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Fixed‑length haplotypes can improve 
genomic prediction accuracy in an admixed 
dairy cattle population
Melanie Hess1,2*, Tom Druet3, Andrew Hess1 and Dorian Garrick1,4

Abstract 

Background:  Fitting covariates representing the number of haplotype alleles rather than single nucleotide polymor-
phism (SNP) alleles may increase genomic prediction accuracy if linkage disequilibrium between quantitative trait 
loci and SNPs is inadequate. The objectives of this study were to evaluate the accuracy, bias and computation time 
of Bayesian genomic prediction methods that fit fixed-length haplotypes or SNPs. Genotypes at 37,740 SNPs that 
were common to Illumina BovineSNP50 and high-density panels were phased for ~58,000 New Zealand dairy cattle. 
Females born before 1 June 2008 were used for training, and genomic predictions for milk fat yield (n = 24,823), live-
weight (n = 13,283) and somatic cell score (n = 24,864) were validated within breed (predominantly Holstein–Frie-
sian, predominantly Jersey, or admixed KiwiCross) in later-born females. Covariates for haplotype alleles of five lengths 
(125, 250, 500 kb, 1 or 2 Mb) were generated and rare haplotypes were removed at four thresholds (1, 2, 5 or 10%), 
resulting in 20 scenarios tested. Genomic predictions fitting covariates for either SNPs or haplotypes were calculated 
by using BayesA, BayesB or BayesN. This is the first study to quantify the accuracy of genomic prediction using haplo-
types across the whole genome in an admixed population.

Results:  A correlation of 0.349 ± 0.016 between yield deviation and genomic breeding values was obtained for milk 
fat yield in Holstein–Friesians using BayesA fitting covariates. Genomic predictions were more accurate with short 
haplotypes than with SNPs but less accurate with longer haplotypes than with SNPs. Fitting only the most frequent 
haplotype alleles reduced computation time with little decrease in prediction accuracy for short haplotypes. Trends 
were similar for all traits and breeds and there was little difference between Bayesian methods.

Conclusions:  Fitting covariates for haplotype alleles rather than SNPs can increase prediction accuracy, although it 
decreased drastically for long (>500 kb) haplotypes. In this population, fitting 250 kb haplotypes with a 1% frequency 
threshold resulted in the highest genomic prediction accuracy and fitting 125 kb haplotypes with a 10% frequency 
threshold improved genomic prediction accuracy with comparable computation time to fitting SNPs. This increased 
accuracy is likely to increase genetic gain by changing the ranking of selection candidates.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Availability of single nucleotide polymorphism (SNP) 
genotypes allows the estimation of breeding values at 
a young age with higher accuracy than breeding val-
ues based on parent average [1]. Genomic prediction 
is routinely performed by fitting covariates represent-
ing SNP allele dosage, which putatively relies on linkage 

disequilibrium (LD) between SNPs and quantitative trait 
loci (QTL) to estimate the QTL effects [2, 3]. Accuracy 
of genomic predictions improves when LD between 
SNPs and QTL increases, i.e. by increasing SNP density 
[4]. A haplotype block (haploblock) defines a region of 
the genome that comprises a set of neighboring genetic 
markers (i.e. SNPs), whereby their phased alleles are likely 
inherited together. A haplotype allele is a combination of 
phased SNP alleles that are present in a haploblock. Hap-
lotype alleles are likely in higher LD with a linked QTL 
than the high minor allele frequency (MAF) non-coding 
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SNP alleles that are typically used to construct SNP chips 
[5]. If the LD between haplotype alleles and QTL within 
the haploblock is higher than that between individual 
SNP alleles and QTL, the accuracy of genomic predic-
tions that fit covariates for haplotype alleles is expected 
to be higher than the accuracy of genomic predictions 
that fit SNP alleles.

The prediction accuracy of haplotype models was 
shown to be influenced by the method used to divide 
the genome into haploblocks with both simulated [6, 7] 
and real [8] data. Simple methods to form haploblocks 
use measurements of length, such as centimorgans 
(cM) [9], base pairs (bp) [10] or number of SNPs [7, 8, 
11], and apply these uniformly along the genome. These 
fixed-length haplotypes are easy to construct and their 
definition is not sensitive to the dataset that is used to 
construct them, unlike more complex methods [12, 13] 
that attempt to account for recombination hotspots and 
coldspots along the genome [14, 15].

Discarding SNPs with a low MAF is common practice 
when performing genomic prediction in order to reduce 
computation time and because of the low power to detect 
trait associations for SNPs with a low MAF [16, 17]. 
There are over 1  million (220) possible haplotype alleles 
for a block of 20 biallelic SNPs, and although far fewer 
haplotype alleles are found in practice, many are typi-
cally observed at low frequency. Discarding these rare 
haplotype alleles will reduce computation time with lit-
tle expected decrease in prediction accuracy, because the 
effect of rare alleles is shrunk towards zero in Bayesian 
linear regression models [18].

Cuyabano et  al. [19] found that fitting covariates for 
haplotype alleles instead of SNPs increased the accuracy 
of genomic predictions when fitting a Bayesian mixture 
model but not when fitting a ridge regression best lin-
ear unbiased prediction (RR-BLUP) model. BayesA [20] 
fits all SNPs simultaneously and the effects of SNPs are 
assumed to be independent with a SNP-specific variance. 
Not all genomic regions are expected to be associated 
with a phenotype. BayesB [20] defines a parameter π and 
samples the effects of SNPs from mixture distributions, 
i.e. the effects for approximately 1 −  π SNPs are sam-
pled at each iteration of a Markov chain with the same 
assumptions as BayesA, and the remaining effects are 
assumed to be zero. BayesN [21] is a hierarchical exten-
sion to BayesB that assumes that some chromosome seg-
ments have non-zero effects and applies a local BayesB 
model only to the chromosome segments that are sam-
pled to have an effect. Its hyperparameters include Π, i.e. 
the proportion of segments that are assumed to have no 
effect, from which it follows that a proportion of approxi-
mately 1  −  Π segments are sampled to have non-zero 
effects at each iteration, and πi, the segment-specific 

probability that a covariate within that segment has a 
zero effect. We hypothesized that BayesN would per-
form well when fitting covariates for haplotype alleles 
if each haploblock is considered as a window because it 
will estimate non-zero effects for those haplotype alleles 
that are in genomic regions (haploblocks) associated with 
the phenotype, and zero effects for covariates in all other 
regions.

