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Abstract
The presentworks focus on the effects of electric andmagnetic fields on the flowofmicro-polar nano-fluid between two parallel
plates with rotation under the impact of Hall current (EMMN-PPRH) has considered by using Artificial Neural Networks with
the scheme of Levenberg–Marquardt backpropagation (ANN-SLMB). The nonlinear PDEs are transformed into nonlinear
ODEs by employing similarity variables. By varying different parameters such as coupling parameter, electric parameter,
rotation parameter, viscosity parameter, Prandtl number and the Brownian motion parameter, a dataset for recommended
ANN-SLMB is produced for numerous scenarios through utilizing homotopy analysis method (HAM). The ANN-SLMB
training, testing and validation technique have been used to analyze the approximate solution of individual cases, and the
recommended model has matched for confirmation. After that, regression analysis, MSE, and histogram investigations were
utilized to validate the proposed ANN-SLMB. The recommended technique is distinguished nearest of the suggested and
reference findings, with an accuracy level ranging from 10−09 to 10−11.
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List of Symbols

B Magnetic field
C Fluid concentration
DB Brownian diffusion of nano-fluids
E Electric field intensity
cp Specific heat
DT Thermophoretic diffusion of nano-fluids
C f Skin friction coefficient
h Distance between the plates
Jw Mass flux
J Current density
Kr Rotation parameter
m Hall parameter
M Magnetic parameter
N Micro-rotation angular velocity
k The boundary parameter
ne Number density of electron
N1 Coupling parameter
Nb Brownian motion
O(0, 0, 0) Origin
N2 Spin gradient viscosity parameter
Nt Thermophoretic parameter
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Nu Nusselt number
N3 Micro-polar fluid constant
Pr Prandtl number
Qw Heat flux
Re Viscosity parameter
E I Electric parameter
ANN Artificial Neural Network
SLMB Scheme Levenberg–Marquardt backpropaga-

tion
AE Absolute error
f ,g Velocity distributions
G Micro-rotation profile
Rex Local Reynolds number
Sxy Cauchy stress tensor
Sc Schmidt number
Sh Sherwood number
te Times of electron Collision
T Fluid temperature
(u, v, w) Velocities components
υ0 Suction/Injection velocity
e Charge of electron
(x , y, z) Coordinates
Pe Pressure of electron
Greek Letters
ρ f Base fluid density
δ Transpiration parameter
v Kinematic coefficient of viscosity
�
κ Vertex viscosity
η Similarity variable
μ Dynamic viscosity
� Angular velocity
τ ∗ Nano-particles and heat capacity ratio
ωe Electron Oscillating frequency
� Dimensional temperature profile
� Dimensional concentration profile
α Stretching parameter
α∗ Thermal diffusivity
σn f Electrical conductivity

1 Introduction

Artificial neural networks (ANNs) are interesting and signif-
icant paradigms associated with artificial intelligence (AI).
ANNs can evolve in a variety of ways, depending on the
data that feeds through the network throughout the learn-
ing process, whether externally or internally. To increase
the performance of a multilayer perceptron (MLP) net-
work, an artificial neural network uses the backpropagation
(BP) technique to undertake simultaneous training. It is
the most widely used, effective, and easy-to-learn paradigm

for complex multi-layered networks. The Levenberg–Mar-
quardt methodology/algorithm (LMA) is a ground-breaking,
convergent, reliable technique for artificial neural networks
(ANNs) that provides a numerical solution to a wide range
of fluid flow problems. Dreyfus employed backpropagation
in 1973 to modify controller settings in proportion to error
gradients. Werbos’ (1975) backpropagation technique made
multi-layer network training practicable. In 1982, he popu-
larized Linnainmaa’s AD approach by applying it to neural
networks [1, 2]. Backpropagation has been widely used as a
learning mechanism in feed-forward multilayer neural net-
works.

Certain researchers have recently used this technique to
explore mass and heat transport aspects, as well as non-
Newtonian fluid flow systems. Ahmad et al. [3] looked at
intelligent computing approaches for analyzing nonlinear
reactive fluid transport models in soft-tissues and micro-
vessels. Shoaib et al. [4] used neural networks to explore
the generation of entropy under the influence of MHD and
thermal radiation. Sabir et al. [5] used a computational intel-
ligence approach using Levenberg–Marquardt backpropaga-
tion neural networks to describe the fourth-order nonlinear
system of the Emden–Fowler model. Uddin et al. [6] showed
how to integrate magnetic and radiation impacts to compre-
hend the research of a Maxwell Nano-liquid thin film stream
over a stretchable and spinning disk using LM-NN-based
computational intelligence. Khan et al. [7] used a BNN-LMS
to investigate heat transport between two permeable paral-
lel plates of steady Nano-fluids applying Thermophoresis
and Brownian impacts. Shah et al. [8] propose using neural
networks to investigate the design of neural network-based
intelligent calculation for the numerical behavior of unsteady
3D flow in the Powell–Eyring magneto-nanofluidic model.

