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Dietary fiber supports healthy gut bacteria and their production of short-chain fatty acids
(SCFA), which promote anti-inflammatory cell development, in particular, regulatory T
cells. It is thus beneficial in many diseases, including influenza infection. While disruption of
the gut microbiota by antibiotic treatment aggravates West Nile Virus (WNV) disease,
whether dietary fiber is beneficial is unknown. WNV is a widely-distributed neurotropic
flavivirus that recruits inflammatory monocytes into the brain, causing life-threatening
encephalitis. To investigate the impact of dietary fiber on WNV encephalitis, mice were fed
on diets deficient or enriched with dietary fiber for two weeks prior to inoculation with
WNV. To induce encephalitis, mice were inoculated intranasally with WNV and maintained
on these diets. Despite increased fecal SCFA acetate and changes in gut microbiota
composition, dietary fiber did not affect clinical scores, leukocyte infiltration into the brain,
or survival. After the brain, highest virus loads were measured in the colon in neurons of
the submucosal and myenteric plexuses. Associated with this, there was disrupted gut
homeostasis, with shorter colon length and higher local inflammatory cytokine levels,
which were not affected by dietary fiber. Thus, fiber supplementation is not effective in
WNV encephalitis.

Keywords: dietary fiber, gut microbiota, West Nile Virus (WNV), infection, immune response, enteric
neurons, cytokines
INTRODUCTION

Consumption of dietary fiber confers health benefits and correlates with decreasedmortality from both
infectious and non-infectious diseases (1). Dietary fiber comprises non-digestible complex
carbohydrates that promote gut health through the beneficial reshaping of the gut microbiota. This
occurs through the release ofbacterialmetabolites, particularly short-chain fatty acids (SCFA),during its
fermentation in the colon (2). High-fiber feeding and SCFA reduce disease severity in models of
colorectal cancer, colitis and foodallergy (3, 4). Thebenefits of dietaryfiber andSCFAextendbeyond the
gastrointestinal tract, influencing immune responses in the lungs in a model of allergic airway
inflammation (5), in the pancreas in a model of type 1 diabetes (6) or in the brain in multiple
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sclerosis (7). Dietary fiber and SCFAare also beneficial in infectious
diseases with decreased mortality in a mouse model of influenza
infection (8) and of Citrobacter rodentium infection (9).

Dietary fiber and SCFA have a broad impact on the immune
system by promoting the development of anti-inflammatory
regulatory T cells (10) and regulatory B cells (11), of Th1 cells (12),
of memory CD8+ T cells (13, 14) and by increasing B cell antibody
production (15). They also affect innate immune cells bymodulating
themigration and activationof neutrophils (16, 17), the generationof
monocytes and their differentiation into anti-inflammatory
macrophages (8), the production of IL-22 by type 3 innate
lymphoid cells (18) and the activity of CD103+ dendritic cells (4).
Themechanisms behind the immunomodulatory effects of SCFAare
multifaceted. They occur via activation of G-protein-coupled
receptors, through modulation of gene expression by inhibiting
histone deacetylases, by affecting immune cell metabolic activity by
fueling the tricarboxylic acid cycle, or by promoting glutaminolysis,
fatty acid oxidation and gluconeogenesis (2, 19).

Antibiotic treatments disrupt both the gut microbiota and its
release of SCFA (20), impairing immunity, including the IFN-g
antiviral immune response, aggravating influenza severity (21).
Similarly, antibiotic treatment exacerbates disease severity in a
model of West Nile Virus (WNV) infection (22), suggesting that
the gut microbiota can regulate WNV, infection outcomes.

WNV is a mosquito-borne neurotropic flavivirus. Neuronal
infection is associated with massive inflammatory monocyte
recruitment into the central nervous system (CNS), causing
life-threatening encephalitis (23–26). As dietary fiber promotes
anti-inflammatory SCFA production and has been shown to be
protective in a model of influenza virus infection by targeting
monocytes and enhancing CD8+ T cell effector function (8), we
hypothesized that high-fiber feeding might also be protective in a
mouse model of WNV encephalitis.

