 
concordant read pairs (yielding concordant alignments 1 
or more times to the CD-HIT-EST transcriptome) with a 
MAPQ greater than 2.

Transcript-level abundance estimates were used to 
construct a matrix of counts and a matrix of normalized 
expression values. Normalized expression values include 
Counts Per Million (CPM), Transcripts per Million 
(TPM) [56], and Trimmed Mean of M-values (TMM) 
[57] and account for transcript length, number of reads 
mapped to a transcript, total number of reads over all 
transcripts, and library size (sequencing depth). Gene-
level count and gene-level normalized expression matri-
ces were calculated using txImport [58] implemented 
directly in the Trinity pipeline.

Differential expression analysis
DESeq2 was used within the Trinity pipeline to perform 
Differential Gene Expression (DGE) analysis of expressed 
genes [59]. DGE performed using gene-level counts was 
used for downstream target gene identification. Per-
forming differential expression analysis on gene levels, 
in addition to contig or transcript levels, improves inter-
pretation of annotated contigs and potentially increases 
statistical power [60]. Pairwise comparisons between the 
three ERH conditions (50%, 85%, and 100%) were per-
formed, giving rise to six pairwise ERH comparisons. 
Genes that were most differentially expressed based 
on the most significant False Discovery rate (FDR) [61] 
(FDR-adjusted p ≤ 0.001) and log2FC (log2 fold change) 
values (log2FC ≥ 2) were extracted and used for subse-
quent Gene Ontology (GO) enrichment analysis.
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Functional annotation and Gene Ontology enrichment
Transcripts were annotated using Trinotate (v.3.2.2), 
designed for comprehensive functional annotation of de 
novo transcriptomes [62]. Trinotate integrates all func-
tional annotation data into an SQLite database, which 
is used to create a whole annotation report for the tran-
scriptome. For functional annotation, Trinotate used 
BLAST + sequence homology search of transcripts and 
predicted coding regions against the SwissProt data-
base [63, 64] and protein domain identification using 
a HMMER (v.3.3.2) search against the PFAM database 
[65, 66]. Predicted coding regions were identified using 
TransDecoder (v.5.5.0) that utilizes a minimum length 
open reading frame (ORF) found in a transcript sequence 
[67]. The TrEMBL/SwissProt database was used for Gene 
Ontology (GO) and KEGG assignments of transcripts 
using Trinotate [62, 68, 69]. KEGG assignments for genes 
were analyzed using the KEGG Mapper tool to identify 
the number of metabolic pathways [70] and visualized 
using the iPath3 tool [71] as metabolic pathway maps.

GOseq, developed specifically to account for gene 
length bias in RNA-seq data, was used within the Trin-
ity pipeline to perform functional GO enrichment test-
ing [72]. Results from the GO enrichment were analyzed 
for enriched GO categories based on the significance 
of enrichment using FDR values and the number of DE 
genes within these GO categories at each pairwise ERH 
comparison.

Identifying potential target genes associated with fungal 
growth at high moisture
GO enrichment was performed on the most highly sig-
nificant and differentially expressed genes with a cutoff of 
FDR-adjusted p ≤ 0.001 and log2FC ≥ 2. GO enrichment 
results were then analyzed for GO terms associated with 
fungal growth that were significantly enriched at higher 
moisture conditions (FDR < 0.05). Higher moisture con-
ditions comprised of GO terms enriched at 100% com-
pared to 85% ERH, enriched at 100% compared to 50% 
ERH, and enriched at 85% compared to 50% ERH. Finally, 
genes upregulated within these GO categories associated 
with fungal growth at higher ERH and having a known 
fungal annotation (BLASTX) were used to identify genes 
as potential targets that are indicative of mold growth.

Target genes were chosen based on the criteria that (i) 
genes are upregulated at high ERH conditions: upregu-
lated at 100% compared to 85% ERH, at 100% compared 
to 50% ERH or at 85% compared to 50% ERH; (ii) genes 
have a log2FC ≥ 5; (iii) genes are upregulated (expressed) 
in at least two-thirds of sampling sites (n ≥ 6, out of a total 
n = 9 locations); and (iv) genes are not expressed at the 
50% ERH condition in any sample. Counts in the 0–10 
range are usually considered “noise” [73], and therefore, 

the target genes were required to have a count < 10 at 
50% ERH. Exceptions were made for some genes that did 
not meet criteria (iii), if the gene was essential for fungal 
growth based on prior knowledge. Genes upregulated in 
at least three sampling sites (n = 15) were included based 
on this exception. Criteria (iv) was included because 
using such genes as a marker for moisture would be sim-
pler in that they can be quantified without being depend-
ent on increases in abundances/counts and would not 
need to be compared to a baseline level. If a gene was 
upregulated in more than one ERH comparison (for 
example, upregulated at 100% compared to 50% and at 
100% compared to 85%), then the largest log2FC value 
was used, and the ERH comparison corresponding to the 
log2FC value was reported (Table S10).

