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This pilot study evaluated the impact of Bikram Yoga on subjective and objective sleep parameters. We compared subjective (diary)
and objective (headband sleep monitor) sleep measures on yoga versus nonyoga days during a 14-day period. Subjects (n = 13)
were not constrained regarding yoga-practice days, other exercise, caffeine, alcohol, or naps. These activities did not segregate by
choice of yoga days. Standard sleep metrics were unaffected by yoga, including sleep latency, total sleep time, and percentage of time
spent in rapid eye movement (REM), light non-REM, deep non-REM, or wake after sleep onset (WASO). Consistent with prior
work, transition probability analysis was a more sensitive index of sleep architecture changes than standard metrics. Specifically,
Bikram Yoga was associated with significantly faster return to sleep after nocturnal awakenings. We conclude that objective home
sleep monitoring is feasible in a low-constraint, real-world study design. Further studies on patients with insomnia will determine
whether the results generalize or not.

1. Introduction

Yoga is a technique of spiritual development originating in
Ancient India which was first documented in the Yoga Sutras
of Patanjali, written around 500–100 BC [1]. It describes
eight essential limbs, two of which are stretching and breath-
ing exercises. Bikram Yoga is a modern style introduced
in the 1970s by Bikram Choudhury that is more focused
on creating physical wellness than spiritual development. It
utilizes a specific sequence of 26 stretching postures and 2
breathing exercises, which are performed over a 90 minutes
session at 105 degrees Fahrenheit and 40% humidity. Because
the Bikram Yoga series and environment are so highly regi-
mented and common to all facilities, it provides an impor-
tant opportunity to study the effects of physical yoga on sub-
jective and objective metrics of sleep. In particular, anecdotal
evidence of a relationship between Bikram practice and qual-
ity of sleep has circulated for some time within communities
of practitioners, but this has not been formally studied.

Insomnia is a condition of difficulty initiating or main-
taining sleep that affects 5–40% of adults at some point in
their lives and thus represents a major concern for health

and wellbeing [2, 3]. Approximately 10% of adults report
their insomnia to be chronic and/or severe. Many individuals
self-medicate with over-the-counter and complementary
remedies [4]. Prescription hypnotics may also be used but
are associated with some liabilities including potential for
tolerance or dependence, among other side effects [5]. Non-
pharmacological means to improve sleep, such as cognitive
behavioral therapy, have been shown to be at least as effective
as pharmacological therapies [6]. A recent meta-analysis
of alternative therapies included methods spanning natural
remedies, yoga, acupuncture/acupressure, and meditation
[7]. Only one out of the 20 studies that met criteria for
inclusion in that meta-analysis reported objective sleep mea-
surements. Emphasis on subjective report in the literature
may derive in part from the diagnostic criteria for insomnia,
which do not require objective metrics. Complementing
subjective report with objective home sleep monitoring may
prove to be an important component of comprehensive sleep
disorder management.

Several major challenges in sleep research may be ad-
dressed by objective home sleep monitoring. One is that
while the sleep laboratory setting allows highly controlled
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and mechanistic investigation of insomnia (among other
sleep disorders), this advantage comes at the expense of
uncertain external validity: a single night in an unnatural
environment may not capture contributions by the diversity
of behaviors and exposures affecting sleep in day-to-day
life. This has been demonstrated in other species, as mice
exhibit markedly different activity rhythms “in the field”
compared to laboratory conditions [8]. Another is that the
routinely employed methods used to analyze sleep architec-
ture have been shown to be insensitive for detecting differ-
ences, especially those related to fragmentation. For example,
the fragmentation associated with sleep apnea is not well
appreciated using stage percentage and sleep efficiency met-
rics but can easily be seen with probabilistic metrics such
as the distribution of bout durations [9–11]. These metrics
are best estimated by repeated measures within individuals.
Given the variability found in patients with insomnia in
terms of severity, contributing factors, and impact on health
and well being, it is becoming increasingly important to find
personalized solutions, ideally while concurrently minimiz-
ing the need for hypnotic agents.