To test this hypothesis, we fed mice on diets abundant or
deficient in dietary fiber, prior to infection with either 100% or
50% lethal doses (LD100 or LD50) of WNV and investigated the
impact of these diets on survival and immune profile.
MATERIALS AND METHODS

Mice and Dietary Intervention
Six-week-old female C57BL/6 mice [Animal BioResource (NSW,
Australia) or Animal Resources Centre (WA, Australia)] were
housed under specific pathogen-free conditions in the animal
facility of the Charles Perkins Centre. Diets were purchased from
Specialty Feeds (Glenn Forest, Australia) and mice were fed for 2
weeks prior to infection, either with commercially available diets
deficient in dietary fiber (SF11-028), or enriched in dietary fiber
(SF11-025: resistant starch gel crisp as source of fiber) as
previously described (3). Experiments were performed in
accordance with the animal ethics protocol 2016/976 approved
by The University of Sydney Animal Ethics Committee.

WNV Infection
The original stock of WNV (lineage II Sarafend strain), acquired
fromThe JohnCurtin School ofMedical Research (ACT,Australia)
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was propagated alternately in C57BL/6 suckling mouse brains and
in vitro in Vero cells (24). Mice anesthetized intraperitoneally with
Avertin at day 0 were inoculated intranasally with 6 × 104 and 6 ×
103 plaque-forming units (PFUs) of WNV to achieve 100% lethal
dose (LD100) and 50% lethal dose (LD50) studies, respectively, as
described in (27). Alternatively, mice were injected with a LD100

intracranially via the postglenoid foramen, an approach that does
not penetrate the skull bones, minimizing tissue damage (28). Mice
were weighed daily, and assessed for clinical symptoms, as
previously described (24). Briefly, they were scored as follows:
score 0: no clinical signs, 1: Weight loss < 5%, 2: Weight loss ≥
5%, 3:Weight loss ≥ 5%with significant reduction inmovement, 4:
Weight loss ≥ 5% with significant reduction in movement, ruffled
fur, hunched posture, and seizures and 5: Immobile, cold.

Flow Cytometry and Data Analysis
Mice were anesthetized and perfused with ice-cold PBS before
collection and processing of tissues into single cell suspension as
previously described (26, 29). Dead cells were excluded, based on
their staining with the LIVE/DEAD™ Fixable Blue Dead Cell Stain
(ThermoFisher Scientific) and anti-mouse CD16/32 (BioLegend)
was used to prevent antibody non-specific binding. Cells were
permeabilized with the Cytofix/Cytoperm kit (BD Biosciences)
for intracellular staining. Antibodies used for flow cytometry are
listed in Table S1. To study cytokine expression, cells were
stimulated with 50ng/ml phorbol 12-myristate 13-acetate, 500ng/
ml ionomycin and 5µg/ml brefeldin A for 4 hours. Flow cytometry
was run on the LSR-II analyser (Becton Dickinson, San Jose, CA,
USA) using the FACSDiva software and data was analyzed with
FlowJo v10.7.1. (Treestar Inc. Ashland, OR, USA) based on gating
strategies presented in Figures S2-3.

RNA Extraction and Quantitative
Real-Time PCR
Total tissue RNA was extracted using TRI Reagent (Sigma Aldrich),
based on the manufacturer’s protocol. cDNA was synthesized with
the High-Capacity cDNA Reverse Transcription Kit (ThermoFisher
Scientific). qPCRwas conductedwith the Power SYBR™GreenPCR
Master Mix (ThermoFisher Scientific) on LightCycle® 480
Instrument II (Roche) with primers listed in Table S2.

