

Correction

Correction: Lee et al. Protein Arginine Methyltransferases in Neuromuscular Function and Diseases. *Cells* 2022, *11*, 364

Jinwoo Lee¹, Subin An^{2,3}, Sang-Jin Lee^{1,*} and Jong-Sun Kang^{2,3,*}

- ² Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea
- ³ Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
 - Correspondence: animus_sjlee@animuscure.com (S.-J.L.); kangj01@skku.edu (J.-S.K.); Tel.: +82-31-299-6814 (S.-J.L.); +82-31-299-6135 (J.-S.K.)

The authors wish to make the following corrections to this paper [1]: For Table 1, reference [1] has been changed to [64]; reference [2] has been changed to [72];

reference [3] has been changed to [73]; reference [4] has been changed to [82]; reference [5] has been changed to [123]; reference [6] has been changed to [83]; reference [7] has been changed to [92]; reference [8] has been changed to [95]; reference [9] has been changed to [98]. The corrected Table 1 showed as below:

Table 1. Effect of targeting PRMTs on NMD phenotypes.

PRMT	Method	Model	Effect on NMD Phenotype
General methyltransferase inhibitor	AdOx	Hela cells	Rescues nuclear import of FUS mutants (R524S, R522G, R525L) [64]
General methyltransferase inhibitor	AdOx	Primary rat hippocampal neurons	Rescues nuclear import of FUS mutant (P525L) [64]
General methyltransferase inhibitor	AdOx	Primary motor neurons	Diminishes cytoplasmic FUS mutants (R521H, R521G, R521C) [72]
General methyltransferase inhibitor	AdOx	ALS patient-derived lymphoblastoid cells	Rescues nuclear import of FUS mutant (R518G) [73]
PRMT1	siRNA KD	Hela cells	Partial rescue of nuclear import of FUS mutant (P525L) [64]
PRMT1	КО	MEF	Diminishes cytoplasmic FUS mutants (R521H, R521G, R521C) [72]
PRMT1	siRNA KD	HEK293	Diminishes cytoplasmic FUS mutants (R521H, R521G, R521C) [72]
PRMT1	siRNA KD	Primary motor neurons	Increases cytoplasmic FUS mutants (R521H, R521G, R521C) [72]
PRMT1	Inhibitor (AMI-1)	ALS patient-derived lymphoblastoid cells	Rescues nuclear import of FUS mutant (R518G) [73]

Citation: Lee, J.; An, S.; Lee, S.-J.; Kang, J.-S. Correction: Lee et al. Protein Arginine Methyltransferases in Neuromuscular Function and Diseases. *Cells* 2022, *11*, 364. *Cells* 2022, *11*, 2609. https://doi.org/ 10.3390/cells11162609

Received: 20 July 2022 Accepted: 22 July 2022 Published: 22 August 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

¹ Research Institute for Aging-Related Diseases, AniMusCure Inc., Suwon 16419, Korea

2	of	3
2	of	3

Table 1. Cont.

PRMT	Method	Model	Effect on NMD Phenotype
PRMT1	shRNA KD	Cortical neurons	Enhances neurite shortening by FUS-R521C under oxidative stress [82]
PRMT1	Overexpression	Cortical neurons	Prevents neurite shortening by FUS-R521C under oxidative stress [82]
PRMT1	Inhibitor (MS023)	NSC-34	Abrogates PR ₁₅ -induced toxicity [123]
DART1 (PRMT1/PRMT8 ortholog)	siRNA KD	Drosophila	Enhances neurodegeneration of eyes induced by wild-type FUS or FUS-R521H [73]
DART1 (PRMT1/PRMT8 ortholog)	siRNA KD	Drosophila	Enhances neurodegeneration of eyes induced by wild-type FUS or FUS-P525L [83]
PRMT5	Inhibitor (CMP5 or HLCL65)	Mouse memory T cells	Suppresses memory T cell expansion [92]
PRMT5	Inhibitor (CMP5) or shRNA KD	Human memory T cells	Suppresses memory T cell activation and expansion, partly through downregulation of IL-2 [92]
PRMT5	Inhibitor (CMP5)	OVA-induced DTH mouse	Suppresses T cell- mediated inflammatory response [92]
PRMT5	Inhibitor (HLCL65)	MOG-induced EAE mouse	Suppresses clinical signs of EAE through diminishing T cell- mediated inflammatory response [92]
PRMT5	CD4 ⁺ T-cell specific KO	MOG-induced EAE mouse	Suppresses clinical signs of EAE through diminishing T cell- mediated inflammatory response [95]
PRMT6	Overexpression	MN-1	Exacerbates cytotoxicity due to polyglutamine- expanded AR [98]
DART8 (PRMT6 ortholog)	RNAi KD	Drosophila	Suppresses neurodegenerative phenotype due to polyglutamine-expanded AR [98]

The authors apologize for any inconvenience caused and state that the scientific conclusions are unaffected. The original publication has also been updated.

Reference

1. Lee, J.; An, S.; Lee, S.-J.; Kang, J.-S. Protein Arginine Methyltransferases in Neuromuscular Function and Diseases. *Cells* 2022, *11*, 364. [CrossRef] [PubMed]