Most studies using haplotypes to improve genomic 
prediction accuracy have focused on simulated datasets 
[7, 13, 22], or datasets consisting of a single breed [8, 12, 
23]. The New Zealand dairy cattle population consists 
predominantly of Holstein–Friesians (HF), Jerseys (J), or 
their admixed descendants, known as KiwiCross (KX). 
Bulls used for artificial insemination (AI) include KX in 
addition to bulls that are predominantly (≥7/8) HF or 
predominantly (≥7/8) J; in New Zealand, only ~25% of 
semen straws, which are used to inseminate cows, are 
used on a cow of the same breed as the bull that provided 
the semen (i.e. HF, J or Ayrshire) [24], which results in 
most New Zealand dairy cattle being admixed in con-
trast to the situation in other countries [25]. This is the 
first study to quantify the accuracy of genomic prediction 
using haplotypes across the whole genome in an admixed 
population.

The objectives of this study were to evaluate the accu-
racy, bias and computation time of Bayesian genomic 
prediction methods that fit covariates for fixed-length 
haplotype alleles compared to SNP alleles. Fixed-length 
haplotype alleles (from 125  kb to 2  Mb) with varying 
allele frequency thresholds (from 1 to 10%) were fitted 
using BayesA [20], BayesB [20] and BayesN [21] models 
for genomic prediction when the training set included all 
breeds and validating the resulting predictions in later-
born HF, J or KX cows not included in the training set.

Methods
Phenotype data
First lactation yield deviations (YD) [26] were provided 
by Livestock Improvement Corporation (LIC) for milk fat 
yield (Fat), liveweight (Lwt) and somatic cell score (SCS) 
for cows that were born between 1990 and 2011. Herit-
abilities of these traits in the New Zealand dairy cattle 
population are estimated at 0.28, 0.30 and 0.15, respec-
tively [27]. Based on a six-generation pedigree, records 
for animals for which more than 1/16 of their genome 
originated from a breed other than Holstein, Friesian, J 
or Red Dairy Cattle (e.g. Ayrshire) were removed. All ani-
mals in small (<5 records) contemporary groups (same 
herd, parity, and calving season), outlier contemporary 
groups and outliers within a contemporary group were 
excluded. Outliers were defined as animals (or groups) 
for which records (or group mean) deviated more than 5 
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standard deviations (SD) from the mean for Fat and Lwt 
or more than 7 SD for SCS. Genotyped females with YD 
were used for training if they were born before 1 June 
2008, and later-born genotyped females comprised the 
validation data. June 1 is the recognized start of the New 
Zealand Spring calving season. The number of animals in 
each training and validation set by breed is in Table 1.

Genotypes and phasing
Genotype information was collected based on either v1 
or v2 Illumina BovineSNP50 Beadchips [28] or the Illu-
mina BovineHD Beadchip [29] for 58,369 dairy cattle 
born between 1960 and 2012 (46,614 females and 11,755 
males). After filtering based on Hardy–Weinberg equilib-
rium (P < 1e−8), SNP call rate (<0.95) and excess Men-
delian inconsistencies (>10), 37,802 mapped autosomal 
SNPs remained, which were phased using LINKPHASE3 
[30]. SNPs that were associated with 35 putative map 
errors [30] were removed, leaving 37,740 SNPs. Some 
regions remained un-phased for some individuals, and 
these regions were phased with DAGPHASE [31] using 
the directed acyclic graph obtained from all haplotypes 
phased with BEAGLE [32].

Haplotype construction
Haplotypes of five different lengths (125  kb, 250  kb, 
500  kb, 1  Mb and 2  Mb) were constructed using the 
UMD 3.1 map of the Bos taurus genome (Genbank acces-
sion: DAAA00000000.2). Rare haplotype alleles were dis-
carded based on their frequency in the training dataset 
at four different frequency thresholds: 1, 2.5, 5 or 10%. 
Discarding rare haplotype alleles results in the effect of 
these rare alleles being absorbed into the estimate of the 
mean. Five haplotype lengths assessed at each of the four 
frequency thresholds led to 20 scenarios being tested for 
each haplotype model.

Genomic prediction models
Genomic prediction was performed using GenSel v4.73R 
[33], by fitting covariates for either SNPs or haplotype 

alleles in BayesA, BayesB or BayesN models. A single 
Markov chain Monte Carlo (MCMC) of length 41,000, 
including 1000 iterations for burn-in, was computed for 
each analysis to obtain posterior estimates of covariate 
effects, which were used to obtain direct genomic values 
(DGV) for validation animals, as described in the follow-
ing section. Prior analysis showed that correlations and 
regression coefficients converged at this chain length.

BayesA
The SNP model and each of the 20 scenarios of the hap-
lotype model (five haplotype lengths and four frequency 
thresholds) were fitted in BayesA for all traits, using the 
following model [20]:

where y is an N ×  1 vector of YD, μ is the intercept, X 
is an incidence matrix of pairwise heterosis fractions 
between Holstein (H), Friesian (F), J and Red (R) breeds, 
defined as the product of the pedigree-based propor-
tions of each of the two breeds for an individual, h is a 
vector of six heterosis effects, k is the number of covari-
ates for SNPs (SNP model) or haplotype alleles (hap-
lotype model), zj is an N  ×  1 vector of allele counts 
(0/1/2) at SNP j (SNP model) or haplotype allele j (hap-
lotype model), αj is the additive effect of that SNP or 
haplotype allele, and e is an N ×  1 vector of identically 
and independently distributed residual effects with zero 
mean and variance σ 2

e , where the prior for σ 2
e  is a scaled 

inverse Chi square distribution with scale parameter S2e 
and νe degrees of freedom. BayesA assumes that SNP or 
haplotype allele effects have identical and independent 
t-distributions with scale parameter S2α and ν degrees of 
freedom.

BayesB
The SNP model and two of the 20 haplotype scenarios 
were fitted using BayesB. We selected two haplotype 

y = 1µ+ Xh +

k∑

j=1

zjαj + e,

Table 1  Numbers of records in training and validation sets used for genomic prediction

a  HF = predominantly (>7/8) Holstein–Friesian; J = predominantly (>7/8) Jersey; KX = admixed KiwiCross
b  Yield deviation: Fat = Milk fat yield; Lwt = Liveweight; SCS = Somatic Cell Score
c  Training was performed using pooled data across the three breed classes

Breeda Fatb Lwtb SCSb

Training Validation Training Validation Training Validation

HF 9072 3354 3908 1464 9094 3358

J 5067 5854 2667 2331 5071 5860

KX 10,684 6125 6708 2436 10,699 6140

Total 24,823c 15,333 13,283c 6231 24,864c 15,358
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scenarios, i.e. the most accurate scenario based on 
BayesA across all breeds and traits, and a model that fit-
ted a similar number of covariates as the SNP model. The 
BayesB model [20] can be written as:

where variables are defined as for BayesA, except that 
BayesB is a mixture model that assumes that some of 
the αj have zero effect. This is defined by the binary vari-
able δj that represents whether covariate j was fitted in 
the model according to hyperparameter π, such that 
δj = 1 with probability 1− π, or δj = 0 with probability π. 
BayesA is identical to BayesB when π = 0. Various π val-
ues, i.e. 0.2, 0.35, 0.5, 0.65, 0.8 and 0.95, were compared 
for all traits with the SNP and the two haplotype models 
to evaluate the sensitivity of BayesB to the assumed π.

