
INTRODUCTION

　Glycoside hydrolase family 6 (GH6) in the Carbohydrate 
Active enZymes database (CAZy) [1] is a group of cellulases 
mainly secreted by microorganisms such as fungi and 
bacteria that live on lignocellulose. There are two types, with 
different modes of hydrolysis. Endoglucanases (EGs), classi-
fied as EC 3.2.1.4, randomly degrade amorphous regions of 
cellulose, while cellobiohydrolases (CBHs), classified as EC 
3.2.1.91, hydrolyze crystalline regions of cellulose from the 
non-reducing end [2]. This distinctive feature of CBHs is 
mainly attributed to the carbohydrate-binding module 
(CBM) and the presence of a relatively long substrate-
enclosing loop compared to EGs. A CBM is connected to the 
N-terminus of the GH6 CBH catalytic domain via a flexible 
linker [3] and serves to bind the enzyme to the surface of 
crystalline cellulose [4]. Then, hydrolysis is initiated by the 
introduction of a single cellulose chain into the active site 

with the aid of the N- and C-terminal loops. 
　Since the degradation of the recalcitrant crystalline region 
is likely to be the rate-limiting step, the efficiency of CBH is 
critical in industrial cellulose saccharification, which aims to 
produce soluble sugars as feedstocks for biochemicals and 
biofuels. In addition to GH6 CBH, there is another group of 
CBHs, glycoside hydrolase family 7 (GH7), which is classi-
fied as EC 3.2.1.176. While GH6 CBHs exhibit endo-initia-
tion as well as exo-initiation [2] and are less processive [5], 
GH7 CBHs exhibit exclusively exo-initiation [2] with high 
processivity [5]. These two contrasting CBH families 
synergistically degrade crystalline cellulose [5-7], because 
GH7 CBHs start hydrolysis from the reducing end, in 
contrast to GH6 CBHs [8]. It is desirable to perform cellulose 
degradation at high temperature in an industrial context in 
order to increase the cellulose degradation rate, but GH6 
CBHs are less thermotolerant than GH7 CBHs, so this is 
problematic [9, 10]. Hence, many attempts have been made 
to increase the activity of GH6 CBH at high temperatures 
[11-13]. Notably, Arnold’s lab reported that an engineered 
chimeric GH6 CBH could be made thermotolerant by substi-
tuting free (non-disulfide-forming) Cys residues [14, 15]. 
Based on that work, we designed a mutant of GH6 CBH 
from the basidiomycete Phanerochaete chrysosporium 
(PcCel6A) in which the two free Cys residues were replaced 
with serine, C240S and C393S, in order to explore the 
thermotolerance mechanism of GH6 CBH [16]. This double 
mutant, C240S/C393S, was confirmed to be thermotolerant, 
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and the activity and thermal denaturation of C240S/C393S 
itself and the single mutants C240S and C393S at different 
temperatures were investigated in the accompanying paper 
[17]. The results indicated that the substitution at C393 was 
the major contributor to the increased activity at elevated 
temperature compared to the wild type (WT), as well as to 
the suppression of heat-induced loss of secondary structure. 
　In this study, we aimed to understand the mechanism of 
the increased thermotolerance by determining and compar-
ing the X-ray crystal structures of the wild-type, double-
mutant C240S/C393S, and the two single mutants, C240S 
and C393S. Our results suggest that the increased thermotol-
erance is predominantly due to reduced structural fluctuation 
of the substrate-enclosing loops in the catalytic domain.

