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Abstract: The availability, biocompatibility, non-toxicity, and ease of chemical modification make
cellulose a promising natural polymer for the production of biomedical materials. Cryogelation is a
relatively new and straightforward technique for producing porous light and super-macroporous
cellulose materials. The production stages include dissolution of cellulose in an appropriate solvent,
regeneration (coagulation) from the solution, removal of the excessive solvent, and then freezing.
Subsequent freeze-drying preserves the micro- and nanostructures of the material formed during
the regeneration and freezing steps. Various factors can affect the structure and properties of cellu-
lose cryogels, including the cellulose origin, the dissolution parameters, the solvent type, and the
temperature and rate of freezing, as well as the inclusion of different fillers. Adjustment of these
parameters can change the morphology and properties of cellulose cryogels to impart the desired
characteristics. This review discusses the structure of cellulose and its properties as a biomaterial,
the strategies for cellulose dissolution, and the factors affecting the structure and properties of the
formed cryogels. We focus on the advantages of the freeze-drying process, highlighting recent studies
on the production and application of cellulose cryogels in biomedicine and the main cryogel quality
characteristics. Finally, conclusions and prospects are presented regarding the application of cellulose
cryogels in wound healing, in the regeneration of various tissues (e.g., damaged cartilage, bone tissue,
and nerves), and in controlled-release drug delivery.
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1. Introduction

Cryogelation is one of the newly developed protocols for the production of polysaccha-
ride materials for biomedical purposes [1]. Polysaccharide-based cryogels form a spongy
super-macroporous structure during freeze-drying, making them highly promising ma-
terials for tissue engineering [2]. The production of polysaccharide cryogels has recently
become a popular approach for the development of scaffolds [3], and these matrices are
readily obtained by dissolving a polysaccharide (usually cellulose) in an appropriate sol-
vent, followed by polymer regeneration from solution (solvent removal), freezing, and
freeze-drying. Figure 1 shows the scheme for producing cellulose cryogels.

At the regeneration step, the polymer passes from the dissolved state to an insoluble
state, and subsequent freezing leads to ice crystal formation. The removal of the ice during
freeze-drying then generates pores and leaves a cryogel with a complex three-dimensional
structure [4]. The high porosity and hydrophilicity, high water retention capacity, intercon-
nectedness of the pores, and material consistency make cryogels very similar to natural
soft tissues [5], while their mechanical stability allows their use in vivo [6]. Cryogels can
also stimulate the in vivo production of various natural molecules, including antibodies,
and they can act as in vitro bioreactors for the expansion of cell lines and as a means of
cell separation. Excellent in vivo results have been obtained using cryogels as scaffolds for
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tissue engineering, as cryogels can promote the resumption of growth in numerous dam-
aged tissues [3]. However, the surface properties of tissue engineering materials affect cell
affinity [1], and these properties depend on a large number of different factors, including
the conditions used for polysaccharide dissolution, regeneration, and freezing.
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Biocompatibility is one of the main requirements for cryogels used as scaffolds. The
ideal scaffold should be porous, biodegradable, biocompatible, and bioresorbable and
should not trigger an immune response or inflammation [7]. Consequently, scaffolds made
from natural polymers have several advantages over those made from synthetic polymers,
as natural polymers are bioresorbable and biocompatible, have low immunogenicity and
cytotoxicity, and can stimulate intercellular interactions. By contrast, the degradation of
synthetic polymers can generate harmful by-products and can have problems in terms
of injection and infection [1]. Natural biopolymers, particularly cellulose, have therefore
become very popular materials for the preparation of porous products used for biomedical
purposes, such as wound healing, tissue engineering, and drug delivery [8,9].

Cellulose has found particular favor in biomedical sciences due to its mechanical
strength, biocompatibility, and hydrophilicity, making it a promising polysaccharide for the
production of biocompatible porous cryogels [10–12]. Cellulose-based materials have been
proposed for a variety of biomedical applications [13,14] because, unlike other polysac-
charides, cellulose is relatively bioinert and is not biodegraded in the human body. Thus,
newly regenerated tissue cannot displace a cellulosic scaffold, which can be an advantage
in tissue engineering. Cellulose materials have found applications in the regeneration of
bone [15], neural [16], and cartilage [17] tissues, as well as in wound dressings [18]. The
bioinertness of cellulose also meets the requirement that a scaffold material should not
induce foreign body responses [19].
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This review considers the preparation of cellulose-based cryogels using the freeze-
drying technique, and presents data on the use of these cryogels for biomedical purposes.
The structural features and properties of cellulose and the difficulties associated with the
dissolution of cellulose are reviewed. Information on the methods for dissolving cellulose
and producing cellulose cryogels is presented. The influence of various factors on the
structure and properties of the produced materials is discussed, and the advantages of the
freeze-drying process are analyzed. Recent studies on the production and use of cellulose
cryogels for biomedical purposes are summarized, and the main quality parameters of
these cryogels are presented. The current status and prospects for the use of cryogels in
tissue engineering are discussed.