The study of themagnetic characteristics and performance
of electrically conducting fluids is known as magnetohy-
drodynamics (MHD). Magnetofluids include electrolytes,
plasmas, saltwater, and liquid metals. The Magnetohydro-
dynamics field was initially described by Hannes Alfven [9].
Magnetohydrodynamics has a wide range of applications
in engineering and technology, including crystal growth,
plasma, electromagnetic casting, liquid–metal cooling of
reactors, MHD sensors, magnetic drug targeting, and MHD
power production. Magnetohydrodynamics is affected by
the intensity of magnetic generations. Whenever the mag-
netic force increases, the Hall Effect caused by the Hall
current cannot be ignored. Edwin Hall [10] is the forerun-
ner to introduce the idea of Hall current. It is important and
intriguing to study hydrodynamic issues. The effect of Hall
currents improves hydrodynamical problems. Ahmed and
Zueco [11] used the Hall effects to study the heat and mass
transfer with a rotating and porous medium and found an
accurate solution to the simulated problem. Pop and Soundal-
gekar [12] investigated the Hall effect in the time-dependent

123



Arabian Journal for Science and Engineering

magnetohydrodynamic viscousflowingfluid. Sulochana [13]
examined unsteady flow across a porous material in a rotat-
ing parallel plate,while takingHall effects into consideration.
Awais et al. [14] studied the effect of viscous dissipation on
convection Jeffery fluid flow under the impacts of ion slip
and Hall current. Abdel Aziz [15] explored the Hal effects
on viscid and nano-fluid flow, as well as heat transfer via a
stretched sheet.

Micro-polar fluids are such types of fluids that have a
micro-structure and an irregular stress tensor. Eringen [16,
17] was the first one to propose the concept of micro-polar
fluid. Lukaszewicz [18] discusses detailed research and a
wider variety of applications for micro-polar fluids. Physi-
cally, micro-polar fluids are defined as fluids with irregularly
orientated liquids floating in a viscous channel. All such flu-
ids are utilized in the study of blood, colloidal suspensions
flow, exotic emollients, liquefied crystals, brain fluid, paints,
and turbulent shear flows. Mohammeadein and Gorla [19]
performed the first research of micro-polar fluids on a hor-
izontal plate of mass dissemination under the effect of an
oblique magnetic field. Kasivishwanathan et al. [20] stud-
ied the flow ofmagnetohydrodynamics micro-polar fluid and
accomplished a set of accurate solutions. Bhargava et al. [21]
explored the mixed convection flow micro-polar fluid flow
through a permeable stretched sheet using a finite element
solution. Agarwal and Dhanapal [22] investigated the flows
of micro-polar fluid with free convection between two par-
allel permeability upright plates using numerical solutions.
Srinivasacharya et al. [23] studied the unsteady stokesmicro-
polar fluid between permeable and parallel plates. Ziabakhsh
et al. [24] used a homotopic approach to solve the problem
of micro-polar nano-fluid in a permeable surface through the
influence of heat and mass transmission. Nazar et al. [25]
and Ishak et al. [26] considered the stagnation point flow of
micro-polar fluid across a strained surface. Nadeem et al. [27,
28] examined the micro-polar nano-fluid in two parallel and
horizontal rotating plates. The problem’s analytical solution
had been determined, and the included parameters had been
investigated in their research.

For the unusual aspects of nano-liquids that make them
efficient in a variety of applications, nano-fluids are exploited
in medicinal processes, hybrid-powered engines, fuel cells,
and micro-electronics, now these are primarily utilized in
nanotechnologies fields [29]. Wang et al. [30] provided a
quick overview of nano-fluids based on their research and
application areas. The flow of nano-fluid across parallel
plates is a frequent and traditional problem in several appli-
cations in the petroleum industry, crude oil purification,
accelerators, aerodynamic heating, MHD power generators
and pumps, the design of liquid metal cooling systems, and
various vehicle sprays. Goodman [31] was the pioneer to
use parallel plates to analyze viscous fluids. Sheikholeslami
et al. [32, 33] used magnetohydrodynamics (MHD) effects

to explore the flow of nano-fluid of viscous fluids in three
dimensions across rotating parallel plates. Attia et al. [34]
investigated magnetohydrodynamically influenced viscous
flows across parallel plates. Borkakoti and Bharali [35] stud-
ied magnetohydrodynamics viscous flows between parallel
plates with a stretched sheet as one of the plates. They uti-
lized numerical approaches to solve the simulated problems
and detailed descriptions of the impacts of various parame-
ters. Sheikholeslami’s current work on nano-fluids and their
applications with various performance, characteristics, and
impacts using various numerical and analytical approaches
may be found in [36–39]. Rokni et al. [40] and Tauseef
et al. [41] deliberated the impacts of magnetohydrodynam-
ics and temperature on nano-fluid flow on rotating parallel
plates. Mahmoodi and Kandelousi [42] utilized the differ-
ential transformation technique to study the hydromagnetic
influence of Kerosene-Alumina nano-fluid flow in the occur-
rence of heat transfer analysis.

The flow of fluid in a rotating system is a naturally occur-
ring phenomenon. Such rotation takes place throughout the
fluid particles and increases as the fluid starts to flow. As a
result, rotations play a role in natural fluid flow phenomena.
Greenspan [43] explored in-depth the topic of the flow of
fluid in a system of rotation. Geoffrey and Taylor [44] intro-
duced the experimental notion of the motion of viscous fluid
in a system of rotation. Vajravelua and Kumar [45] looked at
the flow of magnetohydrodynamics viscous fluid between
two rotating parallel and horizontal plates, one of which
was stretched and the other porous. They have developed a
numerical solution and examined the effects of various phys-
ical factors. Mehmood and Asif [46] extended their work.
Hayat et al. [47, 48] extended their study into two and three
dimensions by using several models to study the flow of non-
Newtonian fluid with rotation.