Histology
Paraformaldehyde-fixed (4% in PBS), paraffin-embedded colon
tissues were sectioned and stained with H&E and imaged using
light microscopy (Zeiss Axioscope, Zeiss, Oberkochen,
Germany). Colonic inflammation was scored, based on
previously published guidelines (30).

Immunohistochemistry/
Immunofluorescence
For immunohistochemistry, colon tissue was fixed overnight in
2% PFA and subsequently placed in a series of solutions of
progressively increasing sucrose concentration (10%, 20% and
30% sucrose in PBS), before being embedded in optimum cutting
temperature compound (O.C.T.; Tissue-Tek) and frozen in
hexane pre-chilled in liquid nitrogen, as previously described
(26, 31). Tissue blocks were sectioned (8–9 µm), fixed in
February 2022 | Volume 13 | Article 784486
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methanol, rinsed in tris-buffered saline with 0.05% Tween 20
(TBST) and blocked with 10% FCS before being stained with
primary fluorophore-conjugated antibodies targeting WNV
non-structural protein 1 (NS-1) and FOX-3 in neuronal nuclei
(NeuN). Tissue sections were washed twice in TBST before being
counterstained with DAPI antifade (Vector Laboratories).
Images were acquired on the Olympus BX51 Microscope using
a DP-70 camera and Cell Sensor software.

Acetate Quantification
Fecal SCFA acetate was quantified by 1H nuclear magnetic
resonance spectroscopy as previously described (11). Feces
were first homogenized with deuterium oxide (Sigma-Aldrich)
at a concentration of 100mg/ml and centrifuged for 5 minutes at
14000 × g at 4°C. The resulting supernatant was then diluted in
sodium triphosphate buffer (pH=7.0) (Sigma-Aldrich), with
0.5mM 4,4-dimethyl-4-silapentane-1-sulfonic acid as the
internal standard (Sigma-Aldrich). Samples were run on
Bruker 600 MHz AVANCE III Spectrometer and analyzed
with the Chenomx NMR Suite v8.4 (Chenomx Inc.).

16S rRNA Gene Sequencing
DNA from fecal samples were extracted using the FastDNA Spin
Kit for Feces (MP Biomedicals) following the manufacturer’s
protocol. The primers for 16S microbiota analysis were selected
to amplify the V3-V4 region of 16S rRNA genes. Forward primer
used was ACTCCTACGGGAGGCAGCAG and reverse
GGACTACHVGGGTWTCTAAT. The primers contained
barcodes, spacers and Illumina sequencing linkers and were
designed and used as suggested by Fardosh et al. (32). The 16S
rRNA gene sequencing library preparation, PCR amplification
and library purification followed the Illumina recommended
protocol (Illumina Inc., San Diego, CA, USA). The sequencing
was performed on an Illumina MiSeq instrument using 2x300 bp
paired-end sequencing. Amplicon sequence variant was
generated with the dada2 package (1.16.0) using R software
(4.0.2). Taxonomy was assigned using the Ribosomal Database
Project classifier with species level taxonomy assignment. Alpha
and beta diversity analysis was performed using the phyloseq
(1.32.0), microbiome (1.10.0) and vegan (2.5-7) packages.
Sequence data was deposited in the European Nucleotide
Archive under accession number PRJEB50194.

Statistics
Unpaired t-test and ANOVA were used to compare two or more
groups, respectively, and Mantel-Cox log-rank test was used to
analyze LD50 study survival results. Differences were considered
statistically significant when p<0.05.
RESULTS