Previously published reviews on the biomedical application of cryogels have provided
much information on various polysaccharide cryogels, but cellulose cryogels have received
relatively little attention. The available reviews on cellulose cryogels contain information
on production methods and the characterization of properties and morphology, without
indicating possible directions for biomedical application [20,21]. Other reviews consider
cellulose cryogels to be sorbents [12,22]. Reviews that focus on the biomedical applications
of cryogels contain information on many polysaccharide cryogels, with little [2,3,23,24]
or no mention of cellulose cryogels [1]. A review of nanocellulose sponges and their
biomedical applications has been published [25]. By contrast, we present data on the use
of different cellulose types (cellulose of various origins). This review is especially focused
on analyzing data on cellulose cryogels obtained by freeze-drying, offering information
on the use of various cellulose types for producing biomedical cryogels. The information
presented starts with the structural features of cellulose and its solvents for the production
of cryogels and ends with data on the biomedical applications of various cellulose cryogels.

2. Cellulose as a Source for Producing Biomedical Materials

Cellulose is a promising raw material for the production of functional biomedical
materials [10]. Cellulose can be shaped in many different ways: into beads [26], fibers
with a diameter from tens of nm to tens of microns [27], films (cellophane), porous foams
(sponges), and aerogels [20,28,29]. The morphology and properties of these objects can be
very different.

Cellulose, as a biomedical material, has certain advantages over other traditional
biopolymers, including its prevalence (it can be isolated from various natural materials),
availability, low toxicity, renewability, and biocompatibility, making the development of
cellulose-based cryogels a promising research direction [30]. The freeze-drying of cellulose
hydrogels imparts a complex heterogeneous structure to cellulose, creating useful build-
ing blocks for complex hierarchical structures [31]. Porous cellulose materials are very
attractive for a variety of biomedical applications, including controlled drug release, tissue
engineering scaffolds, matrices for cell growth, biosensors, and antibacterial wound dress-
ings [12,31–35]. Each of these applications requires materials with a specific morphology,
pore size distribution, specific surface area, and material density. However, the complex
supramolecular structure of cellulose creates difficulties in its dissolution and processing
into biomedical products.

Cellulose consists of anhydroglucose units (C6H10O5) linked by β-glycosidic (1→ 4)
bonds and has a high crystalline content [36]. The hydroxyl groups in the cellulose macro-
molecule are involved in intra- and intermolecular hydrogen bonds (Figure 2b), which lead
to the formation of various ordered crystal structures.
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ization (alkaline treatment) or regeneration (solubilization and subsequent recrystalliza-
tion) (Figure 2c). Celluloses IIII and IIIII can be formed from celluloses I and II, respectively, 
by treatment with liquid ammonia, and the reaction is reversible [38]. Cellulose IVI and 
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rous materials can be obtained from celluloses I or II [12], but most research has focused 
on cellulose I. The crystalline structure of cellulose I is a mixture of two different crystal-
line forms: cellulose Iα (triclinic) and Iβ (monoclinic) (Figure 2a) [40]. The relative amounts 
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dominant in higher plants, whereas the Iα form is typically found in algae and bacteria). 
Cellulose crystallites are usually about 5 nm wide; however, these crystallites are imper-
fect, and part of the cellulose structure is less ordered, termed amorphous. The traditional 
two-phase cellulose model describes cellulose chains containing both crystalline (ordered) 
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Figure 2. Complex molecular structure of cellulose: (a) native cellulose I unit cells, triclinic Iα
and monoclinic Iβ [37] © 2022 National Academy of Sciences; (b) H-bond network of cellulose I;
(c) polymorph transitions.

Crystalline allomorphs of cellulose I, II, III, and IV are distinguished according to their
X-ray diffractometry and solid-state 13C NMR spectra. Cellulose I, the most abundant form
in nature, is a crystalline native cellulose, whereas cellulose II is obtained by merceriza-
tion (alkaline treatment) or regeneration (solubilization and subsequent recrystallization)
(Figure 2c). Celluloses IIII and IIIII can be formed from celluloses I and II, respectively, by
treatment with liquid ammonia, and the reaction is reversible [38]. Cellulose IVI and IVII
can be obtained by heating celluloses IIII and IIIII, respectively [39]. Lightweight porous
materials can be obtained from celluloses I or II [12], but most research has focused on
cellulose I. The crystalline structure of cellulose I is a mixture of two different crystalline
forms: cellulose Iα (triclinic) and Iβ (monoclinic) (Figure 2a) [40]. The relative amounts
of cellulose Iα and Iβ vary depending on the cellulose source (for example, the Iβ form is
dominant in higher plants, whereas the Iα form is typically found in algae and bacteria).
Cellulose crystallites are usually about 5 nm wide; however, these crystallites are imperfect,
and part of the cellulose structure is less ordered, termed amorphous. The traditional
two-phase cellulose model describes cellulose chains containing both crystalline (ordered)
and amorphous (less ordered) regions [41].
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This added complexity of the supramolecular structure of cellulose creates difficul-
ties in its dissolution and processing. Typical cellulose solvents include 7–9% aqueous
NaOH [26,42,43], Cu-ethylenediamine (or Cd-ethylenediamine) complexes [44], LiCl/
dimethylacetamide (DMAc) [45], N-methyl-morpholine-N-oxide monohydrate [46–49],
molten salt hydrates, and ionic liquids [50–53] (Table 1).