Nano-fluids have enhanced thermophysical characteris-
tics and might be used as heat transfer fluids. In general,
such fluids are made up of nanometer-sized particles known
as nanoparticles. Such fluids are colloidal suspensions of
nanoparticles in a base fluid that are being manufactured.
Nanoparticles are utilized in nano-fluids that include metals,
carbides, oxides, or carbon nanotubes. Choi [49] praised the
fact that thermal conductivity and convective heat transfer
of nanoparticles are significantly increased proportionally to
heat transmission. The heat flow process is increased, which
improves heat transmission. Many researchers and scientists
fromall around theworldwere drawn to the nano-fluids topic.
These fluids are used in a variety of technical and indus-
trial applications, such as high-power lasers, cooling nuclear
systems, solar water heating, microwave tubes, biomedical
applications and engine transmission oil [50].

The homotopy analysis method has been used to solve
an increasing number of nonlinear ordinary/partial differen-
tial equations in science, economics, and engineering during
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the last two decades. [51] For example, the wave resonance
criteria of an arbitrary number of travelling gravity waves
were used to find numerous steady-state resonant waves in
deep and finite water depth [52], which corresponded with
Phillips’ criterion for four waves of modest amplitude. Deb-
nath and Das [53] use an artificial neural network to predict
the power and torque characteristics of a three-bucket Savo-
nius rotor. Das et al. [54] use a hybrid differential evolution
approach to estimate essential dimensions for a trapezoidal-
shaped steel fin. Singla and Das [55] developed a differential
evolution (DE)-based inverse analysis for optimizing the heat
transfer rate from a rectangular stepped finned surface ful-
filling a given volume. Das et al. [56] used the artificial bee
colony (ABC) optimization method to perform an inverse
study of a double-glazed flat-plate solar collector. Panda et al.
[57] describe an analytical solution for a rectangular fin with
simultaneous heat andmass transmission between the fin sur-
face and the fin tip, and use inverse heat transfer analysis to
determine the unknown thermal and geometrical configura-
tions of the fin.

As obtaining an exact analytical solution to a problem
might be complicated, the researcher uses a collection of
numerical and semi-numerical techniques to tackle the prob-
lem. Keller Box Technique [58], HPM [59], Galerkin finite
element method [60], Spectral Relaxation Method [61], as
well as many others. All of the mentioned literature on nano-
fluid flow for several fluidic systems was invented using
numerous numerical and semi numerical techniques; how-
ever, because of their advantage and efficiency, intelligence
numerical computingmodels are essential to use the EMMN-
PPRHmodel, i.e., the effects of electric andmagnetic field on
the micro-polar nano-fluid flow between two parallel plates
with rotation under the influence of Hall current. Computa-
tional intelligence techniques have been utilized in stochastic
numerical calculating solutions linked to artificial neural net-
works to obtain the results/outcomes of differential equations
for linear andnonlinear, displayingvarying capabilities under
diverse conditions. The arrangement of such these techniques
contains COVID-19 Models [56–63], electromagnetic [64],
dust density model [65], atomic physics [66], entropy gener-
ation system [67], nonlinear Painlevé-I transcendent model
[68], electrohydrodynamic pump flow system [69], nonlin-
ear corneal shape model [60], Thomas–Fermi model [71],
mosquito dispersal model [72], second grade nanofluidic
system [73], and Emden–Fowler systems [74–76]. All of
these motivating characteristics encourage researchers to use
a dependable and accurate AI algorithm-based numerical
computational model for numerical analysis of the Non-
Newtonian Nano-fluid mathematical model by employing
numerical and graphical evaluates to explore the effects of
all alternatives or physical measures on the velocities, tem-
perature, and concentration profiles. PackageofMathematica
andMATLAB has been used to improve numerical accuracy.

The following are the key perspectives of the suggested
design-computing methodology:

The (EMMN-PPRH) model, a new AI-based intelligent
computing technique, was studied using an artificial neu-
ral network via the Levenberg–Marquardt backpropagation
system (ANN-SLMB).
The mathematical modeling of the innovative scheme
EMMN-PPRH in terms of PDEs has been translated to non-
linear ODEs by giving the appropriate analogous adjustment.
The HAM is used to construct a dataset for the suggested
ANN-SLMB as an alternative to (EMMN-PPRH) to using
the rotation parameter, the viscosity parameter, the coupling
parameter, the Brownianmotion parameter, the Prandtl num-
ber, and the electric parameter
The ANN-SLMB testing, validation, and training processes
are used to model EMMN-PPRH for different scenarios, and
evaluation with orientation outcomes rationalizes the accu-
racy of the recommended ANN-SLMB.
Convergence graphs of estimated MSE, fitness, histograms
and regression metrics demonstrate the suitability of the sug-
gested ANN-SLMB to appropriately describe the EMMN-
PPRH model.

The following study is categorized as follows: in section
two, the design and effects of the EMMN-PPRHmodel prob-
lem are presented. The solution approach, as well as the
effects of the proposed ANN-SLMB on various scenarios
of EMMN-PPRH, is presented in section three, and the final
comments and potential future study are defined in the final
unit.