MATERIALS AND METHODS

Materials. Sodium chloride, sodium acetate trihydrate, acetic 
acid, 2-amino-2-hydroxymethyl-1,3-propanediol (tris), and 6 
mol/L hydrochloric acid (FUJIFILM Wako Pure Chemical 
Corporation, Osaka, Japan) and 50 % (w/v) polyethylene 
glycol (PEG) 4000 (NeXtal Biotechnologies, Holland, OH, 
USA) were used for the crystallization solution.
Protein preparation. The catalytic domains (residues 
82-439) of PcCel6A C240S, C393S, and C240S/C393S 
were prepared, expressed, and purified as described in our 
accompanying paper (part I).
Crystallization. The protein was concentrated to 17.0-30.4 
mg/mL with a VivaspinTM 500-5K (Sartorius, Göttingen, 
Germany) and filtered with Nanosep MF Centrifugal 
Devices (Bio-Inert® Membrane 0.45 µm; Pall Corporation, 
Port Washington, NY, USA). As previously described [18], 
the protein was crystallized at 20 °C by the sitting drop vapor 
diffusion method [19, 20]. The reservoir solution comprised 
50 mM sodium acetate (pH 4.5 or 5.0), 10 or 20 % (w/v) 
PEG 4000, and 0 or 140 mM NaCl. The initial concentration 
of droplets before diffusion was about 8.5-15.2 mg/mL 
protein, 10 or 80 mM NaCl, 5 or 10 % (w/v) PEG 4000, 25 
mM sodium acetate (pH 4.5 or 5.0), and 10 mM Tris-HCl 
(pH 8.0), as summarized in Table S1 (see J. Appl. Glycosci. 
Web site). Each crystal was immersed in a cryoprotectant 
solution containing 40 % (w/v) PEG 4000 in the reservoir 
solution and frozen in liquid nitrogen. 
Structure analysis. X-ray diffraction data were obtained at 
95 K using synchrotron radiation at the BL-5A X-ray 
beamline of the Photon Factory in the High Energy Acceler-
ator Research Organization, Tsukuba, Japan. The diffraction 
data were automatically processed, scaled, and merged using 
XDS [21], POINTLESS [22], and AIMLESS [23] integrated 
into PReMo [24]. Molecular replacement was performed 
with PHENIX (v.1.19.2 and 1.20.1) [25] using the structure 
of PcCel6A WT (PDB ID 5XCY) [26] as a model, and the 
structure was refined with PHENIX and Coot (v.0.9.8.91) 
[27]. Data collection and refinement statistics are given in 
Table 1. The root-mean-square deviations of the bond 
lengths of the Cα atoms between the structure of WT and 
mutants and the mean B-factors of atoms constituting the 
amino acids were calculated by the Structure Comparison 
program in PHENIX [28]. The dynamics of the enzymes 
were simulated with ensemble refinement in PHENIX [29]. 
The statistics of ensemble refinement are given in Table 3. 

The molecular graphics were prepared with the PyMOL 
Molecular Graphics System (v.2.5.5; Schrödinger, LLC), 
and a graph omitting part of the vertical axis was prepared 
with DeltaGraph (ver.7; Nihon Poladigital, K.K., Tokyo, 
Japan).　
　The following IDs contain the coordinates and associated 
structure factors of the catalytic domain of PcCel6A and its 
mutants deposited in the PDB database: 8WUP (WT), 
8WW5 (C240S), 8WWT (C393S), and 8WX6 (C240S/
C393S).
Phylogenic analysis. The amino acid sequences of charac-
terized GH6 CBHs were collected with Batch Entrez (https://
www.ncbi.nlm.nih.gov/sites/batchentrez) from the GenBank 
accession numbers listed in CAZy. The GH6 domain was 
extracted with DoMosaics [30] and aligned with MAFFT 
version 7 [31, 32]. Phylogeny was analyzed with MEGA X 
[33, 34] using the maximum likelihood method [35]. Unipro 
UGENE (v.48.1) [36] was used to check the number of target 
amino acids in the aligned sequence. The phylogenic tree 
was prepared with FigTree (v.1.4.4.; http://tree.bio.ed.ac.uk/
software/figtree/). The graphics were prepared with PyMOL 
(v.2.5.5).

RESULTS AND DISCUSSION

Fluctuation of the substrate-enclosing loops in crystal 
structure.
　The crystal structures of the catalytic domains of PcCel6A 
WT, C240S, C393S, and C240S/C393S were determined at 
0.99, 1.01, 1.00, and 0.99 Å resolution, respectively 
(Table 1). All the crystals were classified into space group 
P212121, and only one molecule was found in the asymmetric 
unit in agreement with the previously solved structure of 
PcCel6A WT (PDB ID 5XCY) [26]. The models were 
refined to Rwork 14.7-15.9 % and Rfree 15.4-16.9 %. The 
root-mean-square deviations of the bond lengths of the Cα 
atoms of mutants from the WT structure were within 0.4 Å 
(Table 2), and thus all of the structures can be regarded as 
quite similar [37, 38], indicating that the replacement of 
C240 and C393 with Ser did not distort the overall structure. 
The B-factors of the main chain (Fig. 1A) and side chain 
(Fig. 1B) normalized to the chain mean also showed a 
similar tendency among all four structures, and no marked 
difference was apparent at the 240th and 393rd amino acids.
　Figure 2 illustrates the relative B-factors of WT and the 
mutants, with higher B-factors denoted by warmer colors 
and thicker ribbons. The B-factor of WT was relatively high 
at both the N-terminal loop (residue 172-177) and C-terminal 
loop (residue 390-425) (Fig. 2A). A similar trend was seen 
in C240S (Fig. 2B) and C393S (Fig. 2C), but C240S/C393S 
showed lower B-factor at both loops (Fig. 2D). These results 
indicated that removing both free Cys residues reduces the 
structural fluctuation of the substrate-enclosing loops. 