BayesN
Only the SNP model and the two haplotype scenarios 
that were fitted for BayesB were fitted for BayesN for 
each trait. The model for BayesN [21] was:

where variables are defined as for BayesB, except that w 
is the number of windows (represented by haploblocks 
for haplotype models) and mi is the number of covariates 
(SNPs or haplotype alleles) in window i. Parameter zij is 
an N × 1 vector of allele counts (0/1/2) at SNP j in win-
dow i (SNP model) or of haplotype allele j in window i 
(haplotype model), αij is the additive effect of that SNP 
or haplotype allele. SNP or haplotype allele effects were 
assumed to have identical and independent mixture dis-
tributions of zero with probability � and t-distribution 
with scale parameter S2α and ν degrees of freedom with 
probability 1−�. This approach differs from that of 
Zeng [21], who sampled covariates with a window-spe-
cific variance. Parameter �i is a binary variable that rep-
resents whether covariates in window i are sampled with 
the same assumptions as BayesB (�i = 1 with probability 
1−�) or with a zero effect (�i = 0 with probability �). 
Several � values, i.e. 0.5, 0.8 or 0.95, were assumed to test 
the sensitivity of BayesN to �. The GenSel implementa-
tion of BayesN fitted k covariates per window, whereby k 
is a user-defined parameter, therefore δij = 1 with prob-
ability 1− πi and δij = 0 with probability πi where:

and mi is the number of SNPs in window i.

y = 1µ+ Xh +

k∑

j=1

zjαjδj + e,

y = 1µ+ Xh +

w∑

i=1

mi∑

j=1

zijαijδij�i + e,

πi =
mi − k

mi
,

Each BayesN SNP model was run twice, once with 
k = 2, which is equivalent to fitting BayesB within a sam-
pled window, and once with k set to the maximum num-
ber of SNPs in a window (i.e. πi = 0), which is equivalent 
to fitting BayesA within a sampled window. Haplotype 
models were run with πi = 0, which is equivalent to fit-
ting BayesA within a haploblock.

Evaluation of prediction models
The training set for all genomic prediction models 
included all breed classes (HF, J and KX), but predictions 
of validation cows were evaluated separately for each breed 
class. The DGV were calculated for validation cows as:

where Z is the N ×M matrix of allele or haplotype counts 
(0/1/2), α̂ is the M × 1 vector of allele effect estimates and 
M is the number of SNPs or haplotype alleles. Model per-
formance was evaluated based on prediction accuracy, 
which was calculated as the correlation between YD and 
DGV, and prediction bias, which was the deviation from 1 
of the regression coefficient of YD on DGV.

Bootstrap samples
Estimation of the accuracy and bias of genomic predic-
tion from the entire validation set does not give an indi-
cation of the sampling error associated with the estimate; 
thus, standard errors were obtained from a single train-
ing analysis using 10,000 bootstrap samples of valida-
tion animals for each breed. Validation animals within a 
breed were sampled with replacement to obtain a sample 
that had an equal size to that of the validation set for that 
breed. The same bootstrap samples of validation animals 
were used for all scenarios and models. Prediction accu-
racy and bias were calculated for each bootstrap sample, 
and the estimate and standard error of these parameters 
for the validation set were the mean and standard devia-
tion across bootstrap samples. Comparisons between 
models were obtained from paired t-tests of the 10,000 
bootstrap samples, for which accuracies (or biases) were 
paired across each model for the same sample of animals. 
The t tests were one-sided when comparing the accuracy 
of a haplotype model to the accuracy of a SNP model 
because we were interested in testing whether haplotype 
models improved prediction accuracy over a SNP model, 
and two-sided otherwise. Significance was determined 
based on a p value threshold of 0.05.

Additional evaluation criteria
In addition to accuracy and bias of the models, the num-
ber of random effects fitted in the model (SNPs or haplo-
type alleles) and computation time were evaluated. The 

D̂GV = Zα̂,
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mean squared error of the model for the validation set of 
animals was also assessed.

Potential impact of haplotype models on selection 
decisions
The Spearman rank correlation of DGV from all cows 
and the top 100 cows based on DGV were compared 
between the BayesA SNP model and the Hap250-1 model 
(250  kb haplotypes, fitting haplotype alleles with a fre-
quency higher than 1% in the training set). According to 
DairyNZ [34], the top ~0.9% of cows are selected to be 
dams for the next generation of bulls in New Zealand. 
Therefore, the number of cows that were in the top 0.9% 
for both models was also reported in order to evaluate 
whether moving from a SNP model to a haplotype model 
is likely to impact selection decisions.

Results
The number of SNPs in each haploblock varied across 
the genome (Table 2). The minimum number of SNPs in 
a haploblock was 1 for all haplotype lengths. The average 
number of SNPs per haploblock ranged between 2 and 30 
and the maximum number ranged from 6 to 54.

BayesA
Prediction accuracy and bias
Prediction accuracy and bias of each BayesA model are in 
Fig. 1 (Fat); Additional file 1: Figure S1 (Lwt), Additional 

file  2: Figure S2 (SCS), and Additional file  3: Table S1. 
Among the three traits, prediction accuracy was highest 
for Lwt, followed by Fat and SCS (see Additional file  3: 
Table S1), which is consistent with their heritabilities. 
Prediction accuracy was higher in HF than J for all three 
traits, whereas in KX it had an intermediate value for 
Fat and SCS but was highest for Lwt. Overall, the most 
accurate model used 250-kb haploblocks and a 1% hap-
lotype allele frequency filter; more generally, models that 
fit short haploblocks (125 or 250 kb) tended to be more 
accurate and similarly or less biased than SNP models 
as shown in Fig. 1; Additional file 1: Figure S1 (Lwt) and 
Additional file 2: Figure S2 (SCS). Accuracy and bias were 
reasonably robust to change in frequency filter threshold 

Table 2  Mean and  maximum number of  SNPs per  hap-
loblock length

a  The minimum number of SNPs in a haploblock was 1 for all haplotype lengths

Haploblock length Number of haploblocks Number of SNPs 
per haploblocka

Mean Maximum

125 kb 17,452 2 6

250 kb 9676 4 10

500 kb 4978 8 17

1 Mb 2514 15 31

2 Mb 1267 30 54
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Fig. 1  Genomic prediction accuracy and bias of milk fat yield with varying haplotype lengths and frequencies
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at short lengths as shown in Fig. 1; Additional file 1: Fig-
ure S1 (Lwt) and Additional file 2: Figure S2 (SCS). Using 
haploblocks longer than 500 kb tended to decrease accu-
racy and increase bias of the haplotype model (i.e. they 
deviated more from 1), especially when using a higher 
haplotype allele frequency threshold as shown in Fig. 1; 
Additional file  1: Figure S1 (Lwt) and Additional file  2: 
Figure S2 (SCS).