To analyze how genes performed when compared to 
fungal taxa (species and genus) as targets of high mois-
ture conditions, we applied similar criteria to fungal taxa. 
Fungal taxa were analyzed based on the criteria that they 
are (i) more abundant at high ERH conditions: upregu-
lated at 100% compared to 85% ERH, at 100% compared 
to 50% ERH or at 85% compared to 50% ERH; (ii) more 
abundant in at least two-thirds of sampling sites (n ≥ 6, 
out of a total n = 9 locations); and (iii) not expressed at 
the 50% ERH condition in any sample.

Species identification in samples
Fifty milligrams of sieved dust, identical to those used for 
RNA extractions, was used for DNA extractions. Dust 
samples were incubated for 1 week at 50%, 85%, and 100% 
ERH (similar to RNA extractions), prior to DNA extrac-
tion (n = 27, 9 sites × 3 ERH conditions). DNA extractions 
were performed using the Maxwell RSC PureFood GMO 
and Authentication Kit (Promega, USA). After addi-
tion of CTAB buffer, proteinase K, and RNAse, a 5-min 
bead beating step (BioSpec Products, Inc., Bartlesville, 
OK, USA) was added to release spore contents where 
bead tubes contained 0.3 g of 100 µm glass beads, 0.1 g of 
500 µm glass beads, and 1 g of garnett particles (all Bio-
Spec Products Incl., Bartlesville, OK, USA) [74]. Further 
protocol modification included (1) 30 min of room-tem-
perature incubation between beat beating and centrifu-
gation and (2) reduction of eluate volume to 75 µL. DNA 
extracts were stored at − 20  °C. Fungal concentration in 
DNA extracts was measured using a qPCR assay target-
ing the 18 S rRNA gene with the universal fungal primer 
pair FF2/FR1 [75]. QPCR reagents, standards, and cycling 
parameters were as previously described [20]. Next-gen-
eration DNA sequencing was performed at Research 
and Testing Laboratory (Lubbock, TX, USA) using an 
Illumina MiSeq with 2 × 300 bp chemistry. The adapters 
ITS1F (5′ – CTT​GGT​CAT​TTA​GAG​GAA​GTAA – 3′) 
and ITS2aR (5′ – GCT​GCG​TTC​TTC​ATC​GAT​GC – 3′) 
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were selected to amplify ITS1 region [76]. Raw sequence 
data is archived in GenBank (PRJNA1072816).

A DADA2-based bioinformatics pipeline custom-
ized for ITS sequences [77] was run using R [78] on 
Ohio Supercomputer (Ohio Supercomputer Center, 
Ohio). Adapters were first removed using Cutadapt [79], 
BioStrings [80], and ShortRead [81]. Denoising was per-
formed using DADA2 [82] where the maxEE and truncQ 
parameters of the filterAndTrim function were both set 
to eight following Rolling et al. [83]. The UNITE version 
9.0 database [84] was used for taxonomic identification. 
Absolute abundance of organisms in the samples was 
determined as described previously [39, 85].

Statistical analysis
The statistical analysis software R (v.4.2.2) [78] was 
used to perform statistical testing. To compare gene 
expression profiles based on moisture condition, rela-
tionships between samples were analyzed using Prin-
cipal Component Analysis (PCA). Gene expression 
values in Counts Per Million (CPM) that account for 
library size normalization were used for PCA. Log2 
transformed and mean-centered standardization, 
typically applied in gene expression studies, were 
performed prior to analysis to reduce bias towards 
highly expressed transcripts [59, 86]. PCoA was per-
formed for relative abundance of fungal taxa (Ampli-
con Sequence Variants (ASVs), species and genus) 
using Bray–Curtis distances. We also performed PCoA 
using Aitchison distances to compare gene expres-
sion and fungal taxa abundances. Aitchison distance 
is Euclidean distance after a centered log ratio (clr) 
transformation of data and uses relative abundances 
that are suitable for compositional microbiome data 
[87]. This ensures that the metric for sample distances 
is similar for both gene expression and taxa, for a 
more even comparison as PCA is identical to Principal 
Coordinates Analysis (PCoA) when using Euclidean 
distances. The adonis2 function in R using the vegan 
package (v.2.6.4) [88] was used to determine the sta-
tistical significance of ERH groupings (p < 0.05) from 
the Euclidean, Bray–Curtis, and Aitchison distance 
matrix. The test employed 10,000 permutations and 
used FDR [61] to adjust for multiple comparisons. Sig-
nificance was defined at FDR-adjusted p < 0.05 [89]. A 
95% confidence ellipse using the stat_ellipse function 
within the ggplot2 package (v.3.4.3) [90] was created to 
compare moisture conditions to each other.