2 Mathematical Modeling

Let us consider the movement of micro-polar, electrically
conducting nano-fluid between both horizontal and parallel
plates. The coordinate system is designed so that the plate
and the fluid rotate around the y-axis at the same angular
velocity �. The distance between the top and lower plates
is denoted by h. In order to extend the bottom plate down
the x-axis, while maintaining the origin O(0, 0, 0) constant,
the two forces have to be of equal magnitude but opposite
in direction. The upper plate has the ability to achieve con-
stant wall suction velocity/injection υ0. The fluid flow heat
transfer is considered to be in a steady condition that is incom-
pressible, laminar, and steady. In y-direction, a magnetic
field B0 and an electric field E0 are operating. Furthermore,
the micro-polar nano-fluid model considers the influence of
Hall current. Figure 1 depicts the physical model. When-
ever the magnetic field grows stronger, the fluids become
electrically conducting, causing a Hall current to be gen-
erated, which influences the micro-polar nano-fluids. This
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action increases the z-direction force, generating a flow dis-
tribution in the same direction and deflecting the micro-polar
nano-fluid flows into 3 dimensions. The generalized Ohm’s
law, which includes the Hall current, is expressed as follows:

J + ωete
B0

× (
J × B

) − Peσn f
ene

− (σn f )
(
V × B + E

) = 0,

(1)

where J = (Jx , Jy , Jz) denotes current density and J =
(σn f )(V × B + E), E denotes the electric field intensity
(0, E0, 0) = E , V (u, v, w) denotes components of veloc-
ity, B = (0, B0, 0) indicates magnetic field, ωe indicates
oscillating frequency of the electron, te denotes the times
of electron collision, Pe is the pressure of the electron, σn f
represent electrical conductivity, ne is the number density
of electron and e is stand for charge of electron. Consid-
ering the inherent parameters, the Ohm law in generalized
form offers

(
Jy = 0

)
in the flow field for weakly ionized

molecules. Using these assumptions, we get Jx and Jz as
[10–17]:

Jx = σn f B
2
0

1 + m2 (mu − w), (2)

Jz = σn f B
2
0

1 + m2 (u + mw). (3)

Here, m = teωe represents the Hall parameter.
By suppositions stated above, the continuity and momen-

tum equations are reduced to [19–28]:

∂v

∂ y
+ ∂u

∂x
= 0, (4)

∂u

∂ y
.v + ∂u

∂x
· u = − 1

ρ f

∂
�
p

∂x
+

(
�
κ

ρ f
+ ν

)(
∂2u

∂x2
+ ∂2u

∂ y2

)

− 2w � +
�
κ

ρ f

∂N

∂ y

− B
2
0σn f

m2 + 1

1

ρ f
(mw + u) − σn f B0E0

ρ f
,

(5)

∂v

∂x
· u + ∂v

∂ y
· v = − 1

ρ f

∂
�
p

∂x
+

(
∂2v

∂ y2
+ ∂2v

∂x2

)
+

�
κ

ρ f

∂N

∂x
,

(6)

∂w

∂x
· (u) + ∂w

∂ y
· (v) =

(
�
κ

ρ f
+ ν

)(
∂2w

∂x2
+ ∂2w

∂ y2

)

+ 2u� + σn f B
2
0

1 + m2

1

ρ f
(mu − w) + σn f B0E0

ρ f
. (7)

FromEqs. (4)–(7), v,μdenotes the kinematic and dynamic
viscosities coefficient, respectively, � represents angular
velocity, �

κ denotes vertex viscosity, ρ f indicates the base
fluid density, and N is stand for the micro-rotation angular
velocity.

The equation of energy is become as [36–39]:

∂T

∂x
· (u) + ∂T

∂ y
· (v) + ∂T

∂z
· (w)

= α∗
(

∂2T

∂x2
+ ∂2T

∂ y2
+ ∂2T

∂z2

)
τ ∗

[
DB

{
∂C

∂x

∂T

∂x
+ ∂C

∂ y

∂T

∂ y
+ ∂C

∂z

∂T

∂z

}

+ DT

TC

{(
∂T

∂x

)2

+
(

∂T

∂z

)2

+
(

∂T

∂ y

)2
}]

. (8)

The equation ofmicro-rotation angular velocity is become
as [19–28]:

∂N

∂x
· (u) + ∂N

∂ y
· (v) = −γ · 1

ρ j

(
∂2N

∂x2
+ ∂2N

∂ y2

)

+
�
κ

ρ j

(
∂v

∂x
− ∂u

∂ y

)
− 2�

κN

ρ j
. (9)

Mass transfer equation is become as [36–39]:

∂C

∂x
· (u) + ∂C

∂ y
· (v) + ∂C

∂z
· (w) = (DB)

·
(

∂2C

∂z2
+ ∂2C

∂ y2
+ ∂2C

∂x2

)

+ DT · 1

T0
·
(

∂2T

∂z2
+ ∂2T

∂ y2
+ ∂2T

∂x2

)
. (10)

Here in Eq. (8), α∗ denotes thermal diffusivity, T denotes
temperature, τ ∗ = (ρc)p

/
(ρc) f is defined as the ratios of

nanoparticles and effective heat capacity, DB denotes the
Brownian diffusion coefficients, DT denotes thermophoretic
diffusion coefficient, cp denotes specific heat, and C is stand
for the fluid concentration of the fluids particles. The bound-
ary conditions for the state problem are as follows:

v = 0, u = αx , w = 0, T = Th , C = Ch , N = −k
∂u

∂ y
, at y = 0,

u = v = w = 0, T = T0, C = C0, N = k
∂u

∂ y
when y = h. (11)

The boundary parameter is denoted by k. The fluid flow
is the turbulent, weak, and strong concentration when the
valve of k = 1.0, k = 1

/
2 and k = 0, respectively. The

dimensionless variables are represented as follows:

N = −αxG(η)

h
, u = αx f ′(η), w = αxg(η), v = −αh f (η),

�(η) = T − Th
T0 − Th

, �(η) = C − Ch

C0 − Ch
, where η = y

h
. (12)
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Fig. 1 Micro-polar nano-fluid
geometry Ω
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when the dimensionless variables from Eq. (12) are replaced
by Eqs. (4)–(10), (4) remains identical, and the other govern-
ing Eqs. (5)–(10) are simplified to the form of