Table 1. Characteristics of typical cellulose solvents.

Solvent Advantages Disadvantages Reference

LiCl/DMAc

It does not cause any destruction
of the cellulose, provided that
destructive pretreatments are
avoided (such as heating over

80 ◦C).

The difficulty of removing LiCl
from the final products. [45]

Ionic liquids They completely dissolve the
material’s components.

Ionic liquids do not evaporate,
have low volatility, which

complicates their regeneration.
[50–53]

7–9%NaOH/water
(7%NaOH/12%urea/water) Cellulose gels can be obtained.

The thermodynamic quality of the
solvent decreases with increasing

temperature, as the number of
cellulose–cellulose interactions
increases more rapidly than the

number of cellulose–solvent
interactions; Na+ ions penetrate

deeply into the cellulose structure,
making it difficult to remove

alkali.

[26,42,43]

Complexing compounds of Cu
with ethylenediamine (or

Cd-ethylenediamine complexes)

Commonly used to determine the
molecular weight of cellulose.

The difficulty of removing from
the final products. [44]

N-methyl-morpholine-N-oxide
monohydrate

Direct solvent of cellulose:
N-methylmorpholine-N-oxide
(NMMO) is a cellulose solvent

used industrially for the spinning
of cellulosic fibers (the Lyocell
process). NMMO is known to
change the highly crystalline

structure of cellulose after
dissolution and regeneration.

In theory, this dissolution process
is merely physical, but in practice
many side reactions might occur.

[46–49]

Concentrated phosphoric acid Rapid dissolution, easily removed
and regenerated.

Causes significant destruction of
macromolecules. [54]

However, most of these are toxic, have only limited ability to dissolve high molecular
weight cellulose, and are difficult to remove from the final product [55]. The processing
steps required for dissolution, gelation, and solvent removal for cellulose cryogel formation
are very slow and can take several days [56]. However, one advantage of the insolubility
of cellulose in water and typical organic liquids is that, with proper reinforcement, the
structure of lightweight cellulose materials can be retained when they are immersed in
most liquids [57].

Interest in porous biomedical materials continues to grow, as evidenced by the number
of publications each year [2,58–60]. Cellulose is a promising raw material for the production
of cryogels.

3. Advantages of Freeze-Drying and Factors Affecting the Structure and Properties
of Cryogels

Freeze-drying allows the preservation of the micro- and nanostructure of the material
and the generation of a large specific surface area (up to 300 m2/g) in the dried state [14,61].
One advantage of freeze-drying is that it has no requirement for the use of flammable
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liquids (e.g., ethanol/acetone that are required for supercritical drying, which also allows
preservation of the nanostructure of the material); another is that the structure of the result-
ing material corresponds to the structure of the frozen dispersion [62]. Ice crystals formed
during the freezing of the dispersion change the distribution of particles, and subsequent
drying creates pores where the ice crystals had formed [63]. The morphology of the materi-
als obtained by freeze-drying can vary from random networks to lamellar solid structures.
These different types of network structures can produce equally lightweight materials;
therefore, they can be easily designed and produced with environmental friendliness and
safety in mind.

The final properties of a cryogel, including its biocompatibility, mechanical, and
thermal properties, and degradability, depend on many factors (Figure 3).

Int. J. Mol. Sci. 2022, 23, 2037 6 of 17 
 

 

3. Advantages of Freeze-Drying and Factors Affecting the Structure and Properties of 
Cryogels  

Freeze-drying allows the preservation of the micro- and nanostructure of the material 
and the generation of a large specific surface area (up to 300 m2/g) in the dried state [14,61]. 
One advantage of freeze-drying is that it has no requirement for the use of flammable 
liquids (e.g., ethanol/acetone that are required for supercritical drying, which also allows 
preservation of the nanostructure of the material); another is that the structure of the re-
sulting material corresponds to the structure of the frozen dispersion [62]. Ice crystals 
formed during the freezing of the dispersion change the distribution of particles, and sub-
sequent drying creates pores where the ice crystals had formed [63]. The morphology of 
the materials obtained by freeze-drying can vary from random networks to lamellar solid 
structures. These different types of network structures can produce equally lightweight 
materials; therefore, they can be easily designed and produced with environmental friend-
liness and safety in mind. 

The final properties of a cryogel, including its biocompatibility, mechanical, and ther-
mal properties, and degradability, depend on many factors (Figure 3).  

 
Figure 3. Influence of different factors on cellulose cryogel properties. 

The chemical composition of the cryogel is probably the most important factor, since 
it determines the biocompatibility and degradability of the cryogel and, to some extent, 
affects the mechanical and thermal properties of the cryogel. The porosity and degree of 
crosslinking mainly affect the mechanical properties, while crosslinking itself affects the 
biocompatibility and degradability of the cryogel [2]. The pore size, wall thickness, and 
density affect the properties of cryogels [64], as thicker and higher-density walls improve 
their mechanical properties. The thickness and density, in turn, depend on the concentra-
tion of the polymer and the type of crosslinking in the cryogel. 