The Spearman rank correlation coefficient was cal-
culated using the corrplot package [91] for differentially 
expressed genes based on moisture condition. False Dis-
covery Rate was used to adjust for multiple comparisons, 
and only the correlation coefficients that were significant 

(FDR-adjusted p < 0.05) were considered. The Spearman 
rank correlation coefficient determines the strength and 
direction in the relationship between the data where a 
value of 1 indicates the strongest positive correlation.

Gene expression heatmaps were plotted using the 
ComplexHeatmap [92] package in R, based on TMM-
normalized (Trimmed Mean of M-values normal-
ized) expression values for direct comparison of gene 
expression across samples [57]. Log2 transformed and 
mean-centered standardization were performed prior 
to analysis to reduce bias towards highly expressed tran-
scripts [59, 86].

To identify species with differences in absolute abun-
dances between the ERH levels, the Kruskal–Wallis test 
was first performed to determine significant difference 
(p < 0.05), followed by pairwise Wilcoxon rank sum test 
using FDR [61] to control for multiple comparisons. To 
determine significant differences between the number 
of fungal genes present by ERH condition, the Kruskal–
Wallis test followed by pairwise Wilcoxon rank sum test 
was performed, with FDR to adjust for multiple compari-
sons. These tests were also used for determining differ-
ences in absolute fungal concentrations based on ERH 
condition. Kruskal–Wallis tests were used as a non-par-
ametric alternative to ANOVA when the data was deter-
mined to not be normally distributed (Shapiro–Wilk 
p < 0.05) [93].

Visualization
Figures in the manuscript were generated using R scripts 
(v.4.2.2) [78], scripts within Trinity [49], ggplot2 (v.3.4.3) 
[90], ComplexHeatmap (v.2.15.1) [92] for heatmaps (Fig. 6 
and Supplementary Fig. S13), corrplot (v.0.92) [91] for 
Supplementary Fig. S6, iPath3 [71] for global metabolic 
pathway map (Fig.  4, Supplementary Fig. S9 and S10), 
Canva (https://​www.​canva.​com) for generating a GIF 
image, Adobe Illustrator (v.28.3) (http://​www.​adobe.​
com/​au/​produ​cts/​illus​trator.​html) for Fig.  1, and Ink-
scape (v.1.3) (https://​inksc​ape.​org/) for Fig. 1 and finaliz-
ing other figures. The map in Fig. 2 was created using the 
R packages ggplot2 (v.3.4.3) [90], maps (v.3.4.1) [94], and 
ggmaps (v.3.0.2) [95] and further finalized using Inkscape.

Results
Overview of metatranscriptomic dataset
RNA sequencing produced a total of 700,682,204 paired-
end reads. Trinity assembled all high-quality reads into 
1,983,474 contigs and 1,023,948 genes. The median con-
tig length was 556 base pairs (bp) with a minimum size 
threshold of 300  bp. After quality filtering, on average, 
70.07% of reads mapped back to the full transcriptome. 
When only retaining reads that were part of a properly 
mapping pair, a total of 54.83% of quality-filtered reads 

https://www.canva.com
http://www.adobe.com/au/products/illustrator.html
http://www.adobe.com/au/products/illustrator.html
https://inkscape.org/
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were mapped (additional read and cluster quality sta-
tistics in Supplementary Fig. S1). The percent of reads 
that survived the quality filtering and mapping is similar 
to other metatranscriptomic studies, including studies 
performed using house dust [38, 96]. DNA sequencing 
yielded 2,122,711 total reads (an average of 78,618.93 
reads per sample), and no samples were excluded for 
insufficient depth.