(1 + N1) f
iv − Re

(
f ′ f ′′ − f f ′′′) + M

1 + m2

(
f ′′ + mg′)

− 2Krg′ + N1G
′′ + ME I = 0, (13)

(1 + N1)g
′′ − Re

(
f g′ − g f ′) + 2Kr f ′

+ M

1 + m2

(
m f ′ − g

) − ME I = 0, (14)

�′′ + Pr
(
Re f �′ + Nb�′�′ + Nt�′2) = 0, (15)

N2G
′′ − N1

(
2G + f ′′) − N3Re

(
G f ′ − G ′ f

) = 0, (16)

�′′ + ReSc f �′ + Nt

Nb
�′′ = 0. (17)

When the dimensionless variable from Eq. (12) is utilized
in it, Eq. (11) is simplified to the following form:

f = 0, f ′ = 1, g = 0, � = 1, G = −k f ′′, � = 1, at η = 0

f = δ, f ′ = 0, g = 0, � = 0, G = k f ′′, �(1) = 0, when η = 1.
(18)

The dimensional physical parameters after simplification
are as follows:

Re = ah2

v
, EI = E0

B0ax
, Kr = 2�h2

v
,

M = σn f h2B2
0

ρv
, N1 =

�
κ

μ
, N2 = vs

vh2
, N3 = j

h2
,

Pr = μ

ρ f α
, Nb = (ρc)pDBCh

α∗(ρc) f
, Nt = (ρc)pDT T0

(ρc) f Tc
,

Sc = μ

Dρ f
, δ = v0

h
. (19)

where N1 denotes the coupling parameter, Kr denotes rota-
tion parameter, M is stand for magnetic parameter, N2

represents spin gradient viscosity parameter, EI is stand for
electric parameter, δ denotes transpiration parameter, N3 is
stand for micro-polar fluid constant, Re is stand for viscosity
parameter, PR indicates Prandtl number, Nt denotes ther-
mophoretic parameter, Sc indicates the Schmidt number, and
Nb indicates the Brownian motion parameter.

Here, C f =
(
Sxy

)
y=0

ρu2w
represents the skin friction, where

Sxy =
(
(μ + �

κ) ∂u
∂ y + �

κN
)
, Qw is the heat flux and Qw =

(
∂T
∂ y

)

y=0
(−k), the Nusselt number is expressed as Nu =

hQw
�
k (T0−Th)

. The number of Sherwood is expressed as Sh =
h Jw

DB (C0−Ch)
, Jw is the mass flux and Jw = (−DB)

(
∂C
∂ y

)

y=0
.

C f , Nu and Sh are achieved in the dimensionless form as

C f

√
Rex = N1G(0) + (1 + N1) f

′′(0),
Nu = −�′(0), Sh = −�′(0). (20)

wherever Rex stands for local Reynolds number and is
denoted by Rex = uwx

v
.
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Fig. 2 Neural Network Design
for EMMN-PPRH model

Fig. 3 (a) Configuration of a
specific neural framework.
(b) EMMN-PPRH Mathematical
Model

3 Solution Approach and Assessment

The recommended ANN-SLMB in the configuration of a
neural network is depicted in Fig. 2. The recommended
ANN-SLMB is conducted using the ’nf tool,’ which is a tech-
nique for fittingNN tools inMATLAB’s neural network (NN)
toolbox, while backpropagation of Levenberg–Marquardt is
used to determine the weight of neural networks. The pro-
posed ANN-SLMB framework is shown in Fig. 3a, and the

mathematical model is shown in Fig. 3b, while the overall
extension of the flow is shown in Fig. 4.

Figures 5, 6, 7, 8, 9, 10, 11, 12, 13 show the ANN-SLMB
implications for the EMMN-PPRH model in different sce-
narios (1 to 6). Figures 5 and 6 show the outcomes of six
scenarios M , kr , R, Rd, Sc and Nt in form of execution
and transition phases. The fitting plots and error histograms
in Figs. 7, 8 are discussed in expressions of solution with
error for four distinct cases, whereas regression assessments
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Fig. 4 The suggested ANN-SLMB workflow procedure for the EMMN-PPRH model

in Figs. 9, 10, 11 are exhibited for four distinct cases of the
EMMN-PPRHmodel. Furthermore, for each EMMN-PPRH
model scenario, the convergence achieves parameter in form
of MSE, execution, performance duration, executed period,
and gauges of backpropagation and behavioral convolution
are included in Tables (2–7) for all 6 scenarios, respectively.

Figures 5, 6a, c, e for test procedures indicated the MSE
convergence, training, and validation improvements for six
scenarios of the EMMN-PPRHmodel. The best network per-
formancewas achievedwithMSEclose to 2.19×10−10, 2.12
× 10−10, 2.47× 10−10, 2.37× 10−10, 2.56× 10−10 and 1.82
× 10−10. The reduced the MSE figure, the more precise and
accurate the execution of the recommended approach. The
concerning values of step size Mu and gradient of Leven-
berg–Marquardt are finely [1.00× 10−08, 1.00× 10−08, 1.00
× 10−08, 1.00× 10−08, 1.00× 10−08 and 1.00× 10−08] and
[9.97 × 10−08, 9.97 × 10−08, 9.97 × 10−08, 9.96 × 10−08,
9.95× 10−08 and 9.97× 10−08] are existent in Figs. 5, 6b, d,

f. The results and graphical illustrations above demonstrate
that ANN-SLMB is competent, accurate, and convergent for
case 4 of the EMMN-PPRH model.

