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Bullous pemphigoid (BP) is an autoimmune and inflammatory skin disease associated 
with subepidermal blistering and autoantibodies directed against the hemidesmosomal 
components BP180 and BP230. Animal models of BP were developed by passively 
transferring anti-BP180 IgG into mice, which recapitulates the key features of human BP. 
By using these in vivo model systems, key cellular and molecular events leading to the 
BP disease phenotype are identified, including binding of pathogenic IgG to its target, 
complement activation of the classical pathway, mast cell degranulation, and infiltration 
and activation of neutrophils. Proteinases released by infiltrating neutrophils cleave 
BP180 and other hemidesmosome-associated proteins, causing DEJ separation. Mast 
cells and mast cell-derived mediators including inflammatory cytokines and proteases 
are increased in lesional skin and blister fluids of BP. BP animal model evidence also 
implicates mast cells in the pathogenesis of BP. However, recent studies questioned the 
pathogenic role of mast cells in autoimmune diseases such as multiple sclerosis, rheu-
matoid arthritis, and epidermolysis bullosa acquisita. This review highlights the current 
knowledge on BP pathophysiology with a focus on a potential role for mast cells in BP 
and mast cell-related critical issues needing to be addressed in the future.
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MAST CeLLS (MCs) AND MC ReCePTORS

Mast cells are derived from hematopoietic progenitor cells and have been considered as a central 
player in functional interaction between innate and adaptive immunity. MCs are initially located 
in the blood vessel and the lymphatic system before homing to tissues, where they acquire their 
final effector characteristics (1). There are at least two subpopulations of murine MCs based on the 
composition of chymases and tryptases within their granules. While MCT cells are the prominent MC 
type within the mucosa of the respiratory and gastrointestinal tracts, MCTC cells are localized within 
connective tissues including the dermis, submucosa of the conjunctivae, gastrointestinal tract, heart, 
and perivascular tissues (2). The maturation of MCs in the tissue mainly relies on stem cell factor 
(SCF) expressed on the homing tissue, which is the ligand of KIT (1).
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Mast cells express KIT (CD117) and FcεRI on their surface, 
which are the receptors of SCF and IgE, respectively. MCs also 
express other cell surface receptors, including IgG receptors 
(FcγRIII, FcγRIIa, and FcγRI), C3a and C5a receptors (C5aRs), 
Toll-like receptors, and receptors for many cytokines/chemokines 
(3). These receptors mediate activation of MCs. Upon activation, 
MCs release their mediators to the homing sites, which act in 
host defense and various pathological conditions (4). Mediators 
produced by MCs are divided into two categories: preformed and 
newly synthesized (5). Many mediators are preformed and stored 
in granules, such as histamine, serine proteases (tryptase and chy-
mase), and TNF-α (6). Upon activation of MCs, these preformed 
mediators are released into the extracellular environment within 
minutes (7–9).

After the initial activation, the synthesized bioactive metabo-
lites of arachidonic acid, prostaglandins, leukotrienes (LTs), and 
cytokines/chemokines will be released into the affected tissue sites 
rapidly. The second release of granules will amplify the immediate 
hypersensitivity reaction through the interaction with local cells 
and infiltrating immune cells (4).

MCs iN NON-SKiN AUTOiMMUNe 
DiSeASeS MULTiPLe SCLeROSiS  
(MS) AND RHeUMATOiD ARTHRiTiS

Mast cells have been considered as key effector cells in many 
immune activities, especially IgE-associated immune responses, 
including host defense to parasites, allergic diseases, chronic 
inflammatory disorders (10, 11), and cancer (12, 13). MCs have 
also been implicated in autoimmune diseases (14–19), such as 
MS, rheumatoid arthritis (RA), and the autoimmune skin blister-
ing diseases bullous pemphigoid (BP) and epidermolysis bullosa 
acquisita (EBA).

Multiple sclerosis is an autoimmune disease of the central 
nervous system characterized by chronic inflammation and 
progressive demyelination (20). MCs and activated MCs are 
present in the target tissues of MS patients and correlated with 
disease severity (21–24). The animal model of MS, experimental 
autoimmune encephalomyelitis (EAE), can be induced by active 
immunization of susceptible mouse strains with myelin compo-
nents such as myelin basic protein and myelin oligodendrocyte 
glycoprotein (MOG) (25). RA is an autoimmune disease of 
the joints characterized by chronic inflammation and cartilage 
destruction (26). Increased MCs and MC-derived inflammatory 
mediators are found in the inflamed joints of RA patients (27–29). 
K/BxN mouse serum contains autoantibodies against the glucose-
6-phosphate isomerase and, when passively transferred to mice, 
induces experimental RA (30).