High-Fiber Feeding Does Not Affect WNV-
Induced Encephalitis Neuroinflammation
To determine whether beneficial reshaping of the gut microbiota
could affect the severity of WNV infection, mice were fed on diets
enriched in dietary fiber (highfiber, HF) or deficient in dietary fiber
Frontiers in Immunology | www.frontiersin.org 3
(zero fiber, ZF) for 2 weeks prior to infection (Figure 1A). These
diets have previously been shown to reshape the gut microbiota
composition beneficially (HF) or detrimentally (ZF) (3, 4).Mice fed
on HF, as expected, had a significantly different gut microbiota
composition as shownbyweightedUniFrac (Figure S1), aswell as a
significantly increased production of the SCFA, acetate, in feces,
compared to ZF-fed mice (Figure 1B), as previously published (5).
These mice were inoculated intranasally with WNV LD100 and
maintained on these diets over the course of infection. Intranasal
inoculation enables reliable infection of the central nervous system
(CNS),with clear separationof anti-viral responses in theCNS from
systemic responses. In thismodel,WNVspreads from the olfactory
bulb to the rest of the brain and spinal cord over the course of
infection and has been described in detail by Getts et al. (26).

Both HF- and ZF-fed mice had altered gut microbiota
composition after WNV infection (Figures S1A–G), with the
bacteria from the genus Dorea, Enterorhabdus and Clostidium IV
being significantly more represented in infected ZF-fed mice.
Despite these differences, acetate levels remained higher in
infected HF-fed mice (Figure S1H). Nevertheless, both groups
had similar clinical scores at 7 days post infection (dpi) (Figure 1C),
as well as undergoing comparable weight loss (Figure 1D). This
suggests that HF diet does not protect against LD100 WNV
infection. Consistent with this, total numbers of leukocytes in the
brain and infiltration of inflammatory Ly6Chi monocytes was
similar in both groups, as assessed by flow cytometry, although
neutrophil infiltration was significantly reduced in HF-fed mice
(Figure 1E and Figures S2, S3). The aggravating effects of
antibiotics have been linked to impaired WNV induced-T cell
responses (22). In contrast, HF and SCFA can modulate T cell
differentiation towards bothTh1, Th17 andTreg, depending on the
context (12). However, numbers of infiltrating CD4+ and CD8+ T
cells into the brain were similar between HF and ZF groups
(Figure 1F). Furthermore, in WNV infection, HF feeding did not
affect the T cell response, with similar numbers of Th1, Th17 and
Treg, as well as IFN-g+ CD8+ T cells, both in the brain (Figure 1F)
and its draining lymph nodes, when compared to ZF (Figure S4).

As beneficial immunomodulation by HF diet may be masked
by overwhelming infection at the LD100, we investigated the
effects of dietary fiber in WNV infection at LD50 and assessed its
impact on survival. In mice inoculated intranasally with LD50 as
in Figure 1A, clinical disease scores increased to a similar extent
in both dietary interventions from 5 dpi onwards (Figure 1H).
By 10 dpi, independent of diet, the mortality of both groups was
similar at 30-50% and remained stable after 16 dpi (Figure 1G).
We confirmed that the absence of protection in the HF group
was not linked to this diet in particular, as a different high-fiber
diet enriched in guar gum, previously shown to improve health
(3–5), also had no impact (data not shown). Taken together,
these data indicate that dietary fiber does not reduce the clinical
severity of WNV encephalitis.