We performed a low-constraint, observational study of
sleep architecture in healthy young adults over a 14-day
period in which they performed Bikram Yoga on at least two
of the days. Subjective sleep was assessed with a daily diary.
Objective sleep was assessed with a commercially available
headband monitoring device worn at night. Subjects were
allowed to self-determine the days and times of Bikram and
how many sessions to perform (with a minimum of two
days). They were also unconstrained as to engaging in other
exercise, napping, and consumption of alcohol, nicotine, and
caffeine. Such low-constraint designs are not often adopted
in clinical research because the confounding (uncontrolled)
variables may correlate with the intervention of interest;
however, highly controlled studies suffer from the inverse
problem: questionable relevance to real-world implemen-
tation. We undertook this pilot study with the following
aims: (1) to investigate the feasibility of using a simple home
monitor to characterize sleep architecture in a low-constraint
setting; and (2), to determine if Bikram Yoga acutely affects
the sleep architecture of healthy young adults.

2. Methods

2.1. Subject Population. Institutional Review Board approval
was obtained to conduct this study through the Mas-
sachusetts General Hospital. The inclusion criteria included
healthy adults aged 18–45 who reported that they either
perform Bikram Yoga or were planning to try it. Subjects
were instructed to perform Bikram yoga on at least two days
during the recording period (and no more than 12 days).
The flexibility was meant to mimic “real world” decisions,
along with the subjects having the choice of day and time
to perform the Bikram and other activities reported on
the diary (nap, exercise, caffeine, alcohol, and nicotine).
Subjects performed Bikram Yoga at local providers in the
Boston/Cambridge area. Subjects were compensated for par-
ticipation. The exclusion criteria included medical problems

or medications that could potentially interfere with the sleep
monitoring device’s algorithm (such as neuroactive medica-
tions that affect the EEG and/or eye movements, epilepsy
or skull defects that could result in breach confounds),
significant neurological disease, or any known sleep disorder.
Twenty subjects consented, and 13 completed the study.
One subject withdrew because of inability to sleep with the
monitoring device (discomfort); one was excluded for failure
to return the diary; one was excluded for inaccuracy of
sleep scoring attributed to severe bruxism (large blocks of
wake reported in the night, despite subject denying nocturnal
awakenings, and these were presumed to reflect muscle
artifact leading to excess wake scoring); two were excluded
for insufficient objective data (due to headband frequently
falling off during sleep); and two did not report reasons for
noncompletion.

2.2. Sleep Monitoring. Subjects monitored their sleep-wake
activity through self-report and through the use of an elastic-
headband sleep-monitoring device, the Zeo (http://www
.myzeo.com/sleep/). This study was not supported by Zeo;
refurbished devices were purchased from Zeo Inc. (Newton,
MA, USA). Subjects were not provided serial numbers to
log into the Zeo web site, but they could view their sleep-
stage architecture (hypnogram), which was displayed each
morning on the alarm-clock display. The headband contains
embedded fabric sensors to enable “dry” contact with the
forehead and does not require special skin preparation or
adhesive. A neural network algorithm uses frontal electroen-
cephalographic signals, electromyographic signals, and elec-
trooculographic signals to classify sleep-wake stages accord-
ing to the following categories: wake, rapid eye movement
(REM) sleep, light non-REM, and deep non-REM sleep.
Light non-REM corresponds to N1 and N2 stages, while
deep non-REM corresponds to stage N3. Correlation of Zeo
classification of sleep architecture with human scoring is
∼80% [12, 13]. The raw data is not stored; rather, the device
stores the hypnogram data only, which is then exported for
analysis. The written diary enabled self-report recording of
the following parameters each day: alcohol, caffeine, tobacco,
naps, exercise, Bikram, subjective sleep latency, total sleep
time, and morning Stanford Sleepiness Scale.

