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Abstract: RFID (Radio Frequency Identification) offers a way to identify objects without any
contact. However, positioning accuracy is limited since RFID neither provides distance nor bearing
information about the tag. This paper proposes a new and innovative approach for the localization of
moving object using a particle filter by incorporating RFID phase and laser-based clustering from 2d
laser range data. First of all, we calculate phase-based velocity of the moving object based on RFID
phase difference. Meanwhile, we separate laser range data into different clusters, and compute the
distance-based velocity and moving direction of these clusters. We then compute and analyze the
similarity between two velocities, and select K clusters having the best similarity score. We predict
the particles according to the velocity and moving direction of laser clusters. Finally, we update
the weights of the particles based on K clusters and achieve the localization of moving objects.
The feasibility of this approach is validated on a Scitos G5 service robot and the results prove that we
have successfully achieved a localization accuracy up to 0.25 m.
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1. Introduction

Recent documents show a growing interest in indoor localization due to the high demand of
location-based services (LBS) [1,2], for example asset tracking and indoor guidance. Extensive research
have been done regarding vision-based and range-based sensors. Vision-based localization is
challenging as it needs the object to be in the line of sight and also requires complex algorithms
to recognize the object. The advantages of RFID (Radio Frequency Identification) provide a way
to overcome these difficulties, as RFID has some unique qualities like an RFID tag has a unique
identification code (ID), which does not require any complex recognition algorithm [3]. Secondly,
compared to vision or range-based sensors, RFID can solve the occlusion issue of the object as the
communication of the RFID does not to be in the line of sight. These characteristics make it convenient
to use RFID for positioning of an object. In addition, RFID positioning also has the advantages of
small size and fast position deduction, as compared to Bluetooth or Wi-Fi positioning techniques [4].
Therefore, RFID positioning technology is widely used in warehousing, library, supermarket, logistics
assembly, and other places [5,6]. For example, Shaari et al. proposed an intelligent storage system
based on RFID that uses a database to store the position and orientation of an object [7]. Lu et al.
designed an RFID-based positioning system for an AGV (Automated Guided Vehicle) in a smart
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factory [8]. Fortinsimard et al. implemented a smart identification system based on passive RFID
technology for smart homes [9]. Nur et al. designed a system that provides real-time information
about the product by projecting RFID and shelf information onto a panoramic view [10]. Wang et al.
proposed an RFID-based positioning approach for connected vehicles [11].

RFID systems also have some limitations like RFID can not directly obtain the distance or bearing
of the tag, so one has to rely on other information to achieve the positioning task. Traditional ways
of localization by RFID are commonly based on received signal strength (RSS) with the limitation of
multi-path propagation issues in indoor environment, which could lead to poor localization accuracy
and demands excessive training to build the model [12]. Hähnel et al. used a mobile robot to measure
the signal strength of tags at different positions and constructed a probabilistic sensor model of
RFID antenna to locate passive RFID tags; however, this method needs to calibrate the RFID sensor
model by installing RFID tags in a well-known environment, and it is obviously time consuming [13].
Although the method used in LANDMARC gives comparatively high accuracy, it requires multiple
antennas to detect the phase, which is not practical for mobile robots [14]. Many researchers have
tried different ways to improve the localization accuracy based on RSS. For example, Xu et al. used
the Bayesian approach and K-Nearest Neighbor to filter out the noise based on LANDMARC with
a limitation of a large number of reference tag requirements in advance [15]. Yang et al. applied
an improved particle filter based on the features of moving direction in a densely tagged RFID
environment, but it requires a long time to build the system model [16]. Moreover, the signal’s
time-of-arrival (TOA) and angel-of-arrival (AOA) can also be used for localization. Xu et al. used a
TOA-based method to track the position of moving people [17]. TOA has an advantage of a simple
positioning principle with small errors, but it requires strict time synchronization and high cost
hardware. AOA is vulnerable to environmental factors and has limited applications [4,18]. In addition,
the phase information provided by the RFID reader can be used to locate the object directly, without
any explicit modeling of signal strength. However, there is an ambiguity problem in the phase
extraction [19], which increases the positioning error. Sarkka et al. proposed a UHF RFID tracking
system based on the phases from multiple spatially distributed antennas [20]. Some researchers also
have tried to combine the RSS and phase for the localization of an object. For example, Ma et al. [21]
proposed an approach to predict the position of a mobile object using the RSS and phase. Martinelli et
al. proposed using the unscented Kalman filter based on the RSS and phase to locate the robot, but it
requires a group of passive tags on the ceiling as landmarks [22].