WNV Encephalitis Is Associated With the
Spread of the Virus to the Colon
Systemic infection associated with peripheral WNV inoculation
has been linked to enteric neuronal infection and neuronal injury
promoted by antigen-specific CD8+ T cells (33), resulting in
February 2022 | Volume 13 | Article 784486
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FIGURE 1 | Dietary fiber increased fecal acetate but failed to protect against WNV encephalitic neuroinflammation and improve disease survival. Mice were fed on
diets either enriched (HF) or deficient (ZF) in dietary fiber for two weeks and then intranasally infected with either LD100 (A–F) or LD50 WNV (G, H), while diets were
maintained during infection. (A) Experimental workflow for LD100 WNV infection study. (B) The concentration of fecal total SCFA, acetate (C2), propionate (C3) and
butyrate (C4) of mice fed on HF or ZF diet for two weeks was quantified by NMR spectroscopy (n = 4-5 per group). Clinical scores (C) and body weight loss (D) of
ZF- or HF-diet-fed mice in WNV LD100 study were determined at 7 dpi (n = 4-5 per group). (E) Numbers of total leukocytes (Leu), Ly6Chi monocytes (Ly6Chi Mono),
and neutrophils (PMN) in mock-infected (Mock) or 7 dpi LD100 WNV-infected (WNV) brain from mice fed on ZF- or HF-diets were analyzed by flow cytometry (n = 4-5
per group). (F) Numbers of CD4+ T cells, CD8+ T cells, Th1, Th17, Treg, and IFN-g+ CD8+ T cells in mock-infected (Mock) or 7 dpi LD100 WNV-infected (WNV) brain
from mice fed on ZF- or HF-diets were analyzed by flow cytometry (n = 4-5 per group). (G) Survival of mice intranasally infected with LD50 WNV fed on ZF- or HF-
diets (n = 10 per group). (H) Average clinical scores of LD50-infected mice fed on ZF- or HF-diets (n = 10 per group). Data are represented as mean ± SEM with
∗p < 0.05; ∗∗p < 0.01 and $p < 0.001 by t test or two-way ANOVA.
Frontiers in Immunology | www.frontiersin.org February 2022 | Volume 13 | Article 7844864
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altered gut homeostasis, in particular, gastrointestinal motility
(33). Whether CNS infection with WNV is also associated with
WNV in the gastrointestinal tract is unknown. To address this
question, we inoculated mice fed on normal chow diet
intranasally (i.n.) with LD100 WNV and assessed the presence
of WNV by qPCR in the brain and brain-draining cervical lymph
nodes (cLN), the gastrointestinal tract (duodenum, jejunum,
ileum and colon), the gut-draining mesenteric lymph nodes
(mLN), the primary lymphoid organs (thymus and spleen) and
peripheral organs (lung, kidney and heart). While the brain was
the major site of infection, we also detected significant viral load
in the colon and at lower levels in the duodenum, jejunum, ileum
and their mLN, as well as the heart. Viral load in the colon was
even higher in animals inoculated intracranially (i.c.) with WNV,
excluding the possibility that infection was a result of systemic
infection or ingestion (Figure 2A). We confirmed the presence of
WNV by immunofluorescence in the colon, specifically in
colonic neurons of the myenteric and submucosal plexuses,
colocalizing with the neural marker NeuN (Figure 2B). We
then assessed whether the presence of WNV was associated with
colonic mucosal inflammation. Histologically, mice infected with
WNV had significantly more mononuclear cells infiltrating the
colon (Figure 2C), and this was associated with a significantly
reduced colon length in infected mice (Figure 2D), as well as
changes in the gut microbiota composition (Figure S5). Thus,
CNS infection with WNV is accompanied by spread of virus in
the gastrointestinal tract, particularly in colonic neurons, leading
to local inflammation.

Dietary Fiber Does Not Affect Colonic Viral
Load and Minimally Affects Colonic
Inflammation
As dietary fiber is known to promote gut health, we then
investigated whether HF affected viral load in the colon.
Regardless of diet, mice fed on HF or ZF had similar colonic viral
load (Figure 3A), showing no effect of dietaryfiber. The presence of
virus was associated with significantly increasedmRNA expression
for type 1 and type 2 IFNs, IL-6, tumor necrosis factor (TNF) and
IL-10 expression in the colon inboth groups (Figures 3B–F).While
levels of mRNA for these cytokines were similar between groups,
mice fed on HF had significantly decreased levels for TNF,
compared to mice fed on ZF, suggesting potential local
immunomodulatory effects of HF in the colon (Figure 3E). The
similar overall levels of message for cytokines (except for TNF)
correlated with similar increased mononuclear cell infiltration by
histological analysis betweengroups (datanot shown). InfectedHF-
fedmice alsohad immunephenotypicprofiles in themLNsimilar to
infected ZF-fed mice (Figure S6), suggesting a similar response to
infection in both groups.