2.3. Analysis. We predefined two types of analysis to per-
form on the sleep-architecture data (using Prism software,
GraphPad software Inc.). First, we summarized sleep using
the traditional metrics of sleep latency, total sleep time, and
percentage of time spent in each sleep-wake stage, as reported
by the device. The distribution of data in this manner
(stage percentage) approximated the Gaussian assumption
by formal distribution testing (using three different tests of
normality: Kolmogorov-Smirnov, D’Agostino-Pearson, and
Shapiro-Wilk), and thus we used ANOVA with post hoc
testing for multiple comparisons where appropriate.

Second, we considered sleep architecture according to the
distribution of sleep-wake-bout durations. Zeo allows ex-
port of sleep-stage classification data in 30-second intervals
(although some smoothing of brief events occurs in the
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Table 1: Subject characteristics.

Age 35 median (Range 22–43)

Sex 7 males, 6 females

ESS 6 median (Range 2–10)

Bikram experience 4 experienced, 9 novice

Nights of sleep data 13 median (Range 9–14)

Number of Bikram days 4 median (Range 2–11)

PSQI 8 median (Range 3–14)

Chronotype score 50 median (Range 41–70)

algorithm). Bout durations were calculated from this data
and plotted as “survival curves,” in which the durations
of each sleep-wake stage were assessed for each individual
based on whether Bikram Yoga was performed during the
day or not. The frequency of observations was normalized
within Bikram versus non-Bikram days, separately for each
patient. This normalization addresses the fact that each
subject had a different number of bouts of sleep-wake stages
each night and a different number of days on which Bikram
was performed. These normalized data were then averaged
over the whole group of subjects, to create average survival
curves shown in the figures.

The averaged survival curves were analyzed by fitting
two-exponential decay curves using the nonlinear sum-of-
squares F-test to determine whether the time constants and
proportions were different in Bikram versus non-Bikram
conditions. The nonlinear sum-of-squares F-test was also
used to establish that a two-exponential decay function was
a significantly better fit than a monoexponential function,
consistent with our prior results that sleep-wake bout distri-
butions required the sum of multiple exponential functions
[9], and that resolving the longest (slowest) time constant
required a large amount of data (more than obtained here,
e.g.). As an auxiliary test to compare distributions between
Bikram and non-Bikram nights, we performed analysis of the
integral of the survival curves, which does not require any
assumptions about the shape or fitting of the curve, and this
showed a significant difference in the WASO survival curves
in Bikram versus non-Bikram conditions (P < 0.02, t-test).

3. Results

3.1. Subject Characteristics. Table 1 shows the baseline char-
acteristics of the 13 subjects who completed the study. The
median number of days of usable data in this group was
13 and the median number of days in which Bikram Yoga
was performed was four. The baseline scores were in the
normal range for the Epworth Sleepiness Scale (ESS) (normal
is ≤10) [14], and the Horne and Ostberg chronotype scale
[15]. The Pittsburgh Sleep Quality Index (PSQI) scores were
more variable, with a median value of 8 (<5 is considered to
indicate good sleep) [16].

3.2. Sleep Latency and Total Sleep Time. Figure 1 compares
Bikram (gray) versus non-Bikram days (white), with regard
to objective and subjective measures of total sleep time

(Figure 1(a)) and sleep latency (Figure 1(b)). The subjective
and objective measures were not significantly different,
indicating absence of sleep-state misperception [17] in this
healthy population. Performing Bikram Yoga was not associ-
ated with significant changes in either subjective or objective
measures of sleep latency or total sleep time (ANOVA, with
Bonferroni correction, P > 0.05).