Number of covariates and computation time
Table  3 shows the number of random covariates that 
were fitted in each BayesA model and the computa-
tion time in hours for each model, excluding the time to 
generate and filter the haplotype alleles. The number of 
covariates was similar across the three traits. The fast-
est models ran in 15 to 20 min and fitted only 650 to 700 
haplotype alleles, depending on the trait (Table  3), but 
they were associated with a drastic decrease in accu-
racy and increase in bias as shown in Fig.  1; Addi-
tional file  1: Figure S1 (Lwt), Additional file  2: Figure 
S2 (SCS), and Additional file  3: Table S1. Computation 
times increased as the number of covariates increased 
(Table  3). The most accurate model for all three traits 
(250 kb haploblocks and a 1% haplotype allele frequency 
filter [Fig. 1; Additional file 1: Figure S1 (Lwt), Additional 
file 2: Figure S2 (SCS)] took approximately twice as long 
to run than the SNP model because it fitted approxi-
mately twice as many covariates (Table 3).

BayesB and BayesN
Haplotype model choice
Two scenarios from the BayesA analyses were chosen to 
evaluate whether a BayesB or a BayesN model would fur-
ther improve accuracy over the BayesA haplotype model, 
i.e. the scenario with 250-kb haploblocks that fitted only 
the alleles that had a frequency in the training dataset 
(Hap250-1) higher than 1% and the scenario with 125-
kb haploblocks that fitted only the alleles that had a fre-
quency higher than 10% in the training set (Hap125-10). 
Hap250-1 was selected because it had the lowest mean 
square error (MSE) for all three traits (see Additional 
file 4: Table S2); this scenario also had the highest accu-
racy and a consistently low bias (Fig. 1; Additional file 1: 
Figure S1 (Lwt), Additional file 2: Figure S2 (SCS)]. The 
Hap125-10 model was selected because the number of 
haplotype alleles was similar to that of SNPs (Table  3), 
and could be used to evaluate whether it would be better 
to fit SNP or haplotype alleles if the number of covariates 
had to be constrained. The MSE of the BayesA Hap125-
10 model was less than or equal to that of the SNP model 
for all three traits (see Additional file 4: Table S2).

Prediction accuracy
The accuracy of the BayesN SNP model was similar when 
non-zero effects were sampled for all SNPs in a window 
or for two SNPs in a window (see Additional file 5: Table 
S3). Since we found that window size (125 kb, 250 kb, or 

Table 3  Computation time and number of random covariates in haplotype and SNP BayesA models

a  Frequency threshold for removing rare haplotype alleles. SNP refers to fitting covariates for SNPs rather than haplotype alleles
b  Computation time for running the analysis on the training set containing all breeds with a chain length of 41,000

Trait Freqa Number of random covariates Computation time (h)b

125 kb 250 kb 500 kb 1 Mb 2 Mb 125 kb 250 kb 500 kb 1 Mb 2 Mb

Milk fat yield SNP 37,226 37,226 37,226 37,226 37,226 13.1 13.1 13.1 13.1 13.1

1% 56,590 64,724 70,380 56,534 32,520 22.8 23.5 24.7 20.0 11.3

2.5% 51,889 53,482 47,378 29,343 13,460 21.3 19.7 16.8 10.4 4.8

5% 46,283 41,737 28,324 12,291 3977 19.6 15.5 10.4 4.5 1.5

10% 37,848 27,656 12,790 3255 646 15.2 10.8 5.0 1.4 0.3

Liveweight SNP 37,356 37,356 37,356 37,356 37,356 6.6 6.6 6.6 6.6 6.6

1% 56,595 64,634 70,218 56,164 32,117 11.0 13.1 13.3 9.9 5.7

2.5% 51,839 53,204 46,797 28,756 13,050 10.2 9.6 9.2 5.2 2.4

5% 46,163 41,467 28,040 12,198 4027 9.2 7.7 5.2 2.3 0.8

10% 37,775 27,604 12,882 3354 707 7.8 5.4 2.6 0.7 0.2

Somatic cell score SNP 37,229 37,229 37,229 37,229 37,229 13.0 13.0 13.0 13.0 13.0

1% 56,630 64,730 70,375 56,521 32,516 21.4 24.4 27.2 19.7 11.1

2.5% 51,934 53,488 47,385 29,348 13,464 23.1 20.8 16.7 10.9 4.7

5% 46,326 41,746 28,329 12,296 3977 18.3 15.4 10.2 4.5 1.5

10% 37,898 27,663 12,793 3254 645 15.1 10.7 5.0 1.3 0.3



Page 7 of 14Hess et al. Genet Sel Evol  (2017) 49:54 

1 Mb) had very little impact on prediction accuracy for 
BayesN SNP models, only the results obtained by using 
250-kb windows and sampling all SNPs per window were 
further evaluated.

A range of values for π (BayesB) and Π (BayesN), col-
lectively referred to as pi values, were evaluated to 
determine the values that led to the highest accuracies. 
Accuracies were essentially the same but decreased when 
pi values were so high that too few features were fitted, 
corresponding to pi values higher than 0.8 for most traits 
and breeds (i.e. fitting covariates for approximately 20% 
of the genome accounted for the effects of large QTL 
as well as the polygenic portion of the trait (see Addi-
tional file  6: Figure S3, Additional file  7: Figure S4), i.e. 

~7000 covariates for the SNP and Hap125-10 models 
and ~12,000 covariates for the Hap250-1 model. In this 
paper, BayesB and BayesN results will be presented for a 
pi value of 0.5 because, in many cases, this value resulted 
in the highest or close to the highest accuracy.