The production processes used to form the cryogels also affect their structure. For 
example, an increase in the freezing rate or a decrease in the cryogelation temperature 
decreases the cryogel pore size because the solvent freezes at a higher rate, allowing for 
the growth of only a small number of ice crystals [65,66]. Further, a temperature gradient 
occurs during cryogelation, which leads to a non-uniform pore size distribution [67]. Ini-
tially, the external part of the sample is exposed to a low temperature, which leads to an 
increase in the freezing rate and a smaller pore size than that subsequently formed in the 
internal cryogel material. However, this heterogeneous pore size distribution is not an 
obstacle to the use of cryogels in tissue engineering, since many tissues of the human body 
also have heterogeneous morphology [68]. Cryostructuring, including directional 

Figure 3. Influence of different factors on cellulose cryogel properties.

The chemical composition of the cryogel is probably the most important factor, since
it determines the biocompatibility and degradability of the cryogel and, to some extent,
affects the mechanical and thermal properties of the cryogel. The porosity and degree of
crosslinking mainly affect the mechanical properties, while crosslinking itself affects the
biocompatibility and degradability of the cryogel [2]. The pore size, wall thickness, and
density affect the properties of cryogels [64], as thicker and higher-density walls improve
their mechanical properties. The thickness and density, in turn, depend on the concentration
of the polymer and the type of crosslinking in the cryogel.

The production processes used to form the cryogels also affect their structure. For
example, an increase in the freezing rate or a decrease in the cryogelation temperature
decreases the cryogel pore size because the solvent freezes at a higher rate, allowing for the
growth of only a small number of ice crystals [65,66]. Further, a temperature gradient occurs
during cryogelation, which leads to a non-uniform pore size distribution [67]. Initially, the
external part of the sample is exposed to a low temperature, which leads to an increase
in the freezing rate and a smaller pore size than that subsequently formed in the internal
cryogel material. However, this heterogeneous pore size distribution is not an obstacle
to the use of cryogels in tissue engineering, since many tissues of the human body also
have heterogeneous morphology [68]. Cryostructuring, including directional freezing of
cryogels, has been used to achieve varying degrees of porosity (45–75%, pore size 70–85 nm)
or to equalize the porosity or anisotropy within cryogels [60].

The mechanical properties of cryogels are commonly evaluated using compression
testing [3]. Reducing the pore size of cryogels has been reported to increase compressive
strength [69], whereas increasing porosity increases the compressive deformation of the
cryogel [70]. For one type of cryogel (injection cryogels), low compression deformation is
undesirable; their ideal porosity is 91% [67].



Int. J. Mol. Sci. 2022, 23, 2037 7 of 17

Cryogels used in biomedical applications may require that the material eventually
degrade within the body, but cryogels still need to perform their functions before this
degradation occurs. Therefore, knowledge of the changes in the mechanical properties
of cryogels throughout their degradation would be useful [71]. The thickness of the
cryogel walls is assumed to decrease during enzymatic degradation, and in some cases,
the walls are destroyed. Whether this process occurs for cryogels degraded by other
mechanisms (e.g., by cleavage of disulfides [72] or chemical hydrolysis [59]) is unclear. The
degradation of cryogels leads to an increase in pore size, possibly due to thinning of the
pore walls and a decrease in crosslinking [73]. The mechanical properties of degraded
cryogels are largely overlooked in the current literature, despite their importance for
applications such as scaffold materials [71]. Due to their non-biodegradability in the
human body, the main application areas of cellulose materials are bone tissue regeneration
(bone implants) [15,66,67] and the production of wound dressings [18].

The following sections provide a more detailed description of some of the variables
that affect the structure and properties of cryogels: the type and degree of crosslinking,
the concentration and molecular weight of the polymer, the parameters of gelation and
cryoconcentration, and the effects of capillary forces, temperature, and freezing rate.

3.1. Type and Degree of Crosslinking

Crosslinking can provide better mechanical performance and integrity for cellulose
cryogels. The type of crosslinking affects the rigidity and degree of swelling, which in turn
affects the elastic and mechanical properties and pore size of the cryogel. Methods for
cryogel formation include chemical crosslinking and physical gel formation using natural
or synthetic polymers [65]. Chemical crosslinking occurs during the storage of the polymer
solution at a given temperature, whereas physical crosslinking occurs during the thawing
step, where faster thawing results in weaker gels [6]. Physical crosslinking generates
cryogels with pore sizes of less than 10 µm [74–77], whereas chemical crosslinking allows
for cryogels with large pore sizes of 80–200 µm [28,68,72]. One hypothesis to explain the
difference in structure formation during physical and chemical gelation of cellulose is that,
during physical gelation, the chains self-associate to form a heterogeneous network with
“thick” walls and pores of different sizes. By contrast, during chemical gelation, chemical
bonds act as separators between the chains, thereby breaking their self-association and
preventing packaging. The result is a more uniform chemical network with higher swelling
and transparency when wet and lower density when dry [33].