ROLe OF MCs iN eXPeRiMeNTAL  
MS AND RHeUMATOiD ARTHRiTiS

Mast cell-deficient mice have been widely used to determine the 
role of MCs in various physiological and pathological conditions, 
including autoimmune diseases. Whether MCs actively par-
ticipate in the pathogenesis of MS and RA has been extensively 

debated recently due to controversial results obtained from 
different MC-deficient mouse strains. For a more comprehensive 
and in-depth review, please refer to the studies by Yu et al. and 
Rivellese et  al. (15, 31). In MOG-induced EAE, MC-deficient 
KitW/W-v mice (caused by Kit mutations) developed a significantly 
reduced disease, and reconstitution of MC-deficient KitW/W-v mice 
with wild-type bone marrow-derived MCs restored the disease 
(32). Similarly, MC-deficient KitW/W-v mice were protected from 
K/BxN serum-induced RA (33). K/BxN serum also failed to 
induce RA in MgfSl/Sl-d mice, another MC-deficient strain caused 
by mutations in the gene encoding the Kit ligand SCF (33). Since 
MC deficiency by Kit or SCF mutations also caused a variety of 
immunological abnormalities, new Kit-independent MC-specific 
deletion mouse strains were developed recently. It turned out that 
MCs were not required in the development of EAE and serum-
induced RA (34).

BP: CLiNiCAL AND 
iMMUNOHiSTOLOGiCAL FeATUReS

Bullous pemphigoid is an autoimmune subepidermal blistering 
disease induced by autoantibodies against the two components 
of the hemidesmosome, BP180 and BP230. BP is the most com-
mon autoimmune blistering disease and most prevalent in the 
elderly. BP typically presents with tense, mostly clear blisters, and 
erythema, frequently in conjunction with urticarial plaques (35). 
Blisters occur on either a normal or a erythematous base, contain-
ing serous or serosanguinous fluid (36). The disease has a sym-
metric distribution, and the predilection sites include the lower 
abdomen, flexor surfaces of the limbs, groin, and axillae (37). In 
almost all patients, severe pruritus is present. About 10–20% of 
patients show mucosal involvement, with the oral mucosa being 
the most common mucosal site (38, 39). Two prospective stud-
ies showed that up to 20% of patients with BP have no obvious 
blistering at the time of diagnosis (38–40).

Histopathologically, hematoxylin and eosin staining of early 
bulla in BP reveals subepidermal blistering with dense inflam-
matory infiltrate consisting predominantly of eosinophils, 
but also lymphocytes, neutrophils, and MCs. Eosinophils are 
seen within the blister and in the edematous papillary dermis 
(41). In the early non-bullous phase, subepidermal clefts and 
eosinophilic spongiosis (epidermal spongiosis with eosino-
phils within the epidermis) can be found (41). Therefore, BP 
is an autoimmune and inflammatory disease (Figure 1). Direct 
immunofluorescence staining exhibits linear deposition of 
IgG and/or complement components (C3 and/or C5) at the 
dermal–epidermal junction. IgG deposition sometimes is 
combined with weaker linear IgA or IgE staining. To identify 
circulating autoantibodies to the DEJ, indirect immunofluo-
rescence (IIF) with normal human skin as the substrate is usu-
ally examined. Artificial blisters can be induced by incubating 
the skin specimen with 1 M NaCl solution. Since BP180 and 
BP230 are on the epidermal side of the artificial blisters, 
autoantibodies from BP patients are known to react with the 
epidermal side of the blisters (42). In contrast, autoantibodies 
from other autoimmune blistering diseases, including EBA 
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FiGURe 1 | Human bullous pemphigoid (BP). (A) Large, tense bullae, and erythematous patches seen in BP patient. (B) Histology reveals dermal–epidermal 
junction separation with inflammatory cell infiltration. Immunofluorescence shows linear deposition of IgG (C) and complement C3 (D) at the basement membrane 
zone (BMZ). d, dermis; e, epidermis. Arrow, the BMZ. Original magnification, 100× for panels (B–D).
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and anti-laminin γ1 pemphigoid, react with the dermal side of 
the artificial blisters (35). Thus, IIF with the salt-split skin as 
a substrate is helpful in distinguishing BP from other autoim-
mune blistering disorders.