3.3. Sleep Architecture Analysis. Standard analysis of sleep
architecture involves calculating the percentage of time spent
in each sleep-wake stage. In this study, we found that the
percentage of time spent in wake, light non-REM, deep
non-REM, or REM sleep did not differ based on Bikram
performance (ANOVA, with Bonferroni correction, P >
0.05) (Figure 2(a)). This was not surprising, given that (1)
this is a baseline healthy population without significant sleep
complaints and (2) sleep-stage percentage is an insensitive
metric of fragmentation, such as that caused by sleep apnea
[9–11].

Analysis of sleep stages from a probabilistic standpoint is
a valuable alternative. Sleep architecture is characterized by
transitions between wake and sleep as well as by transitions
within sleep among the different stages. A “bout” duration
is defined as the amount of consecutive time spent in any
given stage of sleep (or wake) before transitioning to the next
stage. The distribution of bout durations yields insight into
the stability of each sleep-wake stage. Here, we use a type of
“survival” analysis, which considers the probability of a bout
of sleep or wake lasting a certain length of time (or longer).

Figure 2(b) illustrates the distribution of wake-bout du-
rations in a survival plot. The downward-sloping curve in-
dicates that the probability of observing brief duration
awakenings is high, but that of observing progressively longer
duration of wake bouts progressively decreases. Our results
show that the curve is significantly accelerated on Bikram
Yoga days compared to non-Bikram days. We quantified
these distributions in two ways, both of which support the
conclusion of shorter wake-bout durations with Bikram. The
first method involved fitting the distributions with the sum
of exponential functions, as we have previously reported [9].
Exponential fitting revealed significantly accelerated survival
curve for Bikram days. The time constants for curve fitting
of nonyoga days (in minutes, with 95% confidence intervals)
were fast tau 1.4 (1.3–1.6), slow tau 10.2 (9.5–10.9), and the
percentage of contribution of fast tau 66.4% (63.9–69.0). The
time constants for curve fitting of yoga days were fast tau
1.5 (1.3–1.7), slow tau 7.7 (7.0–9.0), and the percentage of
contribution of fast tau 67.1% (63.2–70.9), indicating that
the majority of the effect of Bikram came in the slow tau,
which was 25% faster on yoga days (sum-of-squares F-test
for parameter difference, P < 0.0001). An alternative metric
that does not depend on accurate fitting of the distribution
involved comparing the area under the survival curve; these
values satisfied the Gaussian approximation. This analysis
revealed a significant decrease in the area of the WASO
distribution comparing Bikram to non-Bikram nights (P <
0.03, t-test).
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Figure 1: Total sleep time and sleep latency. (a) Total sleep time is shown by objective measurement (TST) and by subjective diary (s-TST)
on nonyoga nights (open boxes) and on Bikram Yoga nights (gray boxes). Each plot shows the median, 25% and 75% quartiles (boxes),
mean (plus sign), and 95% confidence range (whiskers). There were no significant differences in subjective or objective TST on yoga or
nonyoga days. (b) Sleep latency is shown by objective measurement (SL) and by subjective diary (s-SL) on nonyoga nights (open boxes)
and on Bikram Yoga nights (gray boxes). Box and whisker plots are as in (a). There were no significant differences in subjective or objective
latency on yoga or nonyoga days.

The observation that Bikram Yoga was associated with
shorter duration awakenings within sleep can be interpreted
in two ways: either subjects fell asleep more rapidly fol-
lowing a usual number of nocturnal awakenings or there
were in fact additional brief awakenings (perhaps, e.g., via
dehydration causing many brief awakenings that would bias
the distribution) that dominated the survival-curve analysis.
To distinguish these possibilities, we analyzed the number of
awakenings per night. The inset of Figure 2(b) shows that
the number of awakenings was unchanged (paired t-test,
P > 0.05) and confirms that Bikram Yoga was associated with
improved sleep architecture as manifested by more rapid
return to sleep for any given nocturnal awakening.