In literature, RFID is also used to combine with other sensors (for example, laser range finders
and visual cameras) to improve the positioning accuracy [23–25]. For example, Deyle et al. used visual
and three-dimensional laser ranging information to construct images and combined signal strength
of different angles by rotating the antenna to deduct the location of an object [26]. RFID technology
is gradually applied to the field of construction [27]. Valero et al. used a 3D laser scanner and RFID
technology for automatic construction of the 3D model of an environment. The fusion technique
allows for identifying the main components of a structure, such as walls, floor, and windows [28].
However, this approach requires the modeling of both sensors. Zhou et al. used a new positioning
system based on artificial landmarks for mobile robots. They used a laser-activated RFID tag (active
tag) that has a bright LED as landmark for the positioning. The airborne laser sensor emits a laser
beam to activate the tag when the robot is moving in the environment. At the same time, the robot
detects the tag in the environment through the stereo vision and RFID reader, and calculates the
relative position of the tag through the perspective geometry. They combined the information from
multiple tags to determine the position and orientation of the robot [29]. However, this method
requires the tag to be installed in the test environment in advance and the maintenance cost is high.
Martin et al. used combined signals (WiFi and Digital Television) to reduce the error [30]. Liu et al.
used a three-dimensional sensor model and a pair of RFID antennas at different heights to localize
the tags in 3D [31]. Shirehjini et al. used RFID carpets and several peripherals of sensor to build a
positioning system based on low-range passive RFID technology [32]. However, this approach requires
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installing RFID tags on the floor. Song et al. used a two-level extended Kalman filter (EKF) to fuse
the data of sensors mounted in vehicles and RFID data for positioning of a vehicle in GPS-denied
environment [33]. Xiong et al. presented a hybrid WSN-RFID system for tracking indoor objects [34].
Su et al. proposed an enhanced boundary condition approach to improve the localization accuracy of
an RFID system by integrating the information from a GPS system [35].

Due to their long range, high accuracy, and fast response, laser range finders are widely used in
obstacle avoidance, localization, and navigation in robotics[36–38]. An et al. proposed an approach
that allows a robot to detect and avoid obstacles using a Vector Polar Histogram (VPH) [39]. Sun et al.
proposed a noise reduction algorithm to improve ranging accuracy of a laser range finder [40]. With a
laser range finder, one can directly obtain the distance and angle information of the obstacles [41,42].
For example, Vu et al. used a laser range finder to create a raster map of the environment that can
be used to detect moving objects [43]. Dietmayer et al. used a model-based approach to identify and
track objects in the environment [44]. However, laser-based sensors need to establish a model and
complex recognition algorithms to identify the object, which usually requires a pre-training stage and
expensive computational time [44,45].

The uniqueness of RFID tags makes it possible to recognize an object without any additional
recognition stage like a laser range finder or visual camera always needs. Therefore, we propose an
approach to combine UHF RFID technology and laser ranging information to localize a moving object.
RFID tags have unique IDs that can be used to identify an object. The phase reported from the RFID is
a periodic function of the distance and has the ambiguity in positioning of an object [46,47]. The phase
difference can be used to infer the moving velocity of an object. On the other hand, the laser range
finder can be used to measure distance and angle of the obstacles. However, it needs to recognize the
object that we want to localize from a large number of objects in the laser view. The integration of
RFID and laser information can lead to a more reliable and accurate positioning system. In particular,
we achieve the position deduction of moving object by the fusion of RFID phase and laser clustering.
We first estimate the phase-based velocity by phase difference of RFID signals. In the meantime, we
segment 2d laser ranging data into clusters and estimate their velocities (i.e., distance-based velocities)
and moving directions. Then, we calculate the similarity between the phase-based velocity and the
distance-based velocities to analyze the similarity of both velocities. Finally, we predict and update the
set of particles in a particle filter according to matching results and accomplish the localization of a
moving object. Our approach does not need any signal strength information from RFID, nor does it
need any modeling of the object from a laser range finder.

We organize the subsequent sections of this paper as follows. An overview of the system is
described in Section 2. In Section 3, we present the details of the sensor fusion using a particle filter.
We show the experimental results in Section 4 and conclude the paper with possible extensions in
Section 5.

2. System Overview

Our approach for localization is based on the particle filter that integrates the RFID phase and
laser clustering, without any modeling on signal strength. As shown in Figure 1, the whole system
consists of two major parts: (1) collecting information by an RFID reader and a laser range finder on
the robot; (2) fusing the RFID and laser ranging information in a particle filter for localization.