Side chain variation in ensemble models.
　Since the standard averaged structure masks information 
on minor conformations, we also performed ensemble 
refinement combined with molecular dynamics simulation. 
The possible states were divided into different models 
(Fig. 3A), and the values of Rwork and Rfree were lowered by 
1.7-4.2 and 0.7-2.8 %, respectively (Table 3). Close-up 
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views around the 240th and 393rd amino acids (Figs. 3B-3E) 
show that the dihedral-angle distribution of the neighboring 
amino acids differed depending on the position of the free 
Cys substitution(s) (Fig. 4). Among the side chain of amino 
acids within 4 Å of the 240th residue, a prominent difference 
was seen in Q187 (Fig. 3B). The χ1 angle of C240 was 
almost the same in WT and C393S (Figs. 4A and 4C), while 
that of S240 showed greater variation in C240S and C240S/
C393S (Figs. 4B and 4D). This would influence the interac-
tion with Q187 facing the 240th amino acid within hydrogen 
bond distance in the averaged models (Fig. 3C). The χ3 angle 
of Q187 was almost within a 60° range in WT and C393S 

(Figs. 4A and 4C), whereas several kinds of minor confor-
mations at Q187 were observed in C240S and C240S/C393S 
(Figs. 4B and 4D). Overall, the results suggest that steric 
hindrance between the two α-helixes within which S240 and 
Q187 are located might account for the lower activity of 
C240S at 60 °C than at 45 °C, as reported in the accompany-
ing paper.
　Substantial structural changes were not observed in the 
side chain of amino acids within 4 Å of the 393rd residue 
(Fig. 3D), but a possible interaction with the side chain of 
N362 was present. Although the distance between the 
side-chain sulfur or oxygen of the 393rd amino acid and the 
side-chain nitrogen of N362 was commonly about 3.4 Å in 
both WT and the mutants in the averaged models (Fig. 3E), 
the χ1 and χ2 angles in the ensemble models were different, 
depending on the nature of the 393rd amino acid. The distri-
bution of these angles was relatively wide (a range of 40°) in 
C393S (Fig. 4C) and C240S/C393S (Fig. 4D). In compari-
son, a relatively larger proportion of models were distributed 
within 20° in WT (Fig. 4A) and C240S (Fig. 4B). Thus, the 
393rd amino acid seems to interact with N362 in a similar 

Table 1.　X-ray data collection and refinement statistics for PcCel6A WT and mutants.

　 WT C240S C393S C240S/C393S

Data collection
Beamline PF BL-5A PF BL-5A PF BL-5A PF BL-5A
Detector Pilatus3 S6M Pilatus3 S6M Pilatus3 S6M Pilatus3 S6M
Wavelength (Å) 1.0 1.0 1.0 1.0
Beam size (mm2) 0.10 × 0.20 0.20 × 0.10 0.20 × 0.20 0.20 × 0.20
Positional change 0˚–360˚ 0˚–360˚ 0˚–360˚ 0˚–360˚
Exposure time (s frame－1) 0.1 0.1 0.1 0.1
Oscillation range (˚ frame－1) 0.1 0.1 0.1 0.1
No. of total flames 3600 3600 3600 3600
Space group P212121 P212121 P212121 P212121

Cell parameters
a (Å)
b (Å)
c (Å)

54.71
67.37
88.05

54.57
67.37
88.06

54.50
67.37
88.38

54.45
67.37
88.02

Resolution (Å)a 46.47–0.99
(1.01–0.99)

46.38–1.01
(1.03–1.01)

46.39–1.00
(1.02–1.00)

46.31–0.99
(1.01–0.99)

Total reflections 2,237,270 2,101,706 2,179,200 2,174,405
Unique reflections 180,424 169,019 175,525 179,971
Completeness (%)a 99.7 (97.6) 99.4 (97.0) 100.0 (99.5) 100.0 (99.7)
Redundancy (%)a 12.4 (10.9) 12.4 (11.9) 12.4 (11.5) 12.1 (10.7)
Average I/σ (I)a 25.6 (2.1) 26.1 (2.2) 33.1 (2.4) 22.5 (2.2)
Rmergea 0.052 (1.117) 0.055 (1.127) 0.038 (1.037) 0.049 (0.868)
Mosaicity (˚) 0.127 0.156 0.106 0.175
Wilson B-factor (Å2) 8.78 8.65 9.67 9.88