The Bayesian method used (i.e. BayesA vs. BayesB vs. 
BayesN) had very little impact on prediction accuracy 
for both SNP and haplotype models (Fig.  2). Haplotype 
models were more accurate than the SNP model for all 
traits and breeds, except for Fat in J, which had a very 
similar prediction accuracy across all models. The 250-
kb haploblocks tended to have higher accuracies than the 
125-kb haploblocks but this difference was not significant 
(P > 0.30), except for SCS in J (P < 0.077) and Fat in KX 
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(P < 0.001). Based on these results, the BayesA Hap250-1 
model was chosen as a representative model for the 
comparison with the BayesA SNP model. Compared 
to the BayesA SNP model, the difference in accuracy of 
the BayesA Hap250-1 model was equal to 2.2  ±  1.1% 
(Fat; HF); −0.2  ±  1.2% (Fat; J); 2.6  ±  1.1% (Fat; KX); 
2.1 ±  1.5% (Lwt; HF); 3.3 ±  1.7% (Lwt; J); 2.3 ±  1.1% 
(Lwt; KX); 0.1 ± 2.3% (SCS; HF); 5.5 ± 2.1% (SCS; J); and 
0.2 ± 2.0% (SCS; KX).

Prediction bias
Prediction bias differed significantly from zero for all 
traits in J, for none of the traits in HF, and only for SCS in 
KX (Table 4). Compared to the BayesA SNP model, most 
models did not result in major changes in prediction bias, 
and those that were significant remained small. However, 
all significant changes in bias were beneficial, apart from 
the more negative bias when fitting the BayesN Hap125 
model for SCS in J and KX.

Number of covariates and computation time
In our study, computation time for all haplotype mod-
els was longer than for SNP models in all BayesB and 
BayesN analyses and was driven by the number of covari-
ates that were fitted in each model (Table  5). BayesB 
models had a shorter computation time than the corre-
sponding BayesA model, but BayesN models had a much 
longer computation time. Computation times for Fat and 
SCS were approximately double those for Lwt because 
the training set had approximately twice the number of 
records (Table 1).

Potential impact of haplotype models on selection 
decisions
The Spearman rank correlation between DGV from the 
BayesA SNP model and BayesA Hap250-1 model was 
high (≥0.95) when considering all cows, but there was 
a considerable amount of re-ranking when considering 
only the top 100 cows for each breed and trait (Table 6). 
This re-ranking had an impact on which cows had DGV 
in the top 0.9%, which suggests that fitting haplotypes 
rather than SNPs will have an impact on which animals 
are selected as dams of sires.

Discussion
Meuwissen and Goddard [35] predicted a promising 
increase in genomic prediction accuracy when increasing 
SNP density from ~30,000 SNPs to sequence-based SNPs. 
However these predicted results have not been observed 
in practice, i.e. only a slight increase in genomic prediction 
accuracy was found when fitting covariates for SNPs from 
the Illumina BovineHD panel (~777,000 SNPs) instead of 
the Bovine SNP50 panel (~54,000 SNPs) [36, 37], and lit-
tle improvement or even a reduction in prediction accu-
racy was found when fitting sequence variants [38, 39]. 
Our study highlighted the potential of improving genomic 
prediction accuracy through the use of haplotypes. Fitting 
covariates for haplotype alleles rather than SNPs could 
increase prediction accuracy through improved ability 
to detect ancestral relationships between individuals (i.e. 
identity-by-descent), higher LD between causal mutations 
and haplotype alleles, or greater ability to capture short-
range epistatic effects (i.e. between loci that are present 

Table 4  Prediction bias (standard error) of SNP and haplotype models for BayesA, BayesB and BayesN analyses

* Significantly different bias than the BayesA SNP model (italics) for that breed and trait (P < 0.05)
a  Trait: Fat = Milk fat yield; Lwt = liveweight; SCS = somatic cell score
b  Breed: HF = predominantly Holstein–Friesian; J = predominantly Jersey; KX = admixed KiwiCross (HF/J)
c  Hap125 = haplotypes of length 125 kb, fitting only haplotype alleles >10% frequency in training data set
d  Hap250 = haplotypes of length 250 kb, fitting only haplotype alleles >1% frequency in training data set

Traita Breedb BayesA BayesB (π = 0.5) BayesN (Π = 0.5; π = 0)

SNP Hap125c Hap250d SNP Hap125c Hap250d SNP Hap125c Hap250d

Fat HF 0.05 (0.05) 0.07 (0.05) 0.06 (0.05) 0.06 (0.05) 0.08 (0.05) 0.07 (0.05) 0.09 (0.05) 0.06 (0.05) 0.05 (0.05)

J −0.16 (0.04) −0.16 (0.04) −0.17 (0.04) −0.15* (0.04) −0.16 (0.04) −0.16 (0.04) −0.13* (0.04) −0.18* (0.04) −0.18 (0.04)

KX 0.00 (0.04) 0.00 (0.04) 0.03 (0.04) 0.01 (0.04) 0.01 (0.04) 0.03 (0.04) 0.03 (0.04) −0.01 (0.04) 0.01 (0.04)

Lwt HF −0.04 (0.06) −0.03 (0.06) −0.01 (0.06) −0.03 (0.06) −0.03 (0.06) −0.01 (0.06) 0.00 (0.06) −0.05 (0.06) −0.03 (0.06)

J −0.21 (0.05) −0.21 (0.04) −0.18* (0.05) −0.20* (0.05) −0.20 (0.04) −0.19 (0.05) −0.15* (0.05) −0.21 (0.04) −0.21 (0.04)

KX 0.00 (0.04) −0.01 (0.04) 0.02 (0.04) 0.01 (0.04) 0.00 (0.04) 0.03 (0.04) 0.06 (0.04) −0.02 (0.04) 0.01 (0.04)

SCS HF −0.05 (0.08) −0.04 (0.08) −0.04 (0.08) −0.05 (0.08) −0.04 (0.08) −0.05 (0.08) −0.04 (0.08) −0.08 (0.08) −0.08 (0.08)

J −0.23 (0.07) −0.22 (0.07) −0.18* (0.07) −0.23 (0.07) −0.22 (0.07) −0.18* (0.07) −0.22 (0.07) −0.26* (0.07) −0.21 (0.07)

KX −0.18 (0.07) −0.20 (0.07) −0.17 (0.07) −0.18 (0.07) −0.20 (0.07) −0.17 (0.07) −0.18 (0.07) −0.23* (0.06) −0.20 (0.06)
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within the same haploblock), and it is likely the result of 
a mixture of all three. The ability of a haplotype model 
to improve prediction accuracy depends on its prior 
assumptions, the method used to define haploblocks and 
haplotype alleles, SNP density, and the demographics of 
the training and validation sets.