The degree of crosslinking (i.e., the ratio of monomer to crosslinking agent) in a chem-
ically crosslinked cryogel affects its mechanical properties. Chemical crosslinking can
provide good mechanical properties; however, the compounds used as crosslinkers are
often toxic, difficult to remove, and not biocompatible [78]. The effect of the amount of the
crosslinking agent on the mechanical properties of cellulose cryogels is debatable, as some
data show an increase in the compressive modulus with an increase in the crosslinking
agent concentration [79], whereas other studies indicate an increase in the storage modulus
for cellulose cryogels from 45 to 675 Pa with a decrease in the crosslinking agent concentra-
tion [80]. An increase in the crosslinking agent concentration (epichlorohydrin) also results
in the formation of an inhomogeneous structure of the cellulose cryogel, whereas dense
areas are observed when the pore size is 200 µm [33].

The degree of crosslinking in physically crosslinked cryogels is controlled by chang-
ing the number of freeze-thaw cycles [2]. Physical crosslinking does not use any organic
solvents or toxic crosslinking agents, thereby eliminating any danger of residues in the
final material and making this method very promising for biomedical applications [78].
Physical crosslinking is also easier, and this translates into cost savings. The problem
with physical methods is obtaining satisfactory properties without any chemical modifica-
tion while maintaining biocompatibility, biodegradability, and bioactivity [78]. However,
according to some data, compared to their chemically crosslinked counterparts, physi-
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cally crosslinked cryogels demonstrate greater mechanical strength [81] and crystallinity
(cellulose cryogels) [33].

3.2. Concentration and Molecular Weight of the Polymer

A minimum (critical) concentration of cellulose is required to retain the integrity
(shape) of the produced cryogel (i.e., to retain the integrity of the network after removing
the liquid phase) [22,77,78]. This critical concentration is probably related to percolation
within the precursor network [82,83], where overlap or interaction between cellulose chains
results in the formation of an autonomous network [34]. At a concentration below the
critical value, the network is unstable, and shrinkage increases with decreasing cellulose
concentration [83]. A cellulose concentration of more than 3% in solution is required to
obtain cryogels, as studies have shown that cryogels do not form at concentrations of
less than 3% [28,54]. The critical concentration of the polymer also affects the mechanical
properties of the produced cryogels [84].

Solutions with high polymer concentrations produce cryogels with small average pore
sizes. This is due to an increase in the availability of crosslinked groups and a decrease
in the availability of free water. As with conventional hydrogel formation, increasing
the polymer content increases the rigidity of the cryogels. An increase in the polymer
concentration also leads to a decrease in porosity and swelling of the cryogel [54,85], while
decreasing the degradation rate [85].

The molecular weight of the polymer affects the structure of the cryogel. The use
of polymer solutions with a lower molecular weight at the same mass concentration in a
gel solution leads to the formation of larger pores compared to the use of gel solutions of
polymers with a higher molecular weight [24,54,83]. Higher molecular weight polymer
solutions will generate smaller pores due to the relatively smaller volume of free water that
can form ice crystals in the solution. Similar observations were recorded when producing
cryogels based on cellulose with various degrees of polymerization [21] compared to the
concentrations of other polymers (gelatin) in a gel solution [86,87].

An increase in the degree of cellulose polymerization leads to an increase in the undis-
solved fraction in the solution, which reduces the content of dissolved cellulose in the matrix
solution. This leads to the formation of voids in the dry matter [20]. Thus, the incomplete
dissolution of cellulose with a high degree of polymerization and an increase in material
heterogeneity will worsen the mechanical properties of the final cellulose composites.

3.3. Gelation and Cryoconcentration Parameters

The temperature and dissolution time (gelation) of the polymer affect the cryogel
structure and properties. These parameters are typically set to values that provide the best
structure and properties for each cryogel. For example, the optimal dissolution time is
24 h at room temperature for microcrystalline cellulose [54] and 16 h at room temperature
for chitin [88]. An optimum temperature also exists for gelation and cryogelation for
maximization of the pore size [89]. The effect of the gelation and crystallization rate of the
solution on the physical properties of cryogels therefore becomes important.

To obtain a macroporous structure of cryogel by cryogelation, the gel solution must
first partially crystallize to form solidified solvent crystals (pore-forming agents). This can
be complicated by the action of hydrogel components that lower the freezing point of the
solution (the “freezing point lowering effect”) and by the effects of supercooling. To obtain
a homogeneous macroporous hydrogel, the crosslinking rate of the polymer must be lower
than the crystallization rate of the solvent [90]. If crosslinking occurs faster than the solvent
can crystallize, a non-macroporous gel will form. Conversely, larger pores can be formed by
reducing the crosslinking rate (the formation and growth of crystal pore-forming agents).
The inhibitory effect of supercooling during solvent crystallization can be overcome by
increasing the cooling rate. This increase leads to the formation of smaller [91] or even
irregular pores [92], depending on the extent of the increase in the cooling rate.
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The cryoconcentration of components in the liquid phase also affects the process
of cryogel formation. For example, cryoconcentration lowers the critical concentration
required for gelation, thereby allowing gel solutions with low monomer content that would
not normally set at room temperature to set under cryo-conditions. Cryoconcentration can
also speed up the gelation process [6]. The effect of cryoconcentration on the mechanical
properties of the cryogel is of interest, given that the compaction of the polymer in the pore
walls significantly increases local mechanical properties, such as elasticity.