Refinement
Resolutiona 46.47–0.99

(1.03–0.99)
46.38–1.01
(1.05–1.01)

46.39–1.00
(1.04–1.00)

46.31–0.99
(1.03–0.99)

Rwork (%)a 15.4 (23.0) 14.7 (22.1) 15.3 (22.3) 15.9 (22.1)
Rfree (%)a 16.5 (25.3) 15.4 (22.7) 16.9 (22.8) 16.8 (25.1)
No. of reflectionsa 180,315 (17,557) 168,918 (16,357) 175,425 (17,280) 179,662 (17,746)
No. of atoms 4,323 4,292 4,552 3,597

Protein / Ligands 3,717 / 0 3,643 / 0 3,963 / 0 3,042 / 0
Solvent 606 649 589 555

RMSD from ideal values
Bond length (Å) 0.005 0.005 0.005 0.005
Bond angles (˚) 0.86 0.83 0.84 0.84

Ramachandran plot
Favoured regions (%) 97.2 97.2 97.2 97.5
Additionally allowed (%) 2.5 2.8 2.8 2.5
Outliers (%) 0.3 0.0 0.0 0.0

PDB ID 8WUP 8WW5 8WWT 8WX6

Values in parentheses are for the highest resolution shell.

Table 2.　 Comparison of RMSD (Å) among the crystal structures of 
PcCel6A WT and mutants.

WT C240S C393S C240S/
C393S

WT 0.351 0.312 0.366
C240S 0.378 0.404
C393S 0.416
C240S/C393S
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manner to the interaction of the 240th amino acid with Q187.

Stabilization of a disulfide bond on the C-terminal loop.
　S393 in C240S/C393S is strictly directed towards the 
disulfide bond between C361 and C408, whereas a greater 
variety of conformations is seen in WT, C240S, and C393S 
(Fig. 3E). These results indicate that the conformation of the 
393rd amino acid is also influenced by the 240th amino acid, 
possibly via some form of hydrogen bonding. The side-chain 
sulfur of C361, forming a disulfide bond with C408, lies 
within hydrogen-bonding distance from the side-chain 
nitrogen of N362 in the averaged structure (Fig. 3E). 
Although the χ1 angle distribution of C361 and C408 did not 
show any significant difference among the four enzymes 
(Fig. 4), ensemble models of C240S/C393S appeared to be 
more parallel compared to WT (Fig. 3E). Possible reasons 
for this would include the smaller fluctuation of the 
C-terminal loop including C408 (Fig. 2) and the relatively 
fixed orientation of S393 (Fig. 3E).
　As mentioned in the accompanying paper, deriving from 
the results of the thermal shift assay, the effect of C240 on a 

carboxyl-carboxylate hydrogen bond may also be involved 
in the phenomenon. There are four carboxylic acid pairs in 
PcCel6A WT (E101-E392, D359-D412, D165-E179, and 
D170-D216), and two of which (E101-E392, D359-D412) 
are at the root of the C-terminal loop (Fig. 5A). E392, paired 
with E101, is next to C393, and D359-D412 is relatively 
close to C361-C408 disulfide bond as demonstrated by the 
distances of the Cα atoms between D359 and C361, D359 
and C408, D412 and C361, and D412 and C408, all being 
less than 9 Å in WT. Comparing the left-side figures (WT 
and C393S) with the right-side figures (C240S and C240S/
C393S) in the close-up of the ensemble models of the E101-
E392 pair (Fig. 5B) and the D359-D412 pair (Fig. 5C), the 
proportion of side chains pointing with each other appeared 
to slightly increase by replacing C240 with Ser. On the other 
hand, such a tendency was not seen in D165-E179 (Fig. 5D) 
and D170-D216 (Fig. 5E), despite their relative proximity 
to C240 within the molecule, as indicated by the distances 
between the Cα atoms of D165 and C240 being less than 10 
Å, and between D216 and C240 being less than 14 Å in WT. 
Therefore, even though it is still challenging to determine 

Fig. 1.　 B-factors of each residue’s main chain (A) and side chain (B) normalized to the chain mean (WT, 
blue; C240S, green; C393S, yellow; C240S/C393S, red). 