Haplotype parameters
Haploblock length
Villumsen et  al. [7] evaluated the optimal haploblock 
length for simulated traits with heritabilities ranging 
from 0.02 to 0.30 and found that haploblocks of 1  cM 

gave the best results across all traits. For the genome 
of New Zealand dairy cattle, 1  Mb is equal to approxi-
mately 1.25  cM [40]. However, in our study, prediction 
accuracy was highest for much shorter haploblocks i.e. 
250  kb (Fig.  1; Additional file  1: Figure S1 (Lwt), Addi-
tional file  2: Figure S2 (SCS)] and prediction accuracies 
of haplotype models were generally lower than those of 
the SNP model when haploblocks were longer than 1 Mb. 
This drop in accuracy is likely due to the large number 
of low-frequency haplotype alleles (i.e. due to low LD 
across large distances) that are generated from long hap-
loblocks, which were removed in our analysis. If these 
rare haplotype alleles were not removed from the analy-
sis, it is unlikely that prediction accuracy would be much 
affected because most of the rare covariates will not 
explain much of the genetic variance due to their low fre-
quency and will therefore be shrunk to zero [18].

Prediction accuracies of haplotype models that used 
500 kb or shorter haploblocks (less than eight SNPs per 
haploblock on average) were generally higher than those 
of the SNP model, particularly when haplotype alleles 
with frequencies lower than 1% were removed from the 
training set. Other studies have evaluated the perfor-
mance of haploblocks defined by the number of SNPs 
(e.g. two or four SNPs per haploblock), mostly using 
simulated data. Simulation studies using a similar den-
sity to that used in our study (approximately 12.5 SNPs/
Mb vs. an average of 15 SNPs/Mb), found that the opti-
mal haploblock length ranged from 5 to 10 SNPs (i.e. 
0.4  to  0.8  Mb) per haploblock [6, 7], which is slightly 
longer than the haploblock length that gave the highest 
prediction accuracy in our population. This difference in 

Table 5  Number of random covariates (windows) and computation time for each model

a  SNP = SNP model with 250 kb windows
b  Average number of SNPs or haplotype alleles fitted in each chain of the MCMC
c  Fat = Milk fat yield; Lwt = liveweight; SCS = somatic cell score
d  Computation time for running the analysis on the training set containing all breeds with a chain length of 41,000
e  Hap125 = Haplotypes of length 125 kb, fitting only haplotype alleles >10% frequency in training data set
f  Hap250 = Haplotypes of length 250 kb, fitting only haplotype alleles >1% frequency in training data set

Modela Number of random effectsb Computation time (h)d

Fatc Lwtc SCSc Fatc Lwtc SCSc

BayesA SNP 37,226 37,356 37,229 13.1 6.6 13.0

Hap125e 37,848 37,775 37,898 15.2 7.8 15.1

Hap250f 64,724 64,634 64,730 23.5 13.1 24.4

BayesB SNP 18,589 18,637 18,629 10.0 5.1 9.9

Hap125e 18,899 18,831 18,954 13.6 6.2 13.9

Hap250f 32,332 32,273 32,388 18.1 9.2 18.0

BayesN SNP 17,748 (4701) 17,639 (4671) 18,254 (4805) 26.7 12.5 25.6

Hap125e 18,451 (8264) 18,303 (8223) 18,711 (8344) 30.2 16.0 30.0

Hap250f 31,596 (4737) 31,281 (4706) 32,103 (4809) 37.6 18.9 38.1

Table 6  Rankings from  the BayesA 250-kb haplotype 
model compared to the BayesA SNP model

a  Spearman rank correlation for all cows
b  Spearman rank correlation for the joint set of cows that are in the top 100 
cows for DGV from the SNP model or the top 100 cows for DGV from the 
haplotype model
c  Number of animals with DGV in the top 0.9% for both the SNP model and 
haplotype model over the number of animals that are in the top 0.9% for the 
SNP model

Trait Breed rS (All)a rS (Top 100)b Top 0.9%c

Fat HF 0.97 0.70 23/30

J 0.97 0.68 41/53

KX 0.96 0.55 36/55

Lwt HF 0.96 0.57 10/13

J 0.95 0.68 12/21

KX 0.96 0.70 17/22

SCS HF 0.96 0.58 21/30

J 0.97 0.64 42/53

KX 0.96 0.49 36/55
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optimal haploblock length is likely due to the assumed 
simulation parameters, which deviate from the true val-
ues of these parameters in our dataset; based on simu-
lated data, Villumsen et  al. [7] demonstrated that the 
optimal number of SNPs in a haploblock depends on the 
distance between SNPs, the extent of LD and the popu-
lation structure. Thus, the optimal haplotype length for 
an analysis needs to be evaluated for each dataset inde-
pendently and by taking the purpose of the analysis (i.e. 
shorter for QTL mapping or longer for genomic predic-
tion [11]) into account.

Haplotype allele frequency threshold
When using ~50 k SNPs to create haplotypes, the num-
ber of covariates to estimate is often much larger than 
the number of SNPs, which increases computation time, 
as shown in Table  3. In previous studies, the number 
of covariates that need to be estimated was reduced by 
removing SNPs before generating the haplotype alleles 
[11, 12] or by fitting covariates only for haplotype alleles 
in regions that have known or putative QTL, along with a 
residual polygenic effect [9, 12]. When appropriate filter-
ing is performed, the resulting accuracy of genomic pre-
diction can be equal to, or even higher than that reached 
by using all haplotype alleles, as shown by Cuyabano 
et al. [12].

When haplotype alleles are fitted as random effects, as 
in BayesA, BayesB and BayesN, the estimated effects are 
shrunk relative to the variance assumed for that allele (i.e. 
σ 2
e /σ

2
αj

) [18, 20]. A haplotype allele with a low frequency 
will be shrunk more than another allele with a similar 
effect but with a moderate frequency. As expected, due 
to the polygenic nature of the traits in this study, removal 
of rare haplotypes for the shorter haploblocks had little 
impact on prediction accuracy for frequency thresholds 
below 5% and haploblocks that were 500 kb long or less, 
which confirmed that filtering based on haplotype allele 
frequency is a suitable method to reduce computation 
time (Table 3) with little loss in accuracy when the hap-
loblocks have an appropriate length for the dataset.

Bayesian models
Genomic prediction accuracy depends on the genetic 
architecture of the trait and on whether prior assump-
tions of the model appropriately account for the number 
of loci that affect the trait and the distribution of their 
effects [41, 42]. We selected BayesA [20] to identify the 
impact of haploblock length on genomic prediction accu-
racy because it provides a higher prediction accuracy 
than the Bayesian equivalent of GBLUP, BayesC0 [43], 
when a trait is influenced by large effect QTL [20], such 
as for Fat and Lwt [44, 45]. Although SCS is known to be 
a very polygenic trait [46], suggesting that BayesC0 may 

be more appropriate, Habier et al. [47] found that BayesA 
resulted in a higher prediction accuracy than GBLUP for 
SCS in North American Holstein bulls. Thus, BayesA was 
expected to be a suitable model for all traits evaluated in 
this study.