Moisture is more consistently associated with microbial 
function than species
Relative humidity condition is significantly associated 
with both gene expression (Fig. 3A) and species (Fig. 3B) 
in the samples (adonis2 R2 = 0.28, p ≤ 0.0001 and adonis2 
R2 = 0.21, p ≤ 0.0001, respectively, Table  S2). The differ-
ence is more pronounced in gene expression with non-
overlapping ellipses compared to taxa (ASVs in Fig.  3B, 
Supplementary Fig. S3A, species in Supplementary Figs. 
S2A and S3B, or genus in Supplementary Figs. S2B and 
S3C) with overlapping ellipses, indicating that this may 
be a stronger predictor of moisture in a sample than taxa 
(Table S2). For fungal taxa (Fig. 3D, Supplementary Figs. 
S2(C, D) and S3(D, E, F)), some samples cluster together 
more strongly by site than by ERH condition (CA 50%, 
CA 85%, and WA 50%, WA 85%), which is not observed 
for gene expression (Fig. 3C).

Samples cluster by moisture condition based on the 
gene expression heatmap (Supplementary Fig. S4) indi-
cating gene expression is a function of relative humidity 
condition. These differences can also be seen in the MA 
plots (Supplementary Fig. S5) which indicate differen-
tially expressed genes at each pairwise RH comparison, 
100% vs 85%, 100% vs 50%, and 85% vs 50%. Differen-
tially expressed genes were significantly correlated within 
moisture conditions (Spearman correlation, rho > 0.5, 
p < 0.05), and samples grouped by RH condition based on 
hierarchical clustering (Supplementary Fig. S6). 

Many fungal genes are consistently expressed only at 
elevated moisture conditions (Supplementary Fig. S7, 
Table  1). Thousands of genes were upregulated at ele-
vated ERH conditions (100% or 85% compared to 50% 
ERH) in a majority of samples and were not expressed at 
the low 50% condition (Table 1). A total of 732 genes were 
upregulated in all sites at either 100% or 85% ERH con-
ditions when compared to 50% and were not expressed 
in any 50% samples (Table 1). Overall, this indicates that 
many genes are expressed 100% or 85% ERH or both. In 
contrast, no fungal taxa (species or genus) were found 
to be consistently associated with elevated ERH in all 
samples (Table  1, Supplementary Tables S3 and S4). 
Species that were more abundant at elevated ERH con-
ditions (100% or 85%) were also present at the low 50% 
condition, similar to previous studies [21], and these are 

difficult to use as indicators of moisture and need to be 
associated with increases in abundances. Out of the two 
species that were more abundant at the 85% ERH condi-
tion (Aspergillus ruber and Aspergillus intermedius), both 
were found at 50% ERH (Table S3). For instance, Asper-
gillus ruber that is more differentially abundant at 85% 
ERH (in all sites) was also found in 7 sites at 50% ERH. 
Only one species (Chaetomium angustispirale) that was 
more abundant at 100% ERH in 8 sites (compared to 50%) 
was not found in any of the 50% ERH samples (Table S3). 
Overall, these results suggest that utilizing genes associ-
ated with elevated ERH conditions may potentially be 
able to overcome the inconsistencies associated with 
using fungal taxa as indicators of moisture.

Fungal metabolic activity increases with increase 
in moisture
Fungal gene expression (based on the number of fun-
gal annotated genes) increased with increase in rela-
tive humidity condition (Kruskal–Wallis p = 0.003), 
with the 100% ERH condition, on an average, having 
2.1 times the number of fungal annotated genes pre-
sent at 50% ERH (Wilcoxon p = 0.002, Supplementary 
Fig. S8, Table S5).

There were a greater number of upregulated fungal 
genes at the 100% or 85% ERH conditions compared to 
the lower 50% ERH (p ≤ 0.001, log2FC ≥ 2, Supplementary 
Fig. S7, Table  S6). There were 1.8 times the number of 
significantly upregulated vs downregulated genes at 100% 
ERH when compared to 50% and 3.2 times the number of 
significantly upregulated genes at 100% when compared 
to the 85% ERH condition. We also found a greater num-
ber of fungal metabolic pathways upregulated at 100% 
and 85% ERH conditions than at 50% (Fig. 4, Supplemen-
tary Figs. S9 and S10). The 100% ERH condition (n = 383) 
had 3.3 times the number of fungal metabolic pathways 
as 50% ERH (n = 117), based on the 100% versus 50% 
ERH comparison (Table S7).

Similar to previous studies [17], fungal concentration 
increased with increase in ERH condition (Kruskal–Wal-
lis p = 0.007, Supplementary Fig. S11). The fungal taxa 
present in the dust at the initial 50% ERH condition var-
ied by site, with the majority in most sites being in the 
phylum Ascomycota (Supplementary Fig. S12).