BP AUTOANTiGeNS

Bullous pemphigoid autoantibodies target two hemidesmosomal 
components BP180 (BPAG2) and BP230 (BPAG1), which are 
involved in dermal–epidermal cohesion (43–45). BP180 is a 
type II transmembrane glycoprotein with a globular cytoplasmic 
domain and a large extracellular region containing 15 collagen-
ous and 16 non-collagenous (NC1-16) domains. The 16th non-
collagenous (NC16A) domain is the immunodominant region in 
BP (46). Anti-NC16A IgG autoantibodies are detected in more 
than 90% of BP patients (47) and have been shown to be patho-
genic in skin organ culture system and in animal models of BP 
(48–50) (see below). BP230 is a 230-kDa intracellular component 
of the hemidesmosomal plaque and belongs to the plakin family 
of proteins. Anti-BP230 autoantibodies are detected in nearly 
60% of BP patients (51). In addition to IgG reactivity, anti-BP180/
BP230 IgE autoantibodies are present in serum samples from 
most patients (47, 52, 53).

GeNeTiCS OF BP

Genetic, environmental, and stochastic factors contribute to 
susceptibility to most autoimmune diseases. The human MHC 
encodes many glycoproteins that include the HLA class I and 
class II molecules, which provide a pivotal role in the recogni-
tion of antigenic peptides by T cells. A lot of polymorphisms of 
HLA-II class alleles have been identified in several populations 
of patients with BP (54–58). These polymorphisms HLA class 
II alleles occur likely due to changes in the charge of the active 
binding site on the HLA molecules for binding of autoantigenic 
peptides. A common HLA class II allele, HLA-DQB1*03:01, 
is positively associated with BP in multiple populations  
(54, 55, 58) and also appears to be associated with distinct 
clinical pemphigoid variants (59–61). In addition, the activa-
tion of BP180-autoreactive T cells from a cohort of BP patients 

with HLA-DQB1*03:01 was found to be restricted by this 
BP-associated HLA class II allele (55).

T CeLL ReSPONSe iN BP

CD4+ T helper (Th) cells are thought to participate in early 
disease development and perpetuation of autoantibody-mediated 
autoimmune blistering diseases. Th cells, upon proper costimula-
tion, are activated and produce and secrete distinct cytokines that 
stimulate B cells. This Th–B cell interaction thus fosters plasma 
cell development and autoantibody production (62). In BP, auto-
reactive CD4+ T lymphocytes recognize unique epitopes within 
the extracellular region of BP180 (63). The majority of BP patients 
examined have both Th1 and Th2 responses against the BP180 
ectodomain (55, 64). BP180-reactive Th cells and IgG autoan-
tibodies recognized similar or identical epitopes clustered in 
distinct regions of the BP180 ectodomain and BP230 (49, 62, 65).  
Li et al. found that follicular T helper (Tfh) cells and IL-21 were 
crucial for the secretion of antibodies against BP180NC16A 
domain in T cell/B cell co-culture system, indicating that these 
Tfh cells may be involved in the pathogenesis of BP (66).

MCs iN HUMAN BP

In 1978, Wintroub et al. found that increased MCs and increased 
degranulation of MCs at the BP lesional sites are the earliest 
events in BP lesion formation (67). The evolution of clinical BP 
lesions is associated with a sequence of histopathologic events, 
starting with MC alternation and proceeding to immune cell 
infiltration first with lymphocytes followed by eosinophils and 
basophils. Electron and light microscopy revealed that MCs are 
mainly present in the papillary dermis adjacent to the dermal–
epidermal junction and demonstrate a unique, focal, irregular 
loss of granule contents (68).