The fermentation of dietary fiber affects both the colon and
cecum length (3). Accordingly, the colons of mock-infected HF-
fed mice were significantly longer than ZF-fed mice. However, in
WNV infection by 7 dpi, colon length in HF-fed mice was
significantly reduced and comparable in size to those of ZF-fed
mice. Notably, the colon length in infected ZF-fed mice was
similar to mock-infected ZF-fed mice (Figure 3G).
Frontiers in Immunology | www.frontiersin.org 5
Together, these data show that WNV infection of the CNS is
accompanied by infection of the autonomic nervous plexuses in
the colon, mucosal mononuclear cellular infiltration, local
elevation of immune cytokines and reduced colonic size,
consistent with inflammation, which, despite reduced TNF
levels, was unaffected by the fiber content in HF feeding.
DISCUSSION

In the present report, we show that dietary intervention
modulating dietary fiber had no benefit in WNV encephalitic
disease, notwithstanding an evident shift in the composition of the
gut microbiota. Mice fed on a diet enriched or deficient in dietary
fiber showed similar degrees of encephalitis, as evident by their
clinical scores and mortality rates, and except for neutrophils,
immune cell recruitment into the brain and draining lymph nodes
was similar in both groups. We used an intranasal or intracranial
inoculation model of WNV infection to limit systemic infection,
detecting high levels of WNV in the brain, as expected. However,
significant virus signal was also detected in the colon, principally
in neurons, accompanied by a local mucosal inflammatory
infiltrate. Supporting this, mRNA for both pro-and anti-
inflammatory cytokines, as well as type 1 and 2 IFNs were
increased locally and there was a marked reduction in colonic
length, a feature of colonic inflammation. Consistent with HF
treatment in other inflammatory diseases, TNF message was
reduced in HF-fed mice, however, no other measured
parameters were altered by high-fiber content in the diet.

Dietary fiber and SCFA have been shown to have
immunomodulatory effects beneficial in lung infection (8) and
in inflammatory CNS disease (7). Since detrimental changes in
the gut microbiota induced by antibiotics were reported to
aggravate flavivirus infection (22), we hypothesized that high-
fiber diet may ameliorate disease in WNV encephalitis. However,
in our experiments, neither the type of fiber, nor the amount was
beneficial in WNV infection. Using two different types of diet,
one supplemented with guar gum, containing the equivalent of
10-fold the recommended amount of fiber (3), we found no
benefit, either in clinical scores or increased survival. Thus,
increasing the consumption of dietary fiber in itself is unlikely
to be an effective treatment in WNV encephalitis, as the
immunomodulatory effects of dietary fiber are evidently
insufficient to counteract the damaging immunopathology
associated with the anti-viral response. Nevertheless, high fiber
may potentiate the effects of anti-inflammatory drugs, which to
our knowledge has never been investigated.