In the first part, we use the RFID reader to obtain the RFID phase of a moving object affixed with
a passive tag and then calculate the phase-based velocity of the moving object by the phase difference
between two successive RFID signals. It is important to note that there is a phase ambiguity during
the processing of RFID phase. Therefore, we need to take measures to reduce the influence of phase
ambiguity in order to estimate the phase-based velocity. After several experimental tests, we found
that the phase difference of a moving object between two adjacent moments increases sharply, but the
difference does not exceed ±90◦. Hence, this check helps us to reduce phase ambiguity and we can
easily calculate corresponding velocity from phase difference. Meanwhile, we scan the moving object
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with a 2D laser range finder carried by the robot and segment the ranging data into clusters. After that,
we find the neighboring clusters (two neighbors) in the continuous time and treat the two clusters
as the same obstacle, which is used to estimate the distance-based velocity. This part of information
acquisition and data processing is used for subsequent velocity matching and the particle filtering.

In the other part, we first calculate the similarity between phase-based velocity and the
distance-based velocity and then determine the velocity matching according to a defined similarity
rule. In addition, we choose the best K clusters with the best velocity similarity score to facilitate the
processing of the particle filtering. To improve localization accuracy and robustness of the system,
we use different prediction methods for the particle filter based on the velocity matching results:
(1) If the velocity matching is successful, we can find the effective laser cluster for prediction, which is
referred to as laser prediction in this paper. (2) If the velocity matching is unsuccessful, we choose
another method called the random prediction method. After that, we update the particle’s weight in the
particle filter using the best K clusters. Finally, we localize the moving object by iteratively performing
prediction, update, and resampling of the particle filter. The role of this part is to improve the
positioning efficiency and accuracy by complementing the RFID phase with laser ranging information
using a particle filter.

RFID system
 Estimate the RFID 

phase-based velocity

2D laser 

range finder 

Laser 

clustering process

RFID

 phase information

Estimate the velocity  

and moving direction 

of  the  cluster

Velocity  matching

K Clusters with the 

highest similiarity

Particle filter

update
Estimate pose

Particle filter

initialization

Particle filter

prediction

Random 

prediction

Laser 

prediction

match mismatch

First part: Information collection and processing

Second part: Sensor Fusion with a particle filter

Figure 1. System overview.

3. Moving Object Localization Based on the Particle Filtering

We describe the details of the system in this section. In particular, the computation of RFID phase
velocity is described in Section 3.1, the clustering of laser ranging data is presented in Section 3.2,
the estimation of the velocity and moving direction of a cluster is detailed in Section 3.3, and
velocity matching and the implementation using a particle filter are detailed in Sections 3.4 and 3.5,
respectively. The mathematical symbols and their meanings used in this paper are listed in Table 1.

3.1. Computing RFID Phase-Based Velocity

The phase obtained by RFID is a periodical function, which can be described as:

ϕt =
2π · dt

λ
·mod(2π), (1)

where ϕt is the signal phase at time t, λ is the wavelength of the receiving signal, and dt is the distance
from RFID tag to the antenna. In practice, signal phase is influenced by the transmitter, receiver,
and tag’s reflection characteristics [30], which introduce additional phase rotation. Therefore, the
phase of RFID signal could be modeled as:
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ϕt =
4π · dt

λ
+ ϕT + ϕR + ϕTag, (2)

where ϕT is the reader’s transmitter phase deflection, ϕr is the reader’s receiver phase deflection,
and ϕTag is the tag’s phase deflection.

In this paper, the moving object is affixed with a passive tag and moves at a velocity of vr
t ,

the signal phase being received by the RFID reader continuously. We denote the phases at t− 1 and
t as ϕt−1 and ϕt, respectively; therefore, we can estimate the moving velocity of the object by the
phase difference:

vr
t =

∆dt

∆t
=

dt − dt−1

∆t
. (3)

Combined with Equation (3), moving velocity of a tag can be given as:

vr
t =


c

4π f ∆t · (ϕt − ϕt−1), |ϕt − ϕt−1| < π,
c

4π f ∆t · (ϕt − ϕt−1 − 2π), ϕt − ϕt−1 ≥ π,
c

4π f ∆t · (ϕt − ϕt−1 + 2π), ϕt − ϕt−1 ≤ −π.
(4)

In this way, the influence of phase ambiguity is effectively reduced, where c is the velocity of light,
f is signal frequency, and ∆dt is the moving distance of the tag at two successive times, which is less
than the half of wavelength (i.e., ∆dt <

λ
2 ).

Table 1. Mathematical symbols and their meanings.