Various inflammatory mediators have been found in 
lesional/perilesional skin, blister fluids, and/or blood of 
patients with BP, including C5a, histamine, LTs, and many 
cytokines/chemokines (e.g., IL-1, IL-2, IL-5, IL-6, IL-8, TNF-α,  
eotaxins, and IFN-γ) (69–75). These mediators can recruit 
and directly activate MCs and leukocytes. Moreover, MCs can 
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influence biological responses through the production of mul-
tifunctional cytokines and enzymes (76–78). Evidence suggests 
that metalloproteinase (MMP9 in particular), leukotrienes 
(LT), heparin and platelet activating factor (PAF) derived from 
MCs also play a role in the inflammatory process during blister 
formation (67). Tryptase is a specific proteolytic enzyme synthe-
sized and stored in MCs and released by MCs when activated by 
various stimulating factors. Tryptase, therefore, is considered a 
reliable marker for the presence of MCs (79). A previous study 
showed that tryptase levels in BP blister fluid were increased 
compared with the respective sera and significantly correlated 
with several cytokines/chemokines (IL-3, IL-4, IL-5, IL-6, IL-7, 
IL-8, and RANTES), VEGF, and sICAM-1. Most importantly, 
the blister fluid tryptase levels were also positively correlated 
with titers of autoantibodies against basement membrane 
zone antigens (80), which relates to the severity of the disease. 
Increased levels of cytokines (including IL-1β, IL-5, IL-6, 
IL-10, IL-15, and TNF-α) and chemokines (such as CCL2, 
CCL5, CCL11, CCL13, and CCL18, and IL-8) were identified in 
serum samples and blister fluids of patients with BP, and some 
of these mediators parallel disease activity (81). Bieber et  al. 
investigated serum parameters related to activation of different 
inflammatory cells and found higher serum concentrations of 
MCs tryptase during ongoing disease. The serum levels of MCs 
tryptase significantly decreased at the time of clinical remis-
sion of the patients. In addition, serum concentrations of MCs 
tryptase were significantly associated with levels of circulating 
anti-BP180 autoantibodies (82). These data suggested that 
increased concentrations of MCs tryptase in BP blister fluids 
and/or serum partly correlate with cytokines, autoantibodies, 
and clinical disease severity in BP patients.

BP180-specific IgG autoantibodies are the most abundant 
immunoglobulin isotype; however, IgE autoantibodies with 
the same or similar epitope specificity are also present in about 
70–90% of BP patients (83, 84). It has been speculated that IgE 
autoantibody–mediated activation of MCs in the skin may be 
involved in the development of certain clinical symptoms typical 
of BP, such as urticarial plaques, dermal edema, and eosinophilic 
inflammation. Dimson et al. found IgE-coated MCs in the per-
ilesional skin of the BP patients, and BP180 peptides were co-
localized on these MCs, suggesting that BP180-specific IgE that 
bind to the surface of MCs through IgE receptors, when interact-
ing with BP180 peptides, result in MC degranulation. Moreover, 
basophils obtained from untreated BP patients stimulated with 
recombinant BP180NC16A released significantly higher his-
tamine compared to NC16-stimulated basophils from normal 
control or from treated BP patients (83). In addition, Freire et al. 
reported that IgE co-localized with MCs in the perilesional skin 
of BP patients, and IgE-BP180 complexes could activate MCs 
via the high-affinity IgE receptor (FcεRI), conceivably triggering 
MC degranulation-mediated events resulting in tissue inflam-
mation (85).

Omalizumab is a recombinant humanized monoclonal anti-
body that inhibits the binding of IgE to FcεRI on the surface of 
MCs and basophils. Patients with BP treated with omalizumab 
showed reduced disease severity including decreased itching and 
blister count, reduced urticarial plaques, and reduced eosinophilic 

inflammation (86, 87). Together, these clinical research and 
clinical trial data suggest that IgE autoantibodies in BP patients 
are involved in BP development likely through FcεRI-induced 
degranulation of MCs and basophils. However, pathogenic 
anti-BP180 IgE autoantibodies could also act on eosinophils in 
BP tissue injury since eosinophils express IgE receptors and are 
predominant infiltrating immune cells in BP (41).

ANiMAL MODeLS OF BP

Bullous pemphigoid autoantibodies were thought to be respon-
sible for blister formation in BP; however, passive transfer of 
IgG autoantibodies from BP patients could not induce a BP-like 
disease in animals (88, 89). It turned out that BP autoantibodies 
reacting with NC16A domain that harbors immunodominant 
and potentially pathogenic epitopes fail to cross-react with mouse 
BP180; therefore, BP IgG autoantibodies cannot be tested for 
pathogenicity in a conventional passive transfer mouse model. 
In 1993, Liu et al. (90) subcloned a segment of the murine BP180 
protein homologous with the human BP180 NC16A (mBP180 
NC14A), generated rabbit polyclonal antibodies against  
mBP180 NC14A, and administrated the purified rabbit anti-
mBP180 IgG intradermally or intraperitoneally into neonatal 
BALB/c mice. This experimental BP model reproduced all of the 
key clinical, histological, and immunopathological features of 
BP, including deposition of rabbit anti-mBP180 IgG and mouse 
complement C3 at dermal–epidermal junction, infiltration of 
inflammatory cells, and subepidermal blistering (90) (Figure 2). 
Anti-BP180 IgG-induced BP blistering required complement 
activation and neutrophil recruitment (91, 92). Subsequently, 
BP serum-purified IgG autoantibodies against BP180 or NC16A 
domain were also demonstrated to be pathogenic in BP180 
humanized mouse models (93, 94).