Genes associated with fungal growth are upregulated 
at high relative humidity conditions
GO terms associated with fungal growth are enriched at 
the 100% and 85% ERH conditions compared to 50% ERH 
(FDR < 0.05) (Fig.  5). No growth-associated GO terms 
(n = 0, FDR < 0.05) were enriched at the  low ERH condi-
tion (50% ERH as the upregulated condition), indicating 
that overall, gene expression related to fungal growth is 
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associated with higher moisture conditions (Tables S8 
and S9).

Morphological processes that occur during fungal 
growth are significantly enriched at both the 100% and 
85% ERH conditions when compared to the low 50% 
ERH condition. Filamentous fungi begin to grow by elon-
gating the tip of their hyphae [97], which is followed by 
the formation of reproductive growth structures and the 

production of spores (sporulation) [98]. Genes associ-
ated with the GO term “sporulation” were upregulated 
at the 100% and 85% ERH conditions when compared 
to 50% ERH. GO terms associated with hyphal elonga-
tion such as “cell septum” and “hyphal tip” were sig-
nificantly enriched at 85% ERH when compared to 50% 
(FDR < 10−10, Fig. 5, Table S8). The GO term “anatomical 
structure formation involved in morphogenesis” had the 

Fig. 3  A PCA of gene expression in house dust grouped by ERH, B PCoA of the relative abundance of fungal taxa (ASVs) in house dust grouped 
by ERH using Bray–Curtis distances, C PCA of gene expression colored by site, and D PCoA of the relative abundance of fungal ASVs colored by site 
(using Bray–Curtis distances). The color of samples is specific to ERH or site, and shapes are specific to ERH. Overlap between samples indicates 
greater similarity based on between-sample distance. A 95% confidence ellipse was added for each ERH condition in A and B 

Table 1  Number of upregulated fungal genes and fungal species that are found to be more abundant at 100% compared to 50% and 
85% compared to 50% (FDR-adjusted p < 0.05)

Gene expression
Upregulated at 100% 
vs 50%

Upregulated at 85% vs 50%

Number of genes upregulated (FDR-adjusted p < 0.05) 4141 12,845

Number of genes upregulated in at least 6/9 sites and not expressed at 50% 3188 5437

Number of genes upregulated in at least 8/9 sites and not expressed at 50% 2030 2528

Number of genes upregulated in all sites and not expressed at 50% 324 431

Taxa (species)
More abundant at 100% 
vs 50%

More abundant at 85% vs 50%

Number of species differentially abundant (FDR-adjusted p < 0.05) 3 2

Number of species more abundant in at least 6/9 sites and not found at 50% 1 0

Number of species more abundant in at least 8/9 sites and not found at 50% 1 0

Number of species more abundant in all sites and not found at 50% 0 0
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Fig. 4  Metabolic pathways map of fungal genes upregulated at 100% ERH when compared to 50% ERH

Fig. 5  Bubble plot of representative GO terms associated with fungal growth in all ERH comparisons. Bubble sizes represent the number 
of upregulated genes within a GO category for a specific ERH comparison. Bubble color values are based on the significance (-log10(FDR)) of the GO 
term with darker colors representing higher significance of GO enrichment. We grouped GO terms having similar functions into broader categories. 
Color bars next to GO terms indicate the four broader categories: Morphological, Stress response, Mitochondria and Secondary metabolism. 
Enriched GO terms along with the number of upregulated genes present can be found in Supplementary Tables S8 and S9
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highest number of upregulated genes (n = 323) and was 
significantly enriched at 100% when compared to 85% 
ERH.

GO terms associated with fungal secondary metabo-
lism are significantly enriched at 100% and 85% ERH 
conditions when compared to 50% ERH (FDR < 0.05). 
Secondary metabolic processes are chemical reactions 
and pathways that are not required for the growth and 
maintenance of the organism [99]. In filamentous fungi 
(mold), secondary metabolism includes the produc-
tion of natural products such as pigments and harmful 
toxins such as mycotoxins and is often accompanied by 
fungal morphological growth and virulence [100]. Genes 
belonging to the term “melanin biosynthetic process” 
that are associated with the production of the fungal 
pigment melanin were significantly upregulated at 100% 
in both the 100% vs 85% and 100% vs 50% ERH com-
parisons ((FDR = 0.001 and FDR = 0.0005, respectively). 
Genes associated with fungal mycotoxin production, 
belonging to GO terms such as “sterigmatocystin biosyn-
thetic process” and “positive regulation of aflatoxin bio-
synthetic process,” were significantly upregulated at 100% 
and 85% ERH conditions when compared to 50% ERH 
(FDR < 0.05).