3.4. Capillary Forces

The capillary forces between the particles of a porous material affect its density. A
decrease in capillary forces decreases the density of the material, resulting in lighter ma-
terials [93]. Freeze-drying avoids capillary forces; for example, freezing at −18 ◦C and
subsequent freeze-drying produced the lightest cellulose material (density 0.0002 g/cm3)
from a 0.1% cellulose nanofibril hydrogel [94]. The cooling rate is lower for this type of
freezing (−18 ◦C) than when liquid nitrogen is used for freezing. This promotes the growth
of ice crystals and produces a material of lower density [83,94].

3.5. Freezing Parameters

The freezing temperature affects the cryogel morphology and can result in the for-
mation of a lamellar structure and highly porous gels with preserved micro- and nanos-
tructure [61]. Smaller pores can be formed by lowering the temperature [95]. At lower
temperatures, the solvent crystallizes more rapidly, resulting in the formation of smaller
solvent crystals (pore-forming agents). However, due to the increased crystallization of the
solvent, the liquid microphase becomes more concentrated, which leads to the formation
of thinner and denser pore walls. A 15 ◦C decrease in the freezing point has been shown
to cause a decrease in the pore diameter of polyacrylamide cryogels by an average of
30 µm [96]. By contrast, the pore sizes of cryogels based on polyvinyl alcohol, laminin, or
gelatin crosslinked with glutaraldehyde were unaffected by the freezing point [65]. Freez-
ing at −20 ◦C resulted in the formation of lamellar structures with few pores. A decrease in
the pre-freezing temperature to −80 ◦C and −196 ◦C led to the appearance of more porous
structures. In general, a lower pre-freezing temperature produces a more porous and less
agglomerated cryogel structure [95].

Rapid cooling of the dispersion is effective for producing numerous and small ice crys-
tals and leads to the formation of small pores (hence, a high specific surface area) [83,97].
The effects of temperature and freezing rate have been demonstrated on cellulose cryo-
gels [98] cooled at −68 ◦C and −40 ◦C. Smaller pore sizes were obtained at the lower
temperature (−68 ◦C) due to the higher cooling rate. Cryogels with the highest specific
surface area of 201 m2/g (i.e., the smallest pore size) were obtained at −196 ◦C [98]. The
opposite approach (a low cooling rate) is used to increase the lightness of the cryogel [98].
Optimum freezing conditions can be determined by the initial crystallization temperature
of the solvent and the freezing point for each polymer solution [99].

The structure of the cryogel will also be influenced by the type of cellulose solvent and
the inclusion of various fillers or additives. Cryogel scaffolds often have more than one
component and can consist of mixtures of two or more polymers or composites. Composite
cryogels can be produced using both polymers and additives (nanoparticles and fibers)
to obtain a material with improved physical, chemical, and biological properties. These
cryogels can combine the beneficial properties of each component [59]. For example, cryo-
gels of carrageenan/cellulose nanofibrils as carriers of antimicrobial α-aminophosphonate
derivatives were produced by crosslinking with glyoxal. Cellulose nanofibrils significantly
strengthened the composite material, improving its mechanical properties. Scaffolds of this
material have been proposed for use as antimicrobial wound-healing materials and have
been shown to be effective against Staphylococcus aureus infection [100].

Composite nanocellulose/gelatin cryogels with controlled porosity and network struc-
ture and good biocompatibility were obtained by chemical crosslinking of dialdehyde
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starch and subsequently used as carriers for the controlled release of 5-fluorouracil [101].
An increase in nanocellulose content (from 0.5 to 5 parts relative to gelatin) increased the
specific surface area and porosity of the composite cryogel. The swelling coefficients first
increased and then decreased with an increase in the nanocellulose content. Increasing the
nanocellulose content resulted in improved drug loading and crosslinking rates.

The next section provides information on a variety of cellulose cryogels and cellulose-
based composite cryogels produced using different solvents. The quality characteristics of
the produced cryogels and their applications for biomedical purposes are presented.

4. Cellulose-Based Cryogels and Their Applications in Biomedicine

Cellulose cryogels, as a new generation of porous materials, are of great interest in
tissue engineering, as they offer new solutions and improve existing systems and proce-
dures [3]. In addition to their high porosity and mechanical strength, cellulose cryogels
can be modified to enhance the attachment of certain other materials (e.g., extracellular
matrix proteins, cultured cells, or chemicals) that can promote cell immobilization and
growth [102,103] on cryogel scaffolds. Table 2 provides data on cellulose-based cryogels
obtained by freeze-drying using various solvents and includes the main characteristics of
the cryogels and the possible directions of their biomedical applications (Table 2).

Table 2. Cellulose cryogels for biomedical applications.

Polymer Production Characteristics Application Reference

MCC
Calcium thiocyanate

tetrahydrate and water
(117 ◦C)

Porosity 94.3%
Density 84.1 kg/m3

Surface area 23 m2/g
E 13.27 ± 1.5 МРa

New filter types, various
biomedical applications. [31]

MCC
8 wt% NaOH-water
(cross-linking with
epichlorohydrin)

Pore size up to 200 µm
Density 0.04–0.121 g/cm3

Drug release, materials
with controlled

morphology and porosity.
[33]

MCC/pectin
1-Allyl-3-

methylimidazolium
chloride

Dense network structure

Hemostatic material (had
no effect on cell

proliferation but offered
favorable properties in

liver hemostasis).