Mathematical Symbol Meaning

ϕt Phase of RFID signal at time t
vr

t Phase-based velocity of RFID tag at time t
dg Grouping threshold in laser-based clustering
dp Distance parameter in laser-based clustering
ds Splitting threshold in laser-based clustering

rmax The maximum cluster radius
v(i)t The velocity of cluster i at time t
θ
(i)
t The moving direction of cluster i at time t
K The number of the best matching clusters
N Number of particles
Xt The object position at time t

(x[n]t , y[n]t ) Location of particle n at time t
ω
[n]
t The weight of particle n at time t

σr Gaussian noise in random prediction
σa Gaussian noise added to the moving direction in laser prediction
σv Gaussian noise added to the velocity in laser prediction
σd The bandwidth parameter used to control the weight update of the particle filter

θ̃
(l)
t Moving direction after adding Gaussian noise σa to the cluster l at time t

ṽ(l)t Velocity after adding Gaussian noise σv to cluster l at time t

3.2. Clustering Laser Ranging Data

A 2D laser range finder is used to scan the environment and retrieve the distance and angle
information of the moving object. We only save the laser ranging data when the reader detects the tag
we want to track. Each scan point consists of a distance and angle measurement. In total, there are
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450 ranging points in a scan cycle. In one scanning cycle, (ρn, φn) represents the distance and angle of
the nth laser beam [48,49] and can be described into Cartesian coordinate system:{

xn = ρn · sinφn,
yn = ρn · cosφn,

(5)

where (xn, yn) denotes the laser point Pn. The distance between the ith and jth laser point can be
described as:

d(Pi, Pj) =
√
(xi − xj)2 + (yi − yj)2. (6)

For a better localization of the object, we segment the laser ranging data into different clusters.
The process of clustering mainly includes: segmenting the raw data into groups (Section 3.2.1),
splitting the group into clusters (Section 3.2.2), merging clusters (Section 3.2.3), and filtering out the ones
with larger radii (Section 3.2.3). The final clustering results are considered as the obstacles [41,48,49].
The whole process of clustering is shown in Figure 2. Figure 3 is the raw laser ranging data at two
nearby timestamps. As it can be seen from this figure, there are many obstacles in one environment.
Therefore, we use the distance between two consecutive laser points for simple grouping, which will
segment the laser ranging data into a group (the potential objects). We then split the group to improve
the clustering accuracy.

Grouping of laser 
ranging data

Laser ranging 
data

Clustering 
results

Splitting of 
the group

Merging and 
filtering

Figure 2. Overview of laser-based clustering.

Figure 3. Laser ranging data at two timestamps.

3.2.1. Grouping of Laser Ranging Data

To perform clustering procedure, original laser ranging data is segmented into groups with
the following rules: when the distance d(Pi, Pi−1) between ith and the i − 1th laser point satisfies
Equation (7), we consider the two points as the same group Gk:

d(Pi, Pi−1) < dg + di · dp, (7)

where dg is the threshold of grouping, di is the distance between the ith laser point and robot, and dp

is the distance parameter. When the continuous laser points (i.e., Pi and Pi−1) in one scanning cycle
do not satisfy Equation (7), a new group Gk+1 will be created based on point Pi. This step will lead to
a grouping set Gk(k ∈ {1 · · ·Ng}), where Ng is the number of groups. An example of the grouping
result is shown in Figure 4.
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3.2.2. Splitting of the Group

The grouping set Gk(k = 1 · · ·Ng) is obtained by comparing the distance between the neighboring
laser points, but two or more obstacles may exist in one group. Thus, we need to split the group in order
to separate the obstacles. For this purpose, we use an iterated fitting algorithm. First, we find the two
points in group Gk with the longest distance and obtain the line connecting these two points. We then
find the point with the longest perpendicular distance ∆dk to the line. If ∆dk satisfies Equation (8), then
it continues the splitting process or otherwise quits the iteration. The splitting condition is defined as:

∆dk > ds + dr · dp, (8)

where ds is the threshold for splitting, and dr is length of the connecting line. If Gk satisfies the splitting
condition, we split Gk into new groups as Gk and Gk+1, as shown in Figure 5a,b. The iterated splitting
process stops until there is no increase in the number of groups, We continue the split process until the
number of clusters does not change. As a result, we obtain a number of clusters at time t:

Ot = {O(i)
t } = {r

(i)
t , o(i)t }

Nt
i=1, (9)

where r(i)t = dr
2 is the radius of ith clustering, o(i)t = (x(i)t , y(i)t ) is the center of ith cluster, and Nt is the

number of clusters at time t.