Genes associated with stress response were highly 
upregulated at 100% and 85% when compared to the 
low 50% ERH condition. For many filamentous fungi, 
the act of growing hyphal structures likely places sig-
nificant stress on the secretory system [101]. A total of 
1364 genes belonging to the term “cellular response to 
stress” (FDR = 2.54 × 10−21) were upregulated at 85% 
when compared to 50% ERH condition. These included 
the bipA and cdc48 genes that function during secretory 
stress responses and are also required for normal hyphal 
growth and morphology [102, 103].

Genes associated with mitochondrial respiration and 
oxidoreductase activity were also found to be upregulated 
at 100% and 85% when compared to the low 50% ERH 
condition. Morphological transitions that occur during 
growth and virulence in fungi have been associated with 
mitochondrial respiratory activity in fungi [104]. A total 
of 214 genes belonging to the “mitochondrial protein-
containing complex” GO term were found to be signifi-
cantly upregulated at the 100% condition when compared 
to 50% ERH.

Hydrophobins, developmental regulators, and secondary 
metabolite genes are consistently associated 
with moisture
Overall, fungal growth-associated genes (n = 67) fell 
into 3 groups based on ERH condition, i.e., (1) upregu-
lated at 100% ERH (n = 29), (2) upregulated at both 100% 
and 85% ERH (n = 11), and (3) upregulated at 85% ERH 

(n = 27) (Fig.  6, Supplementary Fig. S13, Supplementary 
Table  S10). Across all groups, a majority of the genes 
(n = 47) were associated with fungal morphological pro-
cesses (Fig.  7). Genes were also associated with stress 
response (n = 19), secondary metabolism (n = 19), and 
mitochondria-related processes (n = 3).

The most differentially expressed genes at 100% ERH 
were the alkaline protease gene, alp1 with log2FC of 
25.69 (100% vs 85% ERH comparison, FDR-adjusted 
p = 1.28 × 10−27), followed by the pigment-related genes 
arp1 and wA (log2FC = 12.34 and 12, and FDR-adjusted 
p = 7.15 × 10−13 and 3.54 × 10−17 respectively, both for 
100% vs 85% ERH comparison). These genes were pre-
dominantly part of morphological growth GO terms such 
as “conidium formation” (GO:0048315) and “sporulation 
resulting in formation of a cellular spore” (GO:0030435) 
(Tables S9 and S10). The genes arp1 and the wA were also 
associated with pigment biosynthesis, with arp1 associ-
ated with the term “melanin biosynthetic process” (GO: 
GO:0042438). Other morphological growth-associated 
genes that were highly expressed included the hydro-
phobin gene, rodA with log2FC = 8.68 at the 100% vs 50% 
ERH comparison (FDR-adjusted p = 7.18 × 10−08). Devel-
opmental regulator genes such as the brlA gene were 
also highly expressed with log2FC = 7.39 at the 100% vs 
85% comparison (FDR-adjusted p = 3.79 × 10−06). The 
most upregulated genes at both 100% and 85% ERH also 
included mitochondria-related genes such as mdm10, 
which showed upregulation at both 85% and 100% with 
log2FC = 71.87 (FDR-adjusted p = 8.94 × 10−08, at the 
100% versus 50% ERH comparison) and was associated 
with the “mitochondrial protein-containing complex” 
(GO:0098798) GO term.

The most consistently expressed gene upregulated 
at both 100% and 85% ERH was the Canx homolog 
gene (upregulated at 18 out of 18 sites at 100% and 85% 
ERH, Supplementary Table  S10). This is associated 
with the “cellular response to stress” (GO:0033554) GO 
term (log2FC = 50.91, FDR-adjusted p = 1.72 × 10−05, 
at the 100% versus 50% ERH comparison). The hex1 
gene associated with Woronin body during hyphal 
growth (GO:0140266) and the crzA gene associated 
with sporulation (GO:0043934) and conidium forma-
tion (GO:0048315) were also both consistently upregu-
lated at 16 out of the total 18 sites at 100% and 85% ERH 
(log2FC = 9.09 and 30.39, respectively, FDR-adjusted 
p = 8.67 × 10−05 and 7.49 × 10−07, respectively, at the 100% 
vs 50% ERH comparison).