Figures 7, 8 assess the efficiency of the EMMN-PPRH
model by analyzing the created consequences of six distinct
scenarios for inputs ranging from 0 to 1 with a step range
of 0.01 with reference numerical results of HAM and related
outcomes, as well as the design of error dynamics. The great-
est error for the test, train, and validation statistics achieved
via recommended ANN-SLMB is less than 3.70 × 10−10,
3.34 × 10−10, 7.18 × 10−10, 2.90 × 10−10, 4.16 × 10−10

and 2.85 × 10−10, whereas the error dynamics and results of
the EMMN-PPRH model for 6 different scenarios are also
analyzed for each input point apart from the error histograms
are demonstrated in Figs. 7, 8a, b, c, respectively. The aver-
age value of error bin via compared zero line has errors about
7.29× 10−08, 7.29× 10−08,− 1.9× 10−06, 5× 10−08, 2.04
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Fig. 5 Performance solution and State transition of Recommended ANN-SBLM for solving EMMN-PPRHmodel for case 4 of scenarios 1, 2 and 3
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Fig. 6 Performance solution and State transition of Recommended ANN-SBLM for solving EMMN-PPRHmodel for case 4 of scenarios 4, 5 and 6
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Fig. 7 Solution of Fitness and Error analysis of Recommended ANN-SBLM for solving EMMN-PPRH model for case 4 of scenarios 1, 2 and 3
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Fig. 8 Solution of Fitness and Error analysis of Recommended ANN-SBLM for solving EMMN-PPRH model for case 4 of scenarios 4, 5 and 6
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Fig. 9 Regression effectiveness of the Recommended ANN-SBLM for solving EMMN-PPRH model for case 4 of scenarios 1 and 2

Fig. 10 Regression effectiveness of the Recommended ANN-SBLM for solving EMMN-PPRH model for case 4 of scenarios 3 and 4

× 10−06 and − 1.6 × 10−06 for case 4 of all 6 distinct sce-
narios of the model, EMMN-PPRH. Co-relation analyses are
commonly used to classify the investigation inside regression
analyses. Figures 9, 10, 11 show the effects of the EMMN-
PPRH model’s related six scenarios. Correlation values are
constantly near to unity, indicating that this is the optimal
value for validation, training, and testing for precise model-
ing, which indicates how effectively ANN-SLMB resolves
the EMMN-PPRH model.

Furthermore, for various EMMN-PPRH model parame-
ters (1–6), the associated numerical data in Table 2, 3, 4, 5,
6, 7 demonstrate that MSE efficiency for the proposed ANN-
SLMB technique is close 1E−10. The numerical results in
Tables 2, 3, 4, 5, 6, 7 demonstrate that ANN-SLMB solves
the EMMN-PPRH model well.

The results of ANN-SLMB are validated for velocities
f ′(η) and g(η), and temperature �(η) profiles for scenarios
1–6 of the EMMN-PPRH paradigm are presented in Figs. 12
and 13, respectively. The influence of velocity profiles f ′(η)
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Fig. 11 Regression effectiveness of the Recommended ANN-SBLM for solving EMMN-PPRH model for case 4 of scenarios 5 and 6

Table 1 Depiction of all scenarios along with 4 different cases for the EMMN-PPRH model