3.2.3. Merging and Filtering

To avoid the overlapping between different clusters, we further merge the clusters with the
following criteria:

|r(i)t − r(j)
t | ≥

√
(x(i)t − x(j)

t )2 + (y(i)t − y(j)
t )2. (10)

If Equation (10) is satisfied, the cluster O(i)
t and O(j)

t would be merged into one cluster. As our
target is to localize common pedestrians, the radius of a cluster is confined by a threshold rmax.
Finally, we use an example to demonstrate the process of laser clustering. Figure 3 is the raw laser
scanning data at two consecutive timestamps, and Figure 5c is the clustering results.

3.3. Estimate the Distance-Based Velocity and Moving Direction of a Cluster

For each cluster O(i)
t at time t, we find the cluster O( ĵ)

t−1 with a minimum distance at the previous

time t− 1. Therefore, (O(i)
t , O( ĵ)

t−1) could be considered as the same object at two sequent times t and
t− 1. ĵ is given by:

ĵ = arg min
j

√
(x(i)t − x(j)

t−1)
2 + (y(i)t − y(j)

t−1)
2, (11)

where 1 ≤ j ≤ Nt−1. Therefore, the velocity and moving direction of the ith cluster can be computed as:

v(i)t =
∆d(i)t

∆t
=

√
(x(i)t − x( ĵ)

t−1)
2 + (y(i)t − y( ĵ)

t−1)
2

∆t
, (12)

θ
(i)
t = atan(

y(i)t − y( ĵ)
t−1

x(i)t − x( ĵ)
t−1

). (13)

To improve the accuracy of algorithm, we filter out the clusters having velocity higher than 1.0 m/s.
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Figure 4. Illustration of laser-based grouping.
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Figure 5. Comparison of the laser groups before and after splitting and a real example. (a) before
splitting; (b) after splitting; (c) clustering results.

3.4. Similarity Computation Using Phase-Based and Distance-Based Velocity

Although the laser range finder can be used to obtain the distance and angle information, there is
a singularity problem on the object identification. Due to the unique identification feature, RFID can
precisely solve the singularity issue. We compare the similarity between the RFID phase-based velocity
and the laser clustering-based velocity to evaluate whether both of them are from the same object or
not. The similarity is computed as:

sim(v(i)t , vr
t) = 1− |v

(i)
t − vr

t |
|v(i)t + vr

t |
. (14)

In Equation (14), we can observe that, with a high similarity, there is more chance that the
corresponding laser cluster is the object we want to localize. To improve the robustness of the system,



Sensors 2018, 18, 825 9 of 18

we select the K clusters (i.e., Om(1)
t , Om(2)

t , · · ·Om(K)
t ) with best similarity values as the potential objects

for updating weights of particles, which is described in Section 3.5.

3.5. Moving Object Localization with a Particle Filter Based on the K Best Clusters

In this section, we estimate the position of an object (i.e., posterior probability) by the
probabilistic-based approach. The Bayesian inference is a probabilistic framework for estimating
the probability density function over a state, given the past measurements reported by the sensor and
the motions performed by the object. In our case, we use RFID and laser ranging measurement to
estimate the state of the object, i.e., posterior probability density function of the state. According to
Bayesian inference, we factorize the posterior probability p(Xt|g1:t, r1:t, u1:t) into:

p(Xt|g1:t, r1:t, u1:t) = ηt · p(Xt|Xt−1, ut) · p(gt|Xt, rt) · p(Xt−1|g1:t−1, r1:t−1, u1:t−1), (15)

where Xt is the position of the object, which we want to estimate at time t, gt is the measurement of
the laser range finder at time t, rt is the measurement of RFID at time t, ut is the motion information
of the object, and ηt is a normalizer. p(Xt|Xt−1, ut) is the motion model, which is used to predict the
object position at time t given the previous position Xt and motion information ut. p(gt|Xt, rt) is the
observation model, which describes the likelihood of receiving a measurement gt (i.e., laser-based
clusters) given the RFID measurement (i.e., RFID phase-based velocity) and the current state Xt.
Details of the motion model and observation model will be explained in Sections 3.5.1 and 3.5.2,
respectively. p(Xt−1|g1:t−1, r1:t−1, u1:t−1) is the state at time t− 1. To solve this nonlinear problem,
we choose the particle filter as the implementation, due to its no-parametric features. Particle filter
is a basic implementation of Bayesian framework, which uses a set of particles to approximate the
posterior probability distribution. It has the advantages of high robustness and high accuracy to deal
with nonlinear and non-Gaussian systems. In this paper, particle filter is used to fuse two kinds of
information for positioning.