Cuyabano et  al. [19] obtained higher prediction accu-
racy when fitting haplotype alleles rather than SNP 
alleles in genomic prediction models such as the Bayes-
ian mixture model BayesR [37], however this improve-
ment was not observed when fitting a Bayesian GBLUP 
model. BayesR assumes that SNP (or haplotype allele) 
effects come from a mixture of four normal distributions, 
such that most SNPs (or haplotype alleles) have little or 
no effect (i.e. are sampled from a distribution with small 
variance), while a proportion of the SNPs (or haplotype 
alleles) have a large effect (i.e. are sampled from a distri-
bution with large variance). These results suggest that it 
is not appropriate to assume that haplotype allele effects 
follow a single normal distribution, such as in BayesC0, 
which further supports our choice of BayesA, in which 
SNP or haplotype allele effects are assumed to have a 
marker-specific variance.

We also evaluated the BayesB and BayesN models to 
determine which model would be more suitable for hap-
lotype analyses and whether either model outperformed 
BayesA. When a large proportion of the variation in a 
trait is explained by a few large QTL, BayesA, which esti-
mates non-zero effects for all SNPs or haplotype alleles, 
has been shown to be less efficient than models such as 
BayesB, which estimate non-zero effects for a propor-
tion of the SNPs or haplotype alleles [20]. In our study, 
two Bayesian mixture models were evaluated in addi-
tion to BayesA: BayesB, which samples each haplotype 
allele regardless of the genomic region, and BayesN, 
which samples haplotype alleles within a genomic region 
jointly, based on whether or not the region is sampled in 
that iteration. As implemented in our study, the BayesN 
haploblock model can be considered as analogous to a 
BayesB model where the haploblock, rather than the hap-
lotype allele, is sampled as being associated with the trait 
or not.

Performance of different Bayesian models
We found that BayesA, BayesB and BayesN models were 
all appropriate for genomic prediction that fitted covari-
ates for haplotype alleles (Fig. 2). Our results were con-
sistent with those of Zeng [21] at this SNP density, i.e. 
fitting two SNPs per window in a BayesN SNP model 
resulted in slightly lower prediction accuracy than fit-
ting all SNPs per window (see Additional file 5: Table S3). 
However, it was surprising that BayesN did not result in 
higher prediction accuracy than BayesB for haplotype 
models; conceptually, covariates with non-zero effects 
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estimated in an iteration are more likely to be associ-
ated with the trait in BayesN because all haplotype alleles 
within a haploblock are included or excluded simultane-
ously. In contrast, associations from BayesB analyses are 
more likely to be spurious because each haplotype allele 
independently has a zero or non-zero estimate sampled 
independently of the other haplotype alleles within the 
haploblock.

Computation time
In our study, computation times were much longer for 
BayesN than for BayesA and BayesB (Table  5), whereas 
Zeng [21] reported similar runtimes for BayesN and 
BayesB. When our dataset was tested with the C++ 
BayesN code used by Zeng [21], we obtained runtimes 
that were similar to those with BayesA but longer than 
those with BayesB. Thus, it may be possible to further 
improve computation time of BayesN when fitting covar-
iates for haplotype alleles as implemented in our study by 
fixing δij = 1 and only sampling �, rather than sampling 
δij for each haplotype allele (with probability 1− π = 1).

Models that fitted haplotype alleles typically fitted a 
larger number of covariates than models that fitted SNPs, 
and therefore had longer runtimes. The development of a 
haplotype model for use in genomic prediction is appeal-
ing given the improvement in prediction accuracy when 
fitting haplotype alleles rather than SNPs. The BayesB 
Hap250-1 model had similar runtimes as the BayesA 
SNP model (Table 5) and equivalent or higher prediction 
accuracy for all traits (Fig. 2).

Potential impact of haplotype models on selection 
decisions
Theoretically, improvements in accuracy will result in 
improved genetic gain in a population [48]; however, if 
this increased accuracy does not change the ranking of 
individuals, it is unlikely to have a substantial impact on 
realized genetic gain. In practice, only a small percentage 
of cows are selected to be dams of the next generation of 
sires [34]. Thus, re-ranking among the top cows may have 
an impact on which individuals are selected as parents of 
the next generation. The rank correlation of the top 100 
cows from either the SNP or Hap250-1 models was eval-
uated and was much lower than that evaluated across all 
animals (Table 6). This was consistent with the substan-
tial differences in the way cows would be selected as the 
top 0.9%. Considering the re-ranking of the top animals 
and the improvement in accuracy for haplotype mod-
els over SNP models that were observed in our study, 
genomic prediction that fits haplotype alleles is expected 
to result in higher genetic gain than genomic prediction 
that fits SNPs.

SNP density
Increasing SNP density will influence the ability to dif-
ferentiate sequence-resolution haplotype alleles within 
a haploblock: at the sequence level, all true haplotype 
alleles in the dataset can theoretically be identified, while 
at lower densities a single identified haplotype allele 
may represent two or more true haplotype alleles. This 
impacts the ability of a model to accurately estimate the 
breeding value of an animal for that haploblock because 
the effect of the identified haplotype alleles will be a 
weighted average of the effects of the underlying true 
haplotype alleles, in addition to prediction error. Incor-
porating genotypes at causal mutations into haplotypes 
will allow a more accurate estimation of haplotype effects 
compared to not having the causal mutations in the hap-
lotype, and will improve the ability to detect short-range 
epistatic effects between loci that are contained within 
the same haploblock [49]. Therefore, increasing SNP 
density has the potential to improve genomic predic-
tion accuracy when using haplotype models. However, 
increasing SNP density will increase the number of iden-
tified haplotype alleles [50], which will increase the num-
ber of rare haplotype alleles at a locus, and thus shrink 
the effect of these alleles towards zero [18]. This can 
potentially limit any improvement in prediction accuracy 
that would otherwise occur when increasing SNP density.

Impact of training set
Training set size
Prediction accuracy declines when the size of the train-
ing data set decreases. Haplotype models are likely to be 
more sensitive to decreases in training data sizes because 
haplotype alleles that are present in a validation animal 
are less likely to be observed in a small training dataset 
than in a large training dataset. Haplotype allele effects 
can only be estimated for alleles that are observed in the 
training dataset, thus validation animals with many miss-
ing haplotype alleles are unlikely to be predicted with 
high accuracy. It is expected that at least 1000 pheno-
typic records are needed to accurately estimate haplotype 
allele effects [8].