　Arrowheads represent the positions of the 240th and 393rd amino acids.

Fig. 2.　 B-factors in the crystal structures of PcCel6A (A) WT, (B) C240S, (C) C393S, and (D) C240S/
C393S. 

　The warmer colors and bolder lines represent larger B-factors normalized in each structure. The figures 
below represent the views of the upper figures from the right side.
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Fig. 3.　 Ensemble models of the crystal structures of PcCel6A WT (blue), C240S (green), C393S (yellow), and C240S/
C393S (pink). The N- and C-terminal loops are shown in darker color. 

　(A) The side chains of Cys residues forming disulfide bonds, the 240th and 393rd amino acids, and Q187 are shown as sticks 
in the overall structure. (B) Residues within 4 Å from the 240th amino acid. (C) Extracted view of 240th amino acid and the 
adjacent Q187. Distance (Å) between the sidechains in a static structure is indicated by a dotted line and a single decimal 
number. (D) Residues within 4 Å from the 393rd amino acid and the C361-C408 disulfide bond. (E) Extracted view of a 
pathway from the 393rd amino acid to the C361-C408 disulfide bond via N362. Distance (Å) between the sidechains in a 
static structure is indicated by dotted lines and single decimal numbers.

Table 3.　Statistics of the ensemble refinement for the crystal structures of PcCel6A WT and mutants.

WT C240S C393S C240S/C393S

Refinement parameters
Relaxation time (ps) 2.0 2.0 2.0 2.0
pTLS (%) 0.6 0.6 0.6 0.6
Conformers (#) 200 100 200 200

Refinement and model statistics
Resolution range (Å) 46.47–0.99

(1.01–0.99)
46.38–1.01
(1.03–1.01)

46.39–1.00
(1.02–1.00)

46.31–0.99
(1.01–0.99)

Rwork (%) 12.9 (21.2) 13.0 (20.9) 13.0 (20.6) 12.6 (19.2)
Rfree (%) 14.0 (23.5) 14.7 (25.7) 15.1 (23.4) 14.0 (18.8)
ΔRwork (%) – 2.5 – 1.7 – 2.3 –4.2
ΔRfree (%) – 2.5 – 0.7 – 1.8 – 2.8

Mean RMSD per structure
Bonds (Å) 0.008 0.008 0.008 0.008
Angles (˚) 1.110 1.099 1.104 1.108
Dihedrals (˚) 16.27 16.31 16.15 16.18

Values in parentheses are for the highest resolution shell. pTLS is the proportion of atoms included in the process of TLS fitting. ΔRwork and ΔRfree 
represent the value of the ensemble structure minus the single structure.
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the detailed pathway, it seems possible that the C240 substi-
tution contributed to maintaining the E101-E392 and D359-
D412 pairs, leading to stabilizing the network from the 
393rd amino acid to C361-C408 (Fig. 4E).
　Moreover, the intermolecular interaction might also occur 
between C240 and the carboxylic acid pairs, as discussed in 
the accompanying paper. Among the four carboxylic acid 
pairs in PcCel6A WT, three, except for the pair of D170 and 
the acid catalyst D216, are located near the outside of the 
enzyme (Fig. 5A). Notably, the side chains of E101 in 
Fig. 5B and D412 in Fig. 5C, which are located on the 
enzyme surface, exhibited a wide range of models. Thus, 
there may be the possibility that these carboxylic acids and 
C240, positioned near the enzyme surface in two indepen-
dent molecules, react intermolecularly at high temperatures. 
Conversely, substituting C240 possibly kept the strong 
carboxyl-carboxylate hydrogen bond, bringing the higher 

Tm at pH 3-6 to C393S and C240S/C393S (Figs. 5C and 5D 
in the accompanying paper). In any event, hydrogen bonding 
in the loop region is expected to enhance thermotolerance 
[39]. 