Scenarios Case Interest physical quantities

Kr EI Re N1 Nb Pr M m Nt N2 N3 Sc δ k

S1 C1 0.5 0.6 1 1.5 0.8 1.5 1 0.6 0.3 1.5 1 0.8 0.1 1

C2 1.0 0.6 1 1.5 0.8 1.5 1 0.6 0.3 1.5 1 0.8 0.1 1

C3 1.5 0.6 1 1.5 0.8 1.5 1 0.6 0.3 1.5 1 0.8 0.1 1

C4 2.0 0.6 1 1.5 0.8 1.5 1 0.6 0.3 1.5 1 0.8 0.1 1

S2 C1 0.8 1 1 2 0.8 1.5 1 0.6 0.3 2 1 0.8 0.1 1

C2 0.8 2 1 2 0.8 1.5 1 0.6 0.3 2 1 0.8 0.1 1

C3 0.8 3 1 2 0.8 1.5 1 0.6 0.3 2 1 0.8 0.1 1

C4 0.8 4 1 2 0.8 1.5 1 0.6 0.3 2 1 0.8 0.1 1

S3 C1 0.8 0.6 1 2 0.8 1.5 1 0.6 0.3 2 2 0.8 0.1 1

C2 0.8 0.6 2 2 0.8 1.5 1 0.6 0.3 2 2 0.8 0.1 1

C3 0.8 0.6 3 2 0.8 1.5 1 0.6 0.3 2 2 0.8 0.1 1

C4 0.8 0.6 4 2 0.8 1.5 1 0.6 0.3 2 2 0.8 0.1 1

S4 C1 0.8 0.6 1 0.1 0.8 1.5 1 0.6 0.3 1 1 0.8 0.1 1

C2 0.8 0.6 1 1.0 0.8 1.5 1 0.6 0.3 1 1 0.8 0.1 1

C3 0.8 0.6 1 1.5 0.8 1.5 1 0.6 0.3 1 1 0.8 0.1 1

C4 0.8 0.6 1 2.0 0.8 1.5 1 0.6 0.3 1 1 0.8 0.1 1

S5 C1 0.8 0.6 1 1 0.1 1.5 1 0.6 0.3 2 1 0.8 0.1 1

C2 0.8 0.6 1 1 0.3 1.5 1 0.6 0.3 2 1 0.8 0.1 1

C3 0.8 0.6 1 1 0.5 1.5 1 0.6 0.3 2 1 0.8 0.1 1

C4 0.8 0.6 1 1 0.7 1.5 1 0.6 0.3 2 1 0.8 0.1 1

S6 C1 0.8 0.6 1 1 0.5 1 1 0.6 0.3 2 1 0.8 0.1 1

C2 0.8 0.6 1 1 0.5 2 1 0.6 0.3 2 1 0.8 0.1 1

C3 0.8 0.6 1 1 0.5 3 1 0.6 0.3 2 1 0.8 0.1 1

C4 0.8 0.6 1 1 0.5 4 1 0.6 0.3 2 1 0.8 0.1 1
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Table 2 ANN-SLMB
consequence of the
EMMN-PPRH model for
Scenario 1

Case MSE Execution Gradient Mu Epoch Time

MSE
training

MSE
validation

MSE
testing

C1 1.6506E−11 2.5701E−11 2.0446E−10 1.65E−11 9.97E−08 1.00E−09 441 1

C2 2.2740E−10 2.4744E−10 3.4024E−10 2.27E−10 9.99E−08 1.00E−08 504 1

C3 1.9755E−11 2.1231E−11 2.6966E−11 1.98E−11 9.97E−08 1.00E−09 409 1

C4 2.1852E−10 3.7083E−10 3.0959E−10 2.19E−10 9.97E−08 1.00E−08 512 1

Table 3 ANN-SLMB
consequence of the
EMMN-PPRH model for
Scenario 2

Case MSE Execution Gradient Mu Epoch Time

MSE
training

MSE
validation

MSE
testing

C1 2.0306E−10 2.9670E−10 3.7321E−10 1.73E−10 9.97E−08 1.00E−08 492 1

C2 1.7326E−10 2.6433E−10 2.8741E−10 1.30E−10 9.97E−08 1.00E−08 472 1

C3 1.9992E−10 3.6165E−10 5.4846E−10 2.00E−10 9.99E−08 1.00E−08 459 1

C4 2.1177E−10 3.3445E−10 1.5116E−10 2.12E−10 9.97E−08 1.00E−08 486 1

Table 4 ANN-SLMB
consequence of the
EMMN-PPRH model for
Scenario 3

Case MSE Execution Gradient Mu Epoch Time

MSE
training

MSE
validation

MSE
testing

C1 2.9319E−10 3.1247E−10 4.4236E−10 2.93E−10 9.99E−08 1.00E−08 670 2

C2 2.3887
E−10

3.2580E−10 1.0593E−09 2.39E−10 9.97E−08 1.00E−08 542 2

C3 2.0165E−10 4.3343E−10 3.9637E−10 2.02E−10 9.97E−08 1.00E−08 507 1

C4 2.4663E−10 5.3626E−10 7.1892E−10 2.47E−10 9.97E−08 1.00E−08 480 1

Table 5 ANN-SLMB
consequence of the
EMMN-PPRH model for
Scenario 4

Case MSE Execution Gradient Mu Epoch Time

MSE
training

MSE
validation

MSE
testing

C1 2.1338E−10 3.1629E−10 4.0416E−10 2.13E−10 9.97E−08 1.00E−08 479 1

C2 2.1338E−10 3.5543E−10 4.1233E−10 2.40E−10 9.96E−08 1.00E−08 435 1

C3 1.7297E−10 1.6901E−10 7.6699E−10 1.73E−10 9.99E−08 1.00E−08 448 1

C4 2.3679E−10 1.9375E−10 2.9072E−10 2.37E−10 9.96E−08 1.00E−08 430 1

Table 6 ANN-SLMB
consequence of the
EMMN-PPRH model for
Scenario 5

Case MSE Execution Gradient Mu Epoch Time

MSE
training

MSE
validation

MSE
testing

C1 1.3223E−11 1.5951E−11 1.3657E−10 1.32E−11 1.00E−07 1.00E−09 432 1

C2 1.3786E−11 2.1300E−11 2.0248E−11 1.38E−11 9.98E−08 1.00E−09 444 1

C3 1.0380E−11 1.5965E−11 1.1869E−11 1.04E−11 9.96E−08 1.00E−09 481 1

C4 2.5603E−10 5.8158E−10 4.1644E−10 2.56E−10 9.95E−08 1.00E−08 470 0
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Table 7 ANN-SLMB
consequence of the
EMMN-PPRH model for
Scenario 6