Similar survival analysis was performed for the three
sleep substages (Figures 2(c)–2(e)), but no differences were
observed using the same time-constant analysis as above. It is
worth noting that the reason that the time-constant analysis,
but not traditional stage-percentage analysis, can reveal ar-
chitecture differences is that the percent of time in any stage
ignores the bout length: for example, consider two subjects
with 90% sleep efficiency—one could have a single 30-
minute awakening and the other could have 30 one-minute
awakenings. Thus, bout-distribution analysis provides a sen-
sitive tool for comparison of sleep-wake architecture.

4. Discussion

This study suggests that home sleep monitors may be an
important adjunct to self-report outcomes in longitudinal

studies of interventions to improve sleep. Considering the
dual factors of objective and subjective sleep, one could
assess effects in four potential categories: response in both,
no response in both, response to subjective but not objective,
and response in objective but not subjective. Each of these
dimensions may have distinct clinical and pathophysiological
implications. For example, there is evidence for dissociation
between objective and subjective sleep durations [18, 19]
and evidence that certain medications actually induce a
subjective overestimation of sleep duration [20]. Here, we
show evidence of the last of these four categories: although
we did not observe significant improvements in self-reported
sleep quality or quantity, we were able to identify an objective
improvement in sleep architecture associated with Bikram
Yoga.

4.1. Effect of Bikram Yoga on Sleep. Further studies are re-
quired to determine which aspect(s) of Bikram Yoga can be
most important for impacting sleep physiology. For example,
physiological changes could be attributed to changes in
hydration, to performance of vigorous exercise in general,
or to indirect effects (such as being more mindful about
avoiding other disruptors of sleep). We did not detect any
significant differences in terms of the portion of days in
which subjects reported alcohol, caffeine, naps, or other exer-
cise when comparing Bikram versus non-Bikram days (data
not shown). Future studies should compare Bikram to other
forms of exercise as well as forms of relaxation, to determine
which aspect of Bikram was most relevant to effects on sleep.
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Figure 2: Sleep-wake architecture. (a) The percentage of time spent in wake after sleep onset (W), REM, light NR (L-NR), and deep NR
(D-NR) sleep are shown in box and whisker plots (median, 25–75% quartiles, and 95% confidence interval whiskers; mean indicated by
plus sign). The values of each sleep-wake stage for nonyoga nights (open boxes) were not different than nonyoga nights (gray boxes). (b)
Survival curves for bouts of wake after sleep onset (WASO) were significantly different for nonyoga (black line) and yoga (gray line) nights.
The survival curves show the normalized relative frequency of observing bouts of WASO of different durations. The inset shows the absolute
number of awakenings per hour of sleep for nonyoga (open) and yoga (gray) nights, which were not different. (c–e) There were no differences
in the survival curves between yoga and nonyoga nights for REM, L-NR, or D-NR sleep-stage-bout distributions.

In terms of the expectation of finding effects of inter-
ventions such as yoga on sleep architecture, it is important
to consider differences between the present group (healthy
young adults) and other groups with clinically significant
sleep disturbance, such as those with insomnia with or with-
out comorbid depression and pain. In healthy cohorts there
may be ceiling effects regarding improvements in sleep
physiology, which may already be rather optimal compared
to those likely to be seen in patient groups. It is possible that
other changes would be evident (such as the distribution of
sleep substages) in groups performing Bikram Yoga that have

more fragmentation at baseline (and thus have more room to
change).

4.2. Quantifying Sleep Architecture. The manner in which
sleep-wake architecture is characterized is critical in order to
avoid false-negative findings. There is a long tradition in
both clinical and research venues of analyzing sleep architec-
ture according to summary metrics such as sleep efficiency
and percentage of time spent in particular sleep-wake stages.
However, emerging data suggests that such analysis is insen-
sitive to detect even severe degrees of fragmentation in large
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cohorts. For example, distinguishing between subjects with
severe sleep apnea (who have clear sleep architecture frag-
mentation) or normal breathing is not accomplished well
using sleep-stage percentages but is clearly evident using
transition analysis [9–11]. Analyzing distributions provides a
powerful method to detect objective changes in architecture,
which has important implications for power calculations
when planning studies, as well as the interpretation of the
objective impact an intervention (such as yoga, or a medica-
tion) may have on sleep physiology.