The only change we observed in the brains of HF-fed mice
with WNV encephalitis was decreased neutrophilic infiltration.
A similar effect of HF and acetate was reported in a mouse model
of gout in which HF-fed mice had reduced neutrophilic
inflammation (34). Acetate increased neutrophil apoptosis,
which decreased the inflammation and promoted resolution in
the knee. The role of neutrophils in WNV is unclear and may
either promote virus replication or contribute to disease
resolution (35). However, in our study the potential impact of
February 2022 | Volume 13 | Article 784486
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FIGURE 2 | Spreading of WNV in the colon during WNV encephalitis triggers colonic inflammation. Mice were fed on normal chow diet and were intranasally (i.n.) or
intracranially (i.c.) infected with LD100 WNV. (A) WNV viral load quantified for mock-infected animals (Mock) or infected animal at 7dpi by qPCR in brain, cLN,
duodenum, jejunum, ileum, colon, mLN, spleen, thymus, lung, kidney, heart, n = 3-7 per organ), as well as brain and colon from mice inoculated intracranially with
LD100 WNV, as a control. (B) Representative immunofluorescence staining of WNV non-structural protein 1 (WNV NS1, green), and FOX-3 neuronal nuclei (NeuN,
red) in colon, counterstained with DAPI (blue) from 7 dpi LD100 WNV-infected mice fed on a normal diet. Scale bar represents 100mm. (C) H&E-stained colonic tissue
sections from mock-infected (Mock) or 7 dpi LD100 WNV-infected (WNV) mice fed on a normal diet evaluated for colonic inflammation. Representative histological
images are shown for each group in the left panel, and quantification of colonic inflammation scoring are shown in the right panel (n = 3-5 per group). Scale bar
represents 100mm. (D) Colon length of mock-infected (Mock) or 7 dpi LD100 WNV-infected (WNV) mice fed on normal diet were assessed (n = 5 per group). Scale
bar represents 1cm. Data are represented as mean ± SEM with ∗p < 0.05; ∗∗p < 0.01; $p < 0.001 by t test or two-way ANOVA.
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HF on neutrophil recruitment or apoptosis did not improve
survival, suggesting a minor role of these cells, as supported by
our previous studies (25). This may explain why dietary fiber
may be beneficial in influenza infection (8) in which neutrophils
contribute significantly to immunopathology, but not in WNV.

We used intranasal or intracranial infection to limit systemic
infection. In both cases, WNV was also detectable in the colon,
evidently localized to neurons of the myenteric and submucosal
plexuses, as well as to a lesser extent in several other organs. The
gut-brain connection has been reported in other infection
models, with spread of reovirus from the intestine to the brain
Frontiers in Immunology | www.frontiersin.org 7
via the vagus nerve, for example (36). WNV may reach colonic
neurons from the CNS via efferent branches of the vagus nerve.
This would explain the presence of the virus in the heart, as well
as other viscera supplied by the extensive parasympathetic
network originating from this important cranial nerve, while
the well-described interconnectivity between enteric and
mucosal plexuses, would explain the presence of virus at both
levels (37). The presence of WNV in the colon correlated with
local mucosal inflammation characterized by increased levels of
IFN-⍺ and IFN-g, as well as IL-6 and TNF, although the latter
was reduced in HF-fed mice. While reduced TNF expression is
A B C

D

G

E F

FIGURE 3 | Dietary fiber did not ameliorate WNV-induced colonic inflammation despite reducing TNF. Mice were fed on diets either enriched (HF) or deficient (ZF) in
dietary fiber for two weeks and then intranasally infected with LD100 WNV. WNV viral load (A), colonic gene expression of Ifna (B), Ifng (C), Il6 (D), Tnf (E), Il10 (F)
was determined by qPCR (n = 4-5 per group). (G) Colon length of mock-infected (Mock) or 7 dpi LD100 WNV-infected (WNV) mice fed on ZF- or HF-diets were
assessed (n = 4-5 per group). Scale bar represents 1cm. Data are represented as mean ± SEM with ∗p < 0.05; ∗∗p < 0.01; $p < 0.001 by two-way ANOVA.
February 2022 | Volume 13 | Article 784486
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consistent with the immunomodulatory effects of HF reported in
colitis, it is unclear why levels of IL-6 and IL-10 are not similarly
affected. The presence of WNV in the gastrointestinal tract has
been reported to impair gut motility (33) in a systemic infection
model. It is thus of interest that direct brain infection can also be
relayed to the colon, where it presumably contributes to this
dysmotility by interfering with vagal stimulation, which in itself
may interfere with the beneficial effect of HF feeding seen in non-
infectious models of colitis.

Thus, despite its potent immunomodulation and palliative
success in other inflammatory diseases, the use of high-fiber
feeding is not an effective treatment in WNV infection.
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