We represent the object location by a number of particles with different weights,
i.e., Xt = {X[n]

t , ω
[n]
t }N

n=1, where N is the number of particles, X[n]
t = {x[n]t , y[n]t } denotes the 2D location

of the particle, and ω
[n]
t is the associated weight [50]. The particle filter performs the following three

steps based on the arrival of the sensor measurements: prediction, update, and resampling.

3.5.1. Prediction

In this stage, we predict the state of a particle X[n]
t based on the previous state X[n]

t−1 and the motion
information of the object ut. Here, to enhance the prediction performance, we use two predicting
forms: random prediction and laser-based prediction. Random prediction is adopted when a matching
cluster is not found, which is described as :{

x[n]t = x[n]t−1 + N(0, vr
t · ∆t · σr),

y[n]t = y[n]t−1 + N(0, vr
t · ∆t · σr),

(16)

where σr represents the random Gaussian noise. Random prediction can be considered as the
complementary measurement when laser-based prediction is not available.

We use laser-based prediction when a valid matching cluster is found. In this way, we first find
the nearest cluster l of particle n, then add Gaussian noise to its corresponding velocity v(l)t and moving

direction θ
(l)
t . Finally, we execute the prediction according to ṽ(l)t and θ̃

(l)
t :

θ̃
(l)
t = θ

(l)
t + N(0, σa), (17)

ṽ(l)t = v(l)t + N(0, σv), (18)
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 x[n]t = x[n]t−1 + ṽ(l)t · ∆t · cos(θ̃(l)t ),

y[n]t = y[n]t−1 + ṽ(l)t · ∆t · sin(θ̃(l)t ),
(19)

where σa and σv represent the Gausian noises added to the velocity and the moving direction of the
cluster l, respectively. In some cases where RFID and laser velocities do not match during positioning
(when no matching cluster can be found), we use Equation (16) for prediction; otherwise, Equation (19)
is used for prediction. Using two different prediction methods can improve the positioning accuracy.

3.5.2. Update

The update stage is used to correct previous prediction by current measurement and update the
weights of the particles. Based on the observation model p(gt|Xt, rt), the weight ω

[n]
t of the particle

X[n]
t is computed as:

ω
[n]
t = ηt ·ω[n]

t−1 · p(gt|X[n]
t , rt). (20)

Combined with the weighted K most similar clusters, the observation model p(gt|Xt, rt) is
approximated as:

p(gt|Xt, rt) =
K

∑
i=1

sim(vm(i)
t , vr

t) · exp(−d2(X[n]
t , Om(i)

t )

2
), (21)

where

d2(X[n]
t , Om(i)

t ) =
(x[n]t − xm(i)

t )2

σd
+

(y[n]t − ym(i)
t )2

σd
, (22)

where σd is a bandwidth parameter added to the distance to the cluster. The impact of σd on the
positioning accuracy is analyzed in the experimental section (Section 4.2.6).

3.5.3. Resampling

We resample the particles to ensure the efficiency of particle filter. Resampling generates a set of
new particles depending on the weights of the particles. The weights of the particles change after the
particles are updated, in which the particles that are far away from the target have the smaller weight
and the ones closer the target have the larger weight. After many iterations, some particle weights
become very small, which is the phenomenon of particle degeneration. In order to effectively reduce
the phenomenon of particle degeneration, we use resampling to remove the less weighted particles
and duplicate the particles with large weights.

4. Experimental Results

4.1. Experimental Setups

The experiments to check the feasibility of our approach were performed on a service robot
SCITOS G5 from Metralabs GmbH, Ilmenau, Germany), as shown in Figure 6. The robot is equipped
with a 2D laser range finder (SICK S300), a UHF RFID reader (Speedway Revolution R420 from Impinj,
Inc., Seattle, WA, USA) with a sampling frequency of 2 Hz, and two circularly polarized antennas
(RFMAX SS8688P from Laird Technologies, London, UK) at two sides of the robot with angles of 45◦.
The RFID reader offers a reading range up to 7 m. During the experiment, we use Dense Reader Mode
8 (DRM8) and a channel of 920.625 MHz for the RFID reader. The RFID antenna is placed at the same
height as the tag (1.2 m above the ground). The measuring range for the laser range finder is up to
29 m, within the angle of 270◦ and resolution of 0.5◦. In addition, the laser range finder works at a
frequency of 20 HZ. During the experiments, we affixed a tag (Alien Squiggle RFID Wet Inlay from
Alien Technology, San Jose, CA, USA) on a moving object.
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We set the testing space for positioning by a rectangular area of 4 m × 2 m, and the robot was
placed one meter perpendicular to the long side of the rectangle, as shown in Figure 6a. A person
carried the tag and walked along the edge of rectangular area for 5 rounds at the velocity of approx.
0.4 m/s to test the positioning accuracy.