4.3. The Potential Advantages of Home Sleep Monitoring. It
is clear to patients and investigators alike that sleeping in the
laboratory setting may not be reflective of home sleep for two
reasons. First, it may be that the extensive wires and sensors
in the unusual environment may be disturbing to sleep
and/or anxiety provoking. In fact, most laboratory research
studies will perform at least one “accommodation” night in
hopes of decreasing the untoward effects of the laboratory
environment on the measurement of sleep. Second, the true
test of efficacy for any intervention regarding sleep is whether
the effect can be observed in the home setting, with all
of its inherent variability. In addition to these practical
measurement issues, it is critical to understand individual
differences in sleep habits and sensitivity to factors that
potentially enhance or disturb sleep (such as caffeine, alco-
hol, pain, work, etc.). Thus, there is an important tradeoff
to consider: to the extent that one controls these variables
in the laboratory environment, one can investigate efficacy
and mechanism of interventions; on the other hand, one
can perform low-constraint “real world” experiments and
allow natural fluctuations in these variable factors, as shown
in this study. The latter approach may also be favorable in
terms of the opportunity for individualized sleep medicine,
where it becomes important to have longitudinal data within
subjects to enable investigation of multiple factors that may
be relevant to the individual. There is data, for example,
suggesting differential sensitivity to sleep deprivation and
caffeine [21–23], as well as sleep need [24].

4.4. Limitations and Future Directions. In low-constraint
studies such as this one, we depend on various factors that
potentially influence sleep to be distributed both within
individuals (e.g., nights of alcohol use) and between different
individuals (e.g., some individuals nap, others do not).
However, even if these factors are distributed evenly by
chance, their specific occurrences are not prospectively ran-
domized and thus represent potential confounding factors.
We chose the low-constraint paradigm to ensure realistic
circumstances, but we recognize the possibility that there
may be important information contained in how individuals
make various behavioral choices. For example, caffeine may
be taken to enhance energy after a bad night of sleep. In
contrast, consider that restricting or controlling caffeine or
alcohol intake may itself be an alteration of one’s home-
behavioral pattern. Subjects also had a choice, as in “real life,”
of when and how often to perform the Bikram Yoga inter-
vention, and we cannot tell whether that choice depended

on some unknown factor that was somehow linked to sleep
physiology, rather than Bikram Yoga causing the change we
observed in WASO.

If Bikram Yoga was causative in the observed WASO
improvement, we cannot distinguish which aspect was most
important (heat, humidity, time, or poses) or if the total
combination was important (perhaps together with other in-
direct factors). In addition, there may be different acute ver-
sus longer-term effects, and these may differ among individ-
uals. Stratified trial designs (which require higher enrollment
numbers) that take into account different experience levels,
frequency of practice, and acute versus long-term effects,
will be important in this regard. Here, we were not powered
to stratify by experience. It is possible, for example, that
experienced practitioners achieve an improved “chronic”
state of sleep physiology that is less sensitive to the acute day-
to-day practice (or not) of yoga. The small sample size is
a limitation that should be addressed in future studies,
including allowance for subset analyses. Of particular interest
is whether habitual performance of yoga would reveal an
evolution of changes in sleep architecture, perhaps from
acute (restricted to the day of yoga) to chronic (sleep assumes
an improved and more stable architecture even between
yoga days). From a practical standpoint, longitudinal home
monitoring faces potential limitations in the form of missing
data (forgotten diary entry or headband falling off in sleep,
etc.). Despite these limitations, the opportunities for external
validity as well as recognition of sensitive methods to char-
acterize architecture are important advantages. With the in-
creasing availability of home sleep monitoring, longitudinal
studies of sleep in the “real world” will provide key insights
into our understanding of sleep in health and disease.
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