Case MSE Execution Gradient Mu Epoch Time

MSE
training

MSE
validation

MSE
testing

C1 1.1750E−11 3.0851E−11 2.3592E−11 1.18E−11 9.96E−08 1.00E−09 428 1

C2 1.1815E−10 2.0001E−10 3.7015E−10 1.18E−10 9.98E−08 1.00E−08 495 1

C3 1.0830E−10 2.0475E−10 1.7171E−10 1.08E−10 1.00E−07 1.00E−08 499 1

C4 1.8210E−10 2.1362E−10 2.8512E−10 1.82E−10 9.97E−08 1.00E−08 475 1

and g(η) is enumerated for the variations of rotation param-
eter Kr, viscosity parameter Re and electric parameter Kr in
sub Fig. 12a, c, e for case 4 of scenarios 1, 2, and 3 of the
EMMN-PPRH paradigm,Moreover, in sub Fig. 12b, d, f, the
corresponding AE values are included in order to execute the
EMMN-PPRH model technique. The impact of the rotation
parameter Kr on the velocity profile is illustrated in Fig. 12a.
While can be observed, as the rotation parameter rises, that
increasing the motion of fluid, with the impact being more
evident towards the stretching plate. Consequently, raising
the rotation parameter increases the carioles force, which
increases the rotational velocity and kinetic energy increases
due to this rotation in fluid, which raises the motion of the
flow. The electric parameter EI impacts on velocity profile
is shown in Fig. 12c. It is observed that, when the values of
the electric parameter increase, the velocity increases along
with y and z directions, respectively. This is because a sig-
nificant quantity of electric field causes rapid ionization in
micro-polar nano-fluid, which causes nanoparticle motility
to increase. The effect of the viscosity parameter (Re), on
the velocity profile, is exposed in Fig. 12e. The velocity
distribution is found to decrease as the viscosity parame-
ter (Re) increases. This is because increasing the value of Re
decreases the viscid forces that produce thewell-built inertial
forces, causing the velocity field to slow down.

It is feasible to see the overlapping of references and
recommended solutions. As a result, for the EMMN-PPRH
model, Fig. 13a, c, e demonstrate the results different
magnitudes for coupling parameter N1, Brownian motion
parameter Nb and Prandtl number Pr for velocity f ′(η) and
temperature θ(η) profiles for case 4 of scenarios 4, 5, and
6, respectively. Whereas in Fig. 13b, d, f the appropriate
values ofAE are computed. The influence of coupling param-
eter (N1), on velocity, is indicated in Fig. 13a. It can be
demonstrated that the coupling parameter (N1) decreases the
velocity profile towards the lower plate and raises the veloc-
ity profile from the center to the top plate. The features of
the Brownian motion parameter on Temperature �(η) are
depicted in Fig. 13c. The Brownian motion is the random
movement of particles in nano-fluids. It is also seen that the
Brownian motion of micro-polar fluid at the level of molecu-
lar is a crucial determinant in nano-fluid thermal conductivity.

Growing is considered to raise the temperature profile. Fur-
thermore, raising the Brownianmotion (Nb), rises the kinetic
energy of the micro polar nano-fluid within the fluid, raising
the rate of heat transfer and the thickness of the boundary
layer, culminating in temperature profile rises. The effect of
the Prandtl number (Pr) on Temperature�(η) is presented in
Fig. 13e. The temperature distribution is inversely related to
Prandtl number (Pr). Temperature distribution reduces with
rising Prandtl number (Pr) values and increases with decreas-
ing Prandtl number (Pr) values. Physically, fluids with a low
Prandtl number have highly thermal diffusivity, whereas flu-
ids with a high Prandtl number Pr have the opposite effect.
Because of this, a high Pr value causes the thermal boundary
layer to collapse.

The results of ANN-SLMB related with HAM for all 6
scenarios, so that the absolute error was decided to approach
the exactness measures from suggestion solutions, and the
consequences are demonstrated in sub Figs. 12b, d, f, 13b,
d, f for case 4 of scenarios 1, 2, 3, 4, 5, and 6. The AE
accomplish values for scenarios 1,2,3 for velocity profiles
are 10−07 to 10−04, 10−08 to 10−04 and 10−07 to 10−04 are
shown in sub Fig. 12b, d, f, whereas for velocity and temper-
ature profiles, the AE achieve values for scenarios 4, 5, and 6
are approximately 10−07 to 10−04, 10−08 to 10−04 and 10−08

to 10−04 are indicated in sub Fig. 9b, d, f, respectively. The
ANN-SLMB computingmethodology solves EMMN-PPRH
model variationswith sufficient convergent and dynamic effi-
ciency in all of these numerical and graphical examples.

4 Conclusions

In this paper, the EMMN-PPRH model was analytically and
numerically determined the effects of electric and magnetic
fields on the micro-polar nano-fluid flow between two paral-
lel rotating plates under the impact of Hall current.

• The solution of a mathematical model presenting EMMN-
PPRHwith a variation of convinced scenarios is examined
by calculating an artificial neural network system using the
Levenberg–Marquardt approach with backpropagation.
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Fig. 12 Analysis of recommended ANN-SBLM through reference data set results for case 4 of EMMN-PPRH model scenarios 1, 2, and 3
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Fig. 13 Analysis of recommended ANN-SBLM through reference dataset results for case 4 of EMMN-PPRH model scenarios 4, 5, and 6
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• The dataset for the EMMN-PPRH model is generated
using the homotopy analysis analytical approach, which
includes deviations from several physical measurements
such as the rotation parameter, the electric parameter, the
viscosity parameter, the coupling parameter, the Brownian
motion parameter, and the Prandtl number.

• In the present research, the proposed methodology
ANN-SBLM based on Levenberg–Marquardt scheme
is used to obtain the convergence of various parame-
ters for velocity, temperature and concentration profiles
which is closed to the solution obtain by HAMmethod.

• Furthermore, we obtain some statistical data of the
model that is mean square error, gradient, performance,
Mu.

• The EMMN-PPRH reference dataset is formed bymod-
ifying numerous variants, with 90%, 05%, and 05% of
the dataset used for ANN-SBLM training, testing, and
validation, respectively.

• The scheme’s achievement authenticates a level of
10−09 to 10−11 for both reference and recommended
results, and this is further supported by graphical and
numerical demonstrations of error-histogram graphs of
convergence, regression dynamics, and mean square
errors.

In the future, newANN-SBLM type solvers and its hybrid
versions will be designed to further investigate and address
fluid mechanics challenges [77–82].
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