The number of animals in the training set may also 
impact the optimal haploblock length, i.e. a small training 
dataset may result in shorter optimal haploblock lengths 
than a large training dataset. The ability of a haplotype 
model to provide accurate DGV depends on both the 
power to accurately estimate the effect of the haplotype 
alleles fitted in the model and the ability of those hap-
lotype alleles to capture QTL effects and relationships 
between animals. Longer haploblocks generate a larger 
number of haplotype alleles than shorter haploblocks, 
and many of these are present at low frequency in the 
population (Table  3) and therefore there is little power 
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to detect associations when the training dataset is small. 
Longer haplotypes also primarily capture more recent 
relationships, although if they become too long the rela-
tionship between parent and offspring or between full-
sibs can be less than 0.5 [51].

Multi‑breed training set
Our study used a training population that consisted of 
multiple breeds, as is the case in New Zealand genomic 
evaluations [52]. Training on each breed separately may 
lead to higher prediction accuracy in some cases, for 
example if the phase between a tagging SNP and a large 
QTL differs in each breed, or if some QTL only segregate 
in one breed [53]. Fitting covariates for haplotypes rather 
than SNPs may improve genomic prediction accuracy 
by capturing breed-specific effects if haplotype alleles 
around these QTL are specific to a breed. Kachman et al. 
[54] found that a training dataset that contained multiple 
beef breeds did not improve accuracy of genomic predic-
tion using SNPs over a training dataset that contained the 
subset of animals that were of the same breed as the vali-
dation dataset. However, a combined training set of Dan-
ish, Swedish and Finnish Red cattle was found to increase 
genomic prediction accuracy using both SNPs [55] and 
haplotypes [19] compared to within-breed training and 
validation datasets. These studies [19, 53–55] suggest 
that the relationship between breeds, particularly around 
QTL, is an important factor in the success of genomic 
prediction using a multi-breed training set. De Roos et al. 
[56] evaluated the genomic relationship between New 
Zealand HF, New Zealand J and populations of Holsteins 
from the Netherlands and Australia. They found that 
phase was highly correlated among HF and J in New Zea-
land i.e. the correlation was higher than between New 
Zealand HF and their other Holstein populations, which 
indicates that it is appropriate to use a multi-breed train-
ing dataset for genomic prediction of New Zealand dairy 
cattle.

Phasing accuracy
Performance of haplotype models depends on the ability 
to accurately phase the genotypes of training and vali-
dation animals because phasing errors will result in the 
generation of incorrect haplotype alleles. Animals that 
are closely related are expected to share more haplotype 
alleles than animals that are distantly related [51]. Thus, 
phasing accuracy is expected to be higher in datasets that 
contain closely related animals than in datasets with only 
distantly related animals [15]. Phasing methods, such 
as LINKPHASE3 [30], that take advantage of pedigree 
information can improve phasing accurately, particularly 
when there are close relationships between animals in the 
dataset, i.e. sire and multiple offspring. The dataset used 

for phasing in our study contained over 58,000 animals, 
including most of the sires that were used in New Zea-
land in the past 20 years, as well as pedigree information 
confirmed through genotyping. These animals were ini-
tially phased using pedigree information, then regions 
for which phase was not clear were phased using popu-
lation haplotypes from BEAGLE, as described in [30]. 
Phasing accuracy is expected to be high in our dataset 
because it is a large dataset with closely-related animals 
and because we used a method that takes advantage of 
pedigree information.

Fixed versus variable length haplotypes
Our study evaluated haplotypes that were based on a 
fixed length, in Mb, throughout the genome. It has been 
shown that recombination rates vary across the genome 
in many species [57], and that this variation is particu-
larly large in dairy cattle [14], which suggests that the 
optimal haploblock length for genomic prediction may 
differ across the genome because recombination breaks 
down LD and can create new haplotype alleles. Another 
reason why optimal haploblock lengths may differ across 
the genome in domesticated plants and animals is that 
they have undergone artificial selection for production 
traits for many generations, which has resulted in some 
regions around production-related QTL undergoing 
selective sweeps. Methods to define haploblocks that 
take different recombination rates or LD patterns across 
the genome into account, termed “variable-length” hap-
loblocks, may result in higher genomic prediction accu-
racy than fixed-length haploblocks. Various methods 
to define the limits of variable-length haploblocks from 
SNPs have been proposed, such as pairwise LD [12, 19], 
identity-by-descent (IBD) probabilities [11, 13], or fit-
ting splines to a test statistic [58]. These methods are 
more complicated and time-consuming than fixed-length 
methods based on distance in Mb because, in addition, 
they involve the calculation of LD, IBD probabilities, or 
the fitting of additional models.

Conclusions
Fitting covariates for fixed-length haplotype alleles rather 
than SNPs can increase the accuracy of genomic predic-
tion up to 5.5%. Haplotype length and filtering based 
on haplotype allele frequency have a large impact on 
prediction accuracy and bias, and are therefore impor-
tant parameters to optimize for the population and the 
analysis that is performed because non-optimized appli-
cations may decrease accuracy. In this dataset, shorter 
haploblocks (125  to 250 kb with on average two to four 
SNPs per haploblock) resulted in higher accuracies and 
generally lower biases than longer haploblocks (1 Mb or 
longer with on average at least 15 SNPs per haploblock), 
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which had lower accuracies than the SNP model and 
were deemed too long for genomic prediction in the New 
Zealand dairy cattle population. A more stringent haplo-
type allele frequency filter tended to decrease prediction 
accuracy, particularly when haploblocks were long. The 
BayesA model that consistently gave the highest accuracy 
and lowest bias was the model that fitted 250-kb hap-
loblocks with a 1% haplotype allele frequency filter.

The Bayesian model that was used for haplotype mod-
els (BayesA, BayesB or BayesN) had very little impact 
on prediction accuracy, as long as the pi values were 
less than 0.8 for the BayesB and BayesN models. Fitting 
short (125 kb) haplotypes with a high (10%) frequency fil-
ter resulted in equivalent or higher prediction accuracy 
than fitting SNPs with comparable computation time. 
The BayesA model that fitted 250-kb haplotypes with 
a 1% frequency filter performed well for all traits and 
improved accuracy up to 5.5% compared to the BayesA 
SNP model across breeds and traits. The BayesB model 
that fitted the 250-kb haplotype alleles with a frequency 
higher than 1% in the training dataset had a similar accu-
racy and bias as BayesA and BayesN models but a much 
shorter computation time. Comparing the ranking of the 
top animals from the SNP model to the haplotype model 
suggested that the improvement in accuracy obtained 
by using haplotype models would result in a difference 
regarding which individuals are selected as parents of 
the next generation. Further studies should assess the 
impact of constructing haplotypes that better capture the 
population structure, since such methods may result in 
improved genomic prediction models.
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