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A B S T R A C T   

Coronaviruses have received worldwide attention following several severe acute respiratory syndrome (SARS) 
epidemics. In 2019, the first case of coronavirus disease (COVID-19) caused by a novel coronavirus (SARS- 
coronavirus 2 [CoV-2]) was reported. SARS-CoV-2 employs RNA-dependent RNA polymerase (RdRp) for genome 
replication and gene transcription. Recent studies have identified a sulfur (S) metal-binding site in the zinc center 
structures of the RdRp complex. This metal-binding site is essential for the proper functioning of the viral 
helicase. We hypothesize that the use of essential nutrients can permeabilize the cell membranes. The oxidation 
of the metal-binding site occurs via analogs of the essential S-containing amino acid, L-Methionine. L-Methionine 
can operate as a carrier, and its binding would cause the potential disassembly of RdRp via the S complex and 
drive methyl donors via a possible countercurrent exchange mechanism and electrical-chemical gradient leading 
to SARS-CoV-2 replication failure. Our previously published hypothesis on the control of cancer cell proliferation 
suggests that the presence of a novel disulfide/methyl- adenosine triphosphate pump as an energy source would 
allow this process. 

The S binding site in L-Methionine serves as a potential target cofactor for SARS-CoV RdRp, thus providing a 
possible avenue for the future development of vaccines and antiviral therapeutic strategies to combat COVID-19.   

Background 

The novel coronavirus (COV) SARS-CoV-2 is responsible for the COV 
disease 2019 (COVID-19). COVID-19 infection rates rose to a global 
pandemic in 2020, and vaccines and antivirals can be used to prevent 
and treat it, respectively [1,2]. Viral genome replication and gene 
transcription are carried out using various viral machinery comprising a 
set of nonstructural proteins (NSPs). Viral polyproteins [3] assemble to 
ensure replication fidelity and gene transcription for proper SARS-CoV-2 
propagation in the human body. One complex of proteins required for 
this process is the catalytic subunit of an RNA-dependent RNA poly-
merase (RdRp) [4], an enzyme that also has helicase capabilities, as 
observed by cryo-electron microscopy [5,6]. 

RdRp functioning requires the binding of metal ions [7,8]. Metals 
such as selenium, sulfur (S), and zinc (Zn) can be used as metal cofactors 
[9]. The S binding site of the protein is vulnerable to metal ion dislo-
cation and subsequent protein degradation by oxidants (e.g., oxygen, 
superoxide, and nitric oxide) [10], biological redox reactions [11], 
proteins, and DNA and RNA synthesis [12–14]. 

Sulfur is present in proteins in intra- or intermolecular disulfide 
bridges that determine the properties and functions of proteins and 
enable reactions via disulfide exchange. This exchange can modify or 
disassemble protein configurations and elicit an immune response in 
cells [15]. One essential S-containing amino acid of interest is methio-
nine, which has unique thiol properties and functions [15]. Thiol- 
mediated uptake is an efficient cellular uptake of substrates attached 
to thiol-reactive groups, specifically disulfides or covalent thiol- 
disulfides. This thiol-disulfide exchange causes a thiolate group (-S) to 
attack an S atom to form a disulfide bond (-S-S). The novel disulfide 
bond is fragmented, while another -S atom is discharged as a new thi-
olate carrying a negative charge [16,17]. Methionine is an antioxidant 
because it acts as a cofactor in the glutathione peroxidase process. This 
oxidizing mechanism determines the antiviral status. The proposed 
mechanisms of L-Methionine cellular entry include those similar to the 
cellular entry of phenols, hypochlorite [17], or the Ebola virus [18]. 
Cellular access may also occur via a mechanism similar to diphtheria 
toxin entry [19]. In vitro research has shown that L-Methionine controls 
cellular proliferation and the cell cycle and silences p53 mRNA in cancer 
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cells, but not in benign cells, without activating an immune response 
[20–24]. 

The published hypotheses of virus destabilization [25,26] try to 
interfere with the assembly of RNA polymerase. The critical points are 
the cellular internalization and the complexity of the cell membrane, as 
well as the difficulty level for penetration into the Cell. Our proposal 
recognizes these crucial points and considers the use of a carrier and an 
energy source to achieve our aim. Previously, we hypothesized in cancer 
cells [27] that the mechanism is controlled by a possible sulfur/methyl 
pump, given uniquely via methionine analogs. We tried to introduce 
sulfur into the RNA polymerase through an essential amino acid, a 
nutrient, which would lead to possible incorporation and consequent 
instability in the assembly of SARS-CoV-2 RNA-dependent RNA poly-
merase (See Fig. 1). 