At the 85% ERH, 20 out of the 27 total upregulated 
genes were associated with morphological growth pro-
cesses. Of these, laeA and dop1 function as morphological 
growth regulators had the highest differential expression 
with log2FC = 11.65 (FDR-adjusted p = 1.94 × 10−16) and 
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Fig. 6  Heatmap of TMM (Trimmed Mean of M-values)-normalized CPM (Counts Per Million) expression values of fungal target genes upregulated 
at 100% ERH condition (top group) and upregulated at both 100% and 85% ERH (bottom group). Blue colors represent higher gene expression 
values. The bottom of the heatmap shows state locations ordered from west to east. Genes are ordered alphabetically within each group

Fig. 7  Bubble plot of log2FC values for target genes in each of the three upregulated fungal gene groups along with their broad functional 
categories. Bubble colors represent functional categories, and the bubble size represents the magnitude of the log2FC value. Genes 
that correspond to multiple bubbles indicate that they are associated with those respective multiple functional categories. The log2FC 
values of genes upregulated at both 100% and 85% ERH are based on the 100% vs 50% comparison. All log2FC values of target genes 
and the corresponding ERH comparison used are provided in Supplementary Table S10
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11.59 (FDR-adjusted p = 1.33 × 10−13) respectively both 
at 85% vs 50% ERH comparison. The laeA gene addition-
ally functions as a secondary metabolic gene and is asso-
ciated with the GO term “sterigmatocystin biosynthetic 
process” (GO:0045461). Similar to the 100% upregu-
lated condition, developmental regulator genes such as 
flbA and fluG were highly expressed with log2FC = 8.69 
(FDR-adjusted p = 1.74 × 10−11) and 10.76 (FDR-adjusted 
p = 4.71 × 10−12), respectively (85% vs 50% ERH compari-
son) having both morphological as well as secondary met-
abolic functions such as “sporulation” (GO:0043934) and 
“sterigmatocystin biosynthetic process” (GO:0045461).

Discussion
Species-based approaches have yet been unsuccessful in 
identifying a consistent microbial indicator of moisture 
damage in buildings that is more associated with health 
outcomes than subjective measures of visual or odor 
assessment [3, 12, 22, 25]. Our results demonstrate that 
gene expression of indoor fungal communities is more 
strongly driven by moisture condition than taxonomic 
differences in microbial communities. Genes expressed 
during growth showed consistent upregulation at ele-
vated moisture conditions and may be used as improved 
indicators of water damage. The results of this study pro-
vide important direction that will be crucial in the search 
for quantitative indicators of moisture and mold damage 
in homes that outperform subjective measures in asso-
ciations with health outcomes.

Function, rather than species, is consistently influenced 
by moisture
Buildings contain hundreds of different fungal species 
that vary by geographic location, building use, occupancy, 
and other factors [105–108]. Because these species vary 
greatly, the species composition also changes in differ-
ent ways upon exposure to moisture [21]. However, there 
are gene clusters shared across the fungal kingdom [109]. 
We hypothesized that gene expression may be more con-
sistently and clearly associated with ERH condition than 
species composition, and our results support that. We 
found 735 fungal annotated genes that were upregulated 
at elevated ERH conditions (either 100% or 85% ERH 
or both) across all 9 samples from 6 distinct geographi-
cal sites across the US. For instance, growth-associated 
genes encoding for the hydrophobin rodA (that supports 
aerial growth and attachment to solid supports [110]) 
and the sporulation-specific catalase catA were upregu-
lated at 100% ERH in samples from every single sampling 
site (Fig. 5) and not expressed at 50% ERH condition in 
any site (Table S10).

Genes associated with a specific metabolic or func-
tional response can span across a wide range of taxa, 

enabling the measurement of coordinated and multi-
species responses to environmental changes. Similar 
processes occur in other environmental systems such as 
marine environments, soil, and groundwater microbi-
omes [111–114]. For instance, marine picoplankton pop-
ulations exhibit cross-species, synchronous, and tightly 
regulated patterns of gene expression for many genes, 
particularly those genes associated with growth and 
nutrient acquisition [115]. Many microbial functions are 
conserved across taxa and may contribute to the higher 
sensitivity of gene expression to environmental changes 
over taxonomic composition [116, 117].