The comparison between the estimated path and the true path is depicted in Figure 6b. In addition,
we walked the more complex paths in the test area to test the usability of our approach. The results are
shown in Figure 7a,b. In order to facilitate comparison, we use the rectangular path as the adjustment
of the experimental parameters. From these figures, we can see that the estimated path is basically
consistent to the true path, which demonstrates the feasibility of our approach. The final result
shows that mean positioning error is 0.25 m. Average positioning error means the RMSE (rooted
mean square error). The error is defined as the Euclidean distance between the ground truth and the
estimated position.

RFID Antenna

RFID reader

2D Laser range finder

Y

X

RFID tag

(a)
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Figure 6. Setup of the experiment and positioning result. (a) Setup of the experiment; (b) ground truth
and estimated track by a combination of two prediction forms.
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Figure 7. Complex paths. (a) 8-shaped path; (b) W-shaped path.

4.2. Impact of Different Parameters on the Positioning Accuracy

Next, we carried out six different experiments for evaluating the positioning accuracy under the
impact of different factors in each experiment, including antenna configurations, predicting forms,
factors in clustering (i.e., dg, dp, ds, and rmax), the number of particles N, noise settings (i.e., σd and σa ),
K value, and factor of σd.

4.2.1. Impact of Different Antenna Configurations

As the detecting range of RFID is directly confined by antennas on robot, in the first series of
experiments, we analyzed the positioning accuracy under different antenna combinations. We fixed
ds = 0.1, rmax = 1.0, dp = 0.01, dg = 0.2, N = 100, σa = 0.1, σv = 1.0, K = 4, and σd = 0.1. The result
is shown in Table 2. As it can be seen from this table, the positioning accuracy is impacted by the
number of antennas used. The accuracy is low while using only one antenna due to its incompleteness
on coverage, while we obtain a better positioning accuracy with two antennas as the error decreased
from 1.24 m to 0.258 m (i.e., 79% improvement). Therefore, this paper uses two antennas to locate the
moving object.

Table 2. Comparison of positioning accuracy in meters under different antenna combinations.

Antenna Combination Only Right Antenna Only Left Antenna Right and Left Antennas

Positioning accuracy (m) 1.24 1.41 0.258

4.2.2. Impact of Different Prediction Forms

In the next series of experiments, we tested the impact of positioning accuracy under three
different predicting forms: the random predicting, laser predicting, and the combination of random
predicting and laser predicting. The experimental settings were the same as described previously.
The results are shown in Figures 6b and 8. As it can be seen from this figure, the choice of σr has a
significant impact on the positioning accuracy for the random prediction. σr = 1.0 leads to the best
positioning accuracy, while a too small or too large σr obviously leads to a worse positioning result
(1.7 m for σr = 0.0 and 0.829 m for σr = 2.0, as compared to 0.618 m for σr = 1.0). The reason is that,
with a small σr, all particles will converge to a single point after the integration of several RFID and
laser measurements, while, with a large σr, the particle filter is not able to converge, due to the large
noise added to the particles.

In addition, as can be seen from Figures 6b and 8, the combining way of prediction was better than
the random prediction or the prediction based on laser information, with the locating error diminished
from 0.618 m to 0.248 m (59% improvement) and 0.302 m to 0.248 m (18% improvement), respectively.
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Figures 6b and 8b–c show the track using the three different predicting forms. Figure 8d shows the
real-time error of three different prediction forms.
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Figure 8. Comparison of the performance in three different prediction forms. (a) mean positioning
accuracy under different prediction forms; (b) ground truth and estimated track of random prediction;
(c) ground truth and estimated track of laser prediction; (d) estimation error at different timestamps.