[104]

HEC Cryogenic treatment with
citric acid, freeze-drying

Interconnected pores
100–180 µm

Matrices for immobilized
enzymes and cells, readily

degraded in acidic
conditions

[105]

HEC/polyaniline Stirred at 40 ◦C in water for
20 min, sonicated

tissue engineering
scaffolds, high survival

and proliferation in electric
field, good adhesion,

spreading, and
rearrangement onto

materials.

[106]

CMC

Dissolved in deionized
water and crosslinking

with adipic acid
dihydrazide and a small

excess of the carbodiimide
at −20 ◦C.

E 4.2 ± 1.4 MPa

Neural tissue engineering,
cell delivery (restoration of

brain tissue through
delivery to the neural

network).

[16]
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Table 2. Cont.

Polymer Production Characteristics Application Reference

CMC/Col

Mixing two streams: CMC
solution (2%) in deionized

water with adipic acid
dihydrazide, buffer

solution and solution N-(3-
dimethylaminopopyl)-N′-

ethylcarbodiimide
chloridate (EDC, in

deionized water). The
resulting cryogels were
soaked in the collagen

solution, and then soaked
in the EDC solution to fix

the collagen.

Porosity > 90%
Uniform density

Tissue engineering,
spreading and proliferation

of NOR-10 fibroblasts.
[107]

CMC/Col
CMC/Col/TCP

Mixing two solutions
(1:2)-CMC solution

(distilled water), Col
solution (acetic acid).

TCP was added to the final
solution.

Average lamellar spaces
204 ± 95 µm (Col/CMC)

and 195 ± 21 µm
(Col/CMC/TCP)

E 309 ± 18 kPa (Col/CMC)
and 481 ± 27 kPa
(Col/CMC/TCP)

Regeneration of hard
tissues, non-toxic and

compatible with blood.
[108]

CMC/PVA/honey

Solvent water, each layer
was applied alternately

with preliminary freezing
of the previous.

Wound healing, showed
activity against S. aureus

compared to their
counterparts without

honey.

[109]

CNF
(bleached softwood

kraft pulp)

Mechanical defibrillation in
deionized water, sonication

to obtain the nanofibril
aqueous gel, which then
sprayed and atomized at
40 MPa, frozen in liquid

nitrogen and freeze-dried.

Density 0.0018 g/cm3

Surface area 389 m2/g

Tissue engineering,
evaluated using 3T3 NIH

cells.
[110]

CNF
(bleached birch Kraft

Pulp)

Solvent-TEMPO, sodium
bromide, NaOH.

TEMPO-oxidized cellulose
fibers (NaClO) were

precipitated in ethanol.
CNF hydrogels were

obtained from the CNF
films followed by solvent
exchange from ethanol to

tertbutanol, frozen in
liquid nitrogen, and

freeze-dried.

Porosity 88.0–99.7%
Pore size 10–200 µm

Density 0.004–0.180 g/cm3

Surface area 158–308 m2/g
E 28–104.4 kPa

Tissue engineering,
evaluated using HeLa and

Jurkat cells.
[111]

CNF
(cellulose powder)

CNF powder in deionized
water dispersed by

sonication, crosslinked
with glyoxal solutions,

frozen in liquid nitrogen,
freeze-dried.

For CNF cryogel
35 ± 9 µm, for crosslinked

cryogel 60 ± 20 µm
0.003–0.11 g/cm3 for CNF

cryogel,
0.003–0.09 g/cm3 for
crosslinked cryogel

Up to 1 m2/g
0.1 MPa for CNF cryogel,

50.8 ± 8 MPa for
crosslinked cryogel

Bone tissue engineering,
assayed in vitro with

MG-63 cells.
[15]
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Table 2. Cont.

Polymer Production Characteristics Application Reference

CNF/Col
(wood powder of

60–80 meshes)

NCFs were sonicated,
oxidized by NaIO4. The
dialdehyde NCFs were
mixed with collagen 1:1,
frozen and freeze-dried.

Porosity 90–95%
Density 0.02–0.03 g/cm3

Tissue engineering,
supported fibroblast

proliferation.
[18]

CNF/gelatin/chitosan
(high-purity

softwood cellulose)

Crosslinking in situ with
genipin, frozen and

freeze-dried.

Porosity 95%
Pore size 75–200 µm

Density 0.06–0.09 g/cm3

E 1–3 MPa

Cartilage tissue
engineering (ASC and L929

cells)
[17]

CNF/ bioactive glass Cellulose nanofibrils (CNF)
are introduced.

High porosity
Pore size 96–168 µm

E 24 ± 1 kPa

Bone tissue engineering
(MC3T3-E1 cells and

calvarial bone defect in rats
in vivo)

[112]

CNF/PVA
(commercial CNF)

Crosslinking with
polyamide-

epichlorohydrin, frozen in
liquid nitrogen,

freeze-dried.