BP180-specific IgE autoantibodies purified from serum of BP 
patients when passively transferred into human skin grafted onto 
athymic nude mice induced skin lesions that recapitulated the ini-
tial phase of disease. The features of the early phase of the disease 
are characterized by increased plaques and MC degranulation in 
comparison with injection of normal control human IgE (95). 
Lesional skin of the anti-BP180 IgE-injected mice also exhibited 
infiltration of neutrophils and eosinophils (95). However, it 
remains to be determined whether the pathogenic activity of 
anti-BP180 IgE depends on eosinophils, MCs, or both.

ROLe OF MCs iN eXPeRiMeNTAL BP

To determine whether MCs were involved in experimental BP, 
Chen et  al. (19) demonstrated that wild-type MC-sufficient 
mice administrated intradermally with pathogenic anti-mBP180 
IgG developed BP disease with extensive MC degranulation in 
the upper dermis, which preceded infiltration of neutrophils 
and subsequent dermal–epidermal separation. In contrast, 
MC-deficient KitW/W-v and MgfSl/Sl-d mice failed to develop BP (19). 
Moreover, these MC-deficient mice reconstituted with wild-type 
bone marrow-derived MCs, and polymorphonuclear leukocytes 
from these MC-deficient mice or by intradermal injection of IL-8  
(a neutrophil chemoattractant) became susceptible to experimental 
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FiGURe 2 | Mouse bullous pemphigoid. The anti-BP180 IgG induce extensive blistering disease in neonatal B6 mice clinically (A) and histologically (B). The skin of 
these animals shows linear deposition of anti-BP180 IgG (C) and murine C3 (D) at the BMZ, as determined by direct IF. Toluidine blue staining shows resting and 
degranulating mast cells in the dermis (e). d, dermis; e, epidermis; v, vesicle; arrow, the BMZ. Original magnification, 200× for panels (B–D), 400× for panel (e).  
(e) Arrows for degranulating mast cells, and arrow heads for normal resting mast cells.

FiGURe 3 | Proposed role of mast cells (MCs) in bullous pemphigoid (BP). 
Anti-BP180 IgG binding to BP180 on the surface of basal keratinocytes 
activates the complement (C), generating C5a. C5a acts on C5a receptor 
(C5aR) to cause MCs to degranulate and release pro-inflammatory cytokines/
chemokines (e.g., TNFα) and proteolytic enzymes including mouse MC 
protease-4 (mMCP-4). Anti-BP180 IgE could also activate MCs. The released 
pro-inflammatory mediators interact with local cells to recruit neutrophils 
(PMN) and eosinophils (Eos). Infiltrating PMN and Eos, upon activation 
through interactions between immobilized anti-BP180 IgG/IgE and FcγR/
FcεR, release neutrophil elastase (NE), MMP-9, and other proteolytic 
enzymes. mMCP-4 activates MMP-9 and also directly cleaves BP180 and 
other BP180-associated proteins in concert with MMP-9 and NE, resulting  
in subepidermal blistering.
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BP (19). Blocking MC degranulation by treating MC-sufficient 
mice with an MC degranulation inhibitor also significantly 
reduced disease phenotype (19).

To determine the functional relationship between MCs and 
neutrophils, Chen et al. found that anti-BP180 antibody-induced 
neutrophil infiltration depends mainly on MCs in experimental 
BP (19). Without MCs, KitW/W-v and MgfSl/Sl-d mice injected with 
pathogenic IgG show about 70% reduction of infiltrating neutro-
phils in the skin (96). Further examination of the experimental BP 
model also implicated macrophages in anti-BP180 IgG-triggered 
neutrophil infiltration in mice, and that macrophage-mediated 
neutrophil infiltration depends on MC activation (96). The find-
ings that neutrophil recruitment is not completely impaired in 
MC-deficient mice in experimental BP suggest that at least two 
neutrophil recruitment pathways could exist: MC-dependent and 
MC-independent (96). Nevertheless, these data suggest a major 
role of MCs in infiltration of neutrophils into the dermis in this 
animal model setting.