Gene expression associated with health effects: 
implications for housing quality
The work in this study also provides advanced insights 
into the microbial activity that occurs in damp indoor 
environments that are associated with health effects [3]. 
We found genes associated with allergens and mycotox-
ins upregulated at elevated ERH conditions when com-
pared to 50%, similar to prior studies [38]. These included 
fungal allergen genes such as Alt a 7 upregulated at 100% 
compared to 50% ERH and secondary metabolite genes 
associated with mycotoxin production (GO:0045461) 
such as stcC that was upregulated at 85% when com-
pared to 50% ERH. Genes associated with fungal growth 
also had associations with negative health effects in prior 
studies. The fungal alkaline protease gene alp1 (also 
known as the allergen Asp f 13 gene) was upregulated 
at 100% compared to 85% ERH and has strong correla-
tions with asthma severity and respiratory dysfunction 
[42] and potential functions in promoting fungal growth 
and infection development in the host [118]. The hydro-
phobin gene associated with fungal spore surfaces, rodA 
(rodlet protein or rodlet layer), can evade human host 
immune responses [119, 120]. Genes related to mito-
chondrial functions, such as mdm10, were upregulated at 
85% ERH compared to 50% and have potential associa-
tions with fungal virulence by regulating stress responses 
and mediating morphogenetic transitions [104]. Fungal 
exposure is linked to asthma exacerbations in both chil-
dren and adults [105, 121], and these results suggest that 
the metabolic state, rather than specific taxa, may be 
more strongly associated than taxa with negative health 
effects linked to damp buildings. These associations will 
need to be evaluated in future studies.

Function can help identify novel targets to indicate mold 
growth indoors
Targeting metabolic functions specific to high moisture 
conditions may be a more robust approach than species-
based indicators to identifying microbial indicators of 
moisture damage based on these results. Targeting genes 
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that are upregulated at both the 100% and 85% ERH con-
ditions (compared to 50%) or using multiple genes where 
some are indicative of the 100% condition and others of 
85%, may be better at detecting microbial changes at the 
onset of dampness. A quantitative microbial indicator 
of moisture would, at minimum, need to be consistently 
upregulated in most (if not all) sampling sites at high 
ERH conditions, but not expressed or expressed only at 
low levels at the low 50% condition. Such a fungal tar-
get could be used in homes similarly to fecal indicators 
in water systems. For instance, crAssphage is a human 
gut-associated bacteriophage that can be used as a viral 
indicator of human fecal pollution which is potentially 
quantitatively representative of viral pathogen fate and 
concentration changes in sewage-contaminated waters 
[122, 123]. The target gene groups reported in our study 
may be able to measure moisture and mold damage in 
homes and help correlate these measurements to occu-
pant exposure and health outcomes in a quantitative 
manner. Future studies will be needed to confirm if these 
measures outperform current measurement methods. 
Ultimately, these targets could be integrated into stand-
ards and regulations.

Limitations
Here, the computational intensity of the RNA analysis 
on fungal communities limited us to 9 sites from 6 geo-
graphic regions of the US, so targets may need to be fur-
ther validated in other areas of the country and the rest 
of the world. This study is also subject to standard limi-
tations associated with metatranscriptomic analyses of 
fungal communities, where identification of genes is sub-
ject to database and sequencing limitations, with fungal 
metatranscriptomics studies suffering from the lack of 
completely annotated genomes [124, 125]. Many contigs 
do not have an identified functional annotation (hypo-
thetical), and insufficient sequencing depth and algorith-
mic difficulties during the metatranscriptome assembly 
also cause additional redundancies in functional anno-
tations. Advances in fungal genomics and sequencing 
technologies can overcome such challenges. This was a 
laboratory-based incubation of these samples, and results 
may vary when moisture is elevated in homes. Future 
studies will be needed to evaluate associations between 
these targets and negative health outcomes.

Conclusion
Overall, our work improved understanding of the func-
tional processes occuring within indoor fungal commu-
nities and demonstrated that high moisture is associated 
with growth processes, upregulation of secondary meta-
bolic pathways, and increased mitochondrial activity. 

Upregulation of these genes was more strongly asso-
ciated with high moisture than taxonomic measures. 
Together with other work, our findings strongly sug-
gest that we need to move beyond the assumption that a 
microbial indicator of moisture in homes must be identi-
fied through species-based approaches or that an indica-
tor is solely taxonomic in nature. Ideally, selected target 
genes or their products from our gene groups after fur-
ther validation can be used in quantitative measurement 
systems that can perform sensitive detection of moisture 
damage in homes. Such a system would address both the 
substantial financial and health impact of mold growth 
in our society and be especially important for vulnerable 
groups such as children with asthma.
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