Porosity 88.5–95.3%Pore
size 90 and 20 µm

Density 0.006–0.05 g/cm3

Compressive strength
5–220 kPa

E 0.04–8.3 kPa

Skin tissue engineering,
supported fibroblast cells. [113]

CNF)/
NIPAm

(commercial bleached
softwood kraft pulp)

Crosslinked and sonicated,
frozen in liquid nitrogen,

freeze-dried.
Density 0.01–0.14 g/m3 Drug release. [114]

Cellulose (wood dust
from the plywood

sanding)

Nanocellulose suspension
from alkaline treated wood

waste powders was
redispersed in deionized

water, frozen and
freeze-dried.

Porosity 97.8–99.8%
Pore diameter 3.7–8.3 nm
Density 0.004–0.036 g/m3

Surface area 419–457 m2/g,
E 7–165 kPa,

Thermal performance
34–44 mW/m·K

Biomedicine, pollution
filtering, thermal

insulation.
[77]

MCC—microcrystalline cellulose, ECH—epichlorohydrin, HEC—hydroxyethylcellulose, CMC—carboxymethyl
cellulose, ECM—extracellular matrix, EDC—N-(3-dimethylaminopopyl)-N′-ethylcarbodiimide chloridate,
Col—collagen, TCP—tricalcium phosphate, TEMPO—2,2,6,6-tetramethylpiperidin-1-yl oxyl, PVA—polyvinyl
alcohol, CNF—cellulose nanofibril, NIPAm—N-isopropylacrylamide.

The use of various solvents and cellulose dissolution techniques has produced cryogels
with suitable properties, morphology, and mechanics for biomedical applications. Further,
cellulose-based cryogels have shown good sorption properties; for example, keratin/cellulose
cryogels have been successfully fabricated for the adsorption of oil/solvent [115]. Highly
porous (more than 90%) and ultra-light (density less than 0.035 g/cm3) cellulose/biochar
cryogels have also shown high sorption capacities. The addition of 5% biochar to a cellu-
lose cryogel yielded the highest sorption capacity, at 73 g/g of petroleum [116]. Cryogels
formed from hydroxypropyl methylcellulose (HPMC) and bacterial cellulose nanocrys-
tals (CNC) have shown good adsorption of organic pollutants [117]. Shapable cellulose
nanofiber/alginate cryogels with underwater super-elasticity have been used for protein pu-
rification [118]. Highly porous (94.7–97.1%) light (density 0.016–0.028 g/cm3) hydrophobic
cellulose cryogels (unbleached long fiber of Pinus elliottii) have shown a high homogeneous
sorption capacity (65.18 g/g) and heterogeneous sorption capacity (68.42 g/g) (solvent
organosilane methyltrimethoxysilane) [119]. Thus, cellulose cryogels can be produced with
different microstructures and properties, and varying the conditions of cellulose dissolu-
tion and the parameters for producing cryogels can result in cryogels with many different
desirable qualities.

5. Conclusions

Due to the advantages of the freeze-drying method, interest is growing in the produc-
tion of polysaccharide-based porous materials by cryogelation. The use of natural polymers
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for the production of cryogels, in contrast to synthetic polymers, makes it possible to create
biocompatible medical materials (scaffolds) with a minimal immune response. Cellulose,
due to its availability, renewability, non-toxicity, and biocompatibility, is a promising raw
material for producing cryogels for biomedical applications. The production of cellulose
cryogels by freeze-drying is a promising and steadily developing direction in tissue en-
gineering. Cellulose cryogels have unique properties imparted by their interconnected
super-macroporous structure and mechanical stability that make them attractive materials
for a variety of applications. Much research has focused on the development of cellulose
cryogels for tissue engineering. The results show that cellulose cryogels are promising tools
and are applicable as scaffolds for various tissue types.

Physical and chemical parameters affect the formation of cryogels, such as the origin
of the cellulose, dissolution parameters, type of solvent, temperature, freezing rate, and
the inclusion of various fillers. Varying the parameters of cellulose dissolution, production
technology, and freezing can change the properties of the cryogels and set the desired final
characteristics of the product. Due to its complex supramolecular structure, cellulose is
difficult to dissolve. Thus, an important task remains the selection of a cellulose solvent
that can be easily removed from the final product prior to its use for biomedical purposes.
The production of composite cryogels is promising for imparting additional properties to
the cryogel (changes in morphology and mechanical properties). An important direction
for research in the field of cryogels is the preservation of the properties of cryogels during
their use. Cellulose cryogels have huge potential in the repair and regeneration of various
tissue types, including cartilage tissue, bone tissue, and nerves, in wound healing, and in
the delivery of controlled release drugs.
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68. Mackova, H.; Plichta, Z.k.; Hlidkova, H.; Sedláček, O.; Konefal, R.; Sadakbayeva, Z.; Duskova-Smrckova, M.; Horak, D.;

Kubinova, S. Reductively degradable poly (2-hydroxyethyl methacrylate) hydrogels with oriented porosity for tissue engineering
applications. ACS Appl. Mater. Interfaces 2017, 9, 10544–10553. [CrossRef]
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