Mast cells express surface receptors that directly bind the 
cleaved products of the activated complement cascade (97). Skin 
MCs express the C5aR (98), and upon the molecular interaction 
of C5a and C5aR, MCs degranulate, releasing several pro-inflam-
matory cytokines including TNF-α, IL-1, IL-6, and GM-CSF (99). 
Moreover, human C3a and C5a could degranulate MCs in vitro 
to release histamine and tryptase. Heimbach et al. (100) demon-
strated that interaction of C5a–C5aR on MCs activated the p38 
MAPK pathway that trigger MC degranulation and subsequent 
tissue injury and blister formation.

Mast cells store proteases in large quantities in the secretory 
granules, and these fully functional enzymes are a major class 
of inflammatory mediators (101, 102). Human cutaneous MCs 
contain a single chymase, and mouse MC protease-4 (mMCP-4) 
has been generally recognized as the likely homolog of the human 
chymase (103–105). Importantly, mMCP-4 can activate MMP-9, a 
key proteolytic enzyme for tissue injury in experimental BP (106). 
Interestingly, mMCP-4−/− mice are resistant to anti-BP180 IgG-
induced experimental BP (107). In experimental BP, mMCP-4 
activates MMP-9 and directly cleaves BP180. mMCP-4, MMP-9, 
and other proteolytic enzymes work together to degrade BP180 
and other hemidesmosomal proteins and proteins in extracel-
lular matrix of the BMZ (107), leading to clinical and histological 
BP-like blistering.

Taken together, results of these studies using MC-deficient and 
C5aR and mMCP-4 knockout mice implicate a pathogenic role 
of MCs in BP (Figure 3). However, since the studies on the role 
of MCs in anti-BP180 IgG-induced experimental BP have been 
performed only in MC-deficient KitW/W-v and MgfSl/Sl-d mice, KIT-
independent MC-specific deletion mouse strains need to be tested 
to confirm or clarify the involvement of MCs in experimental BP.
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ROLe OF MCs iN ePiDeRMAL BULLOSA 
ACQUiSiTA (eBA)

Epidermal bullosa acquisita is another autoimmune subepidermal 
blistering skin disease caused by autoantibodies against collagen 
VII (108). Experimental EBA can be induced by passive transfer 
of anticollagen VII IgG (109, 110). Immunopathogenically, 
experimental EBA shares many key features with experimental BP 
such as their dependency on complement, C5a-C5aR signaling, 
and neutrophils (109, 111). However, anticollagen VII IgG causes 
similar disease severity in both wild-type control and MC-deficient 
KitW/W-v mice (112). KIT-independent MC-specific deletion mice 
are also not protected from experimental EBA (112). These studies 
demonstrate that MCs do not contribute to experimental EBA, 
further emphasizing a need to revisit the role of MCs in experi-
mental BP using KIT-independent MC-specific deletion strains.

CONCLUDiNG ReMARKS

We presented several lines of BP animal model evidence, together 
with clinical observations, implicating that MCs are likely to be 
involved in the immunopathogenesis of BP. The role of MCs in 
experimental BP, however, was investigated exclusively in KIT-
dependent MC-deficient mice. Based on the observed discrepancies 
in different MC-deficient models of EAE, RA, and EBA, it is necessary 
to perform anti-BP180 IgG-induced BP studies in KIT-independent 
MC-specific deletion strains to clarify whether MCs play a role in BP.

Bullous pemphigoid patients also have anti-BP180 IgE 
autoantibodies, which are involved in tissue injury (95); 
therefore, a potential role of MCs in anti-BP180 IgE-induced 
BP should be determined in both KIT-dependent and KIT-
independent MC-deficient strains. Future studies could also 
investigate whether and how MCs interact with anti-BP180 IgG, 
anti-BP180 IgE, and eosinophils during disease development. 
Giving the fact that MCs have a variety of immunomodulatory 
activities (14), MC contribution to BP could be multifaceted. 
Advanced tools need to be developed to clarify and fully 
appreciate the contribution of MCs to BP and help uncover new 
therapeutic targets for this potentially fatal skin autoimmune 
disease.
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