4.2.3. Impact of Different Parameters of Laser Clustering

In the next series of experiments, we compared the positioning accuracy under the impact
of different settings of the laser clustering, i.e., grouping threshold dg, distance parameter dp,
splitting threshold ds, and the radius threshold rmax. The results are shown in Figure 9. As can
be seen from Figure 9a, grouping threshold dg and the distance parameter dp have high impact on the
positioning accuracy. The accuracy decreases when dg and dp are too small or too large. A choice of
dg = 0.2 and dp = 0.01 gives the best positioning accuracy. As can be seen from Figure 9b, the radius
threshold rmax also has some impact on the positioning accuracy. A too small rmax will retain many
useless clusters and introduces more error to the positioning, while a too large rmax will filter out
the true clusters and gives a poor positioning accuracy as well. As can also be seen from Figure 9b,
the positioning accuracy decreases with a too small or too large splitting threshold ds. When the
splitting threshold ds is too small (for example ds = 0.01), one obstacle is segmented into several
groups and leads to an increase of positioning error, while the accuracy gets worse with a too large ds,
as several obstacles are segmented into one group. To keep all these analysis in mind, we choose the
parameters as: dp = 0.01, dg = 0.2, ds = 0.1, and rmax = 1.0.
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Figure 9. Positioning accuracy under the impact of different parameters of laser clustering. (a) Impact of
different grouping thresholds dg and distance parameters dp; (b) Impact of different maximum cluster
radius rmax and splitting threshold ds.

4.2.4. Impact of Different Number of Particles N

As the number of particles is directly related to the processing time and positioning accuracy,
we carried out experiments to analyse the impact of the number of particles. We used a CPU with
Core i3-2330M, 2.2GHz and 6 GB RAM for the processing. Other parameters are set to be the same
as previously and the system is checked for different numbers of particles. The results are listed
in Table 3. From this table, we can observe that a small number of particles (i.e., N < 100) leads
to a poor positioning accuracy. The positioning accuracy increases (but not so obviously) with the
increase of the number of particles, but the processing time increases significantly at the same time.
Therefore, we choose a particle number of N = 100 to achieve the better positioning accuracy and
algorithm efficiency.

Table 3. Mean positioning accuracy and running time of the algorithm under the impact of different
number of particles N.

Number of Particles N Accuracy (m) Running Time (ms)

5 0.457 4.187
10 0.295 4.535
50 0.279 4.655
100 0.256 4.858
500 0.254 6.654

1000 0.258 8.594

4.2.5. Comparison of Different Velocity Noise σv and Moving Direction Noise σa

In the next series of experiments, we evaluated the impact of the Gaussian noise σv and σa added
to the velocity and moving direction of laser clusters. We use the same parameter settings as previously
except the ones mentioned below and show the results in Figure 10. As can be seen from this figure,
a too large or too small σa will result in a decrease of the positioning accuracy. We get the best
positioning accuracy (i.e., 0.259 m) with σa = 0.1 for a setting of σv = 1.0, which is an improvement
of 21.5% and 7.5%, as compared to σa = 0.0 (0.33 m) and σa = 0.5 (0.28 m), respectively. The same
findings apply to the parameter of σv. Based on the results in Figure 10, we chose σa = 0.1 and σv = 1.0
to achieve the best accuracy of the system.
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Figure 10. Positioning accuracy under the impact of different velocity noise σv and moving direction
noise σa.

4.2.6. Impact of Different K and the Bandwidth Parameter σd

In the last series of experiments, we tested the positioning accuracy under the impact of different
settings of K and the bandwidth parameter σd. The results are shown in Figure 11. As it can be seen
from this figure, K = 4 gives the best result. A too large or too small K leads to a worse positioning
result. Moreover, we also find a suitable value of σd is at around 0.1. The positioning accuracy gets
worse when σd is too large (e.g., 1.0) or too small (e.g., 0.01). With the best settings of K and σd
(i.e., K = 4 and σd = 0.1), we achieve a positioning accuracy of 0.25 m.
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Figure 11. Mean positioning error under the impact of different K and bandwidth σd.

5. Conclusions

In this paper, we proposed a new approach for moving object localization based on RFID phase
and laser clustering. We first computed the RFID phase-based velocity by the phase difference and
laser-based velocity from laser clustering. Then, a particle filter is used for the sensor fusion based
on the best K matching clusters. We conducted extensive experiments to validate the feasibility of
the proposed approach and our results show that a mean positioning accuracy up to 0.25 m can be
achieved. In future, we would like to increase the positioning accuracy by incorporating the signal
strength information and extend our work to include multiple moving objects.
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The following abbreviations are used in this manuscript:

UHF Ultra High Frequency
LBS Location-Based Services
RFID Radio Frequency Identification
Wi-Fi Wireless Fidelity
RSS Received Signal Strength
TOA Time of Arrival
AOA Angel of Arrival
WSN Wireless Sensor Network
EKF Extended Kalman Filter
VPH Vector Polar Histogram
RMSE Rooted Mean Square Error
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