Methionine is the first amino acid, encoded by the codon AUG, that is 
incorporated in any new protein and is repeatedly exchanged/removed 
during the transcription-translation process. We believe that the use of L- 
Methionine can transport sulfur into the RNA polymerase via a coun-
tercurrent mechanism of electrical-chemical gradient, which has not yet 
been investigated. Therefore, the use of methionine analogs could 
repeatedly manipulate the incorporation of sulfur in this area. Studies 
have demonstrated that the N-terminal methionine excision plays a 
crucial role in controlling protein turnover [28]. In addition, methionine 
aminopeptidase catalyzes the removal of the initiator methionine and, 
subsequently, affects the functioning of the methionine salvage 
pathway, resulting in the observation that the redundant methionine 
inhibits cell growth [29]. Analogous amino acids can function as 
competitive inhibitors and modify the cellular mechanism via mis-
incorporation. We believe that methionine analogs modulate multiple 
biological mechanisms and possible structural changes in proteins in 
vivo. This phenomenon is being analyzed by linking immune symptoms 
[30]. Methionine can help identify a new immunologic target to control 
COVID-19. It is recognized to be important in the methylation of RNA 
and DNA that leads to T cell differentiation and proliferation [31]. 

The proposed novel pump is uniquely expressed in cells that are 
unknown to the immune system. We believe that it provides the energy 
needed by the cells for invading the human body. Studies of ion channels 
have linked the control of cell proliferation and migration [32]. The S 
incorporated from methionine induces us to think that it may act as a 

covalent inhibitor, and this concept is gaining acceptance within the 
scientific community [33]. 

The results described above and in other published findings are 
significant. They suggest that L-Methionine could potentially disas-
semble SARS-CoV-2 RdRp, thus providing a potential antiviral target for 
the formulation of vaccines and antiviral therapies against COVID-19. 

Hypothesis 

Recent research into COV polyproteins, such as ORF1a, ORF1ab, and 
NSPs, revealed that proteolytic cleavage facilitates transcription and, 
ultimately, viral replication. It has been demonstrated that nsp12, a 
catalytic subunit of RdRp, in combination with nsp7 and nsp8, an 
exonuclease and an accessory factor, respectively, processes the syn-
thesis of the virus and propagates the transmission of SARS-CoV-2. 

SARS-CoV-2 RdRp contains a Zn ion in a position that is conserved 
across similar viruses, and further studies must confirm that S-binding 
metal ions are indispensable for maintaining the structural integrity of 
the viral Rdrp complex. Sulfur clusters (inorganic cofactors) can trigger 
redox reactions and affect the proteins involved in DNA and RNA syn-
thesis. Therefore, our research aims to investigate whether S-metal co-
factors can link directly to the -S cluster and consequently cause the 
destabilization and degradation of structural proteins by oxidants. 

Our in vitro research on -S amino acid analogs [20–23] led us to 
hypothesize that the oxidation of -S metal-binding sites via analogs of -S- 
containing amino acids (e.g., L-Methionine) inhibits the RdRp complex 
and consequently blocks SARS-CoV-2 replication in cells. Methionine 
can affect cellular function when the carbon–nitrogen-sulfur complex 
and methyl donors from L-Methionine replace oxygen, mimicking the 
cellular entry mechanism of an alcohol group. If these complexes attach 
and donate methyl groups to the Zn centers of the RdRp complex, the 
metal-binding site would be unable to activate the viral helicase, thereby 
leading to viral disassembly. It could be due to a possible countercurrent 
exchange mechanism and electrical-chemical gradient proportioned by 
a novel disulfide/methyl- adenosine triphosphate pump as an energy 
source, which would allow the process. 

The -S metal-binding site on the Zn centers could serve as a target 
cofactor for SARS-CoV-2 RdRp and inform the formulation of vaccines 
and antiviral therapies targeting COVID-19. The mechanism of the 

Fig. 1. Show the intervention of methionine analog nucleotide, L-Methionine, as an inhibitor targeted on the catalytic mechanism of RNA replication, RNA- 
dependent RNA polymerase (RdRP). S/CH3-ATP pump is the supplier of energy to develop with success this mission. 
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primogeniture of methionine, the start codon, is not yet understood and 
deserves to be investigated. It may be the key to understanding the 
common mechanism that involves the immunology-cancer-aging target. 

Therefore, further studies on the effects of L-Methionine on viral 
replication are warranted. 
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