Strength of hydrogen bonds in the C-terminal loop.
　Focusing on the environment around the 393rd amino 
acid, located in the C-terminal loop, the distance from the 
side-chain sulfur or oxygen of the 393rd amino acid to the 
main chains of neighboring residues (D394-N, G395-N, 
G395-O, and P418-O) was 0.3 or 0.4 Å shorter in C393S 
and C240S/C393S than in WT and C240S, indicating 
stronger hydrogen bonding (Fig. 6). C393S and C240S/
C393S both displayed higher activity at 60 °C than at 45 °C, 
as described in the accompanying paper (Fig. 3 in the 
accompanying paper), supporting the idea that the strength 
of hydrogen bonds involving the main chains of amino acids 

Fig. 4.　 Histograms of the dihedral angles of the 240th and 393rd amino acids and some neighboring residues in the en-
semble models of WT (A), C240S (B), C393S (C), and C240S/C393S (D).
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in the C-terminal loop is a critical determinant of the thermo-
tolerance of PcCel6A.
　A contribution of stronger hydrogen bonding to thermo-
tolerance was previously predicted based on modeling of 

GH6 CBH from the ascomycete H. insolens (HiCel6A), 
whose activity at high temperature is increased by a substitu-
tion corresponding to PcCel6A C393S [14]. In that study, 
hydrogen atoms and the substitution corresponding to 
PcCel6A C393S were introduced into the X-ray crystal 
structure of HiCel6A [40] by optimizing the hydrogen-bond 
network and side-chain packing with REDUCE [41] and 
SHARPEN [42], respectively. These findings are consistent 
with the idea that stronger hydrogen bonds in the C-terminal 
loop increase the thermotolerance of other GH6 CBHs, not 
just PcCel6A. 

Conservation of free Cys in fungal GH6 CBH.
　To see if GH6 CBHs from other organisms also possess 
free Cys residues, we examined amino acids corresponding 
to C240 and C393 in PcCel6A on the phylogenetic tree of 
characterized GH6 members (Fig. 7). Interestingly, free Cys 
at positions corresponding to the 240th and 393rd amino 
acids of PcCel6A were only conserved among aerobic fungal 
CBH, but not among anaerobic fungal CBHs, fungal EGs, 
bacterial CBHs, or bacterial EGs. Some aerobic fungal GH6 
CBHs contain different amino acids at the positions 
corresponding to the free Cys of PcCel6A. Examples include 

Fig. 5.　 Carboxylic acid pairs in PcCel6A.
　(A) Potential carboxyl-carboxylate hydrogen bond sites. Ensemble 
models of the pairs and free Cys residues are shown as sticks. The N- 
and C-terminal loops are colored darker. The bold one-letter alphabet 
indicates the name of the enlarged figure seen from the arrowhead. 
(B-E) Magnified view of each carboxylic acid pair in WT (blue), 
C240S (green), C393S (yellow), and C240S/C393S (pink).

Fig. 6.　 Interaction of the C393 side chain with the main chain of 
neighboring residues.  

　(A) The close-up view around C393 in WT. The dashed line is the 
measured length from the side chain of the 393rd amino acid to the 
main-chain nitrogen of D394 (I) and G395 (II), and the main-chain 
oxygen of G395 (III) and P418 (IV). (B) Distance between the side 
chain of the 393rd amino acid of WT (blue), C240S (green), C393S 
(yellow), and C240S/C393S (red) with the main chains of neighboring 
residues illustrated in the structure.
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thermophilic fungi, such as Aspergillus fumigatus [43], 
Rasamsonia emersonii [44], A. nidulans [45], A. terreus 
[46], Thermothelomyces thermophilus [47], H. insolens 
[48], Thermochaetoides thermophila [49], Thielavia terres-
tris [49], Malbranchea cinnamomea [49], Volvariella 
volvacea [50], and Chrysosporium lucknowense [51]. 

Although the conservation of GH6s’ free Cys corresponding 
to C240 and C393 in PcCel6A appeared different according 
to the oxygen abundance and temperature of the environ-
ment where the host organisms live, the causal relationships 
have not been clarified and other factors may also be 
involved.

Fig. 7.　 Conservation of free Cys among characterized GH6.
　The colors of the node tips indicate fungal GH6 described as EC 3.2.1.91 in CAZy (blue), eukaryotic GH6 for which EC 
3.2.1.4 activity was reported (green), and bacterial GH6 described as EC 3.2.1.91 in CAZy (orange), GH6 from an anaerobic 
fungus characterized as EC 3.2.1.91 in CAZy (light blue), GH6 from an anaerobic fungus for which EC 3.2.1.4 was reported 
(light green), bacterial GH6 described as EC 3.2.1.4 in CAZy (red), GH6 from an unclassified organism (gray), and GH6 
indicated as other than EC 3.2.1.4 and 3.2.1.91 in CAZy (black). The first and second letters before the file name represent 
the amino acids at the positions corresponding to the 240th and 393rd free Cys residues in PcCel6A. The label of GH6 CBH 
from an aerobic thermophilic fungus is written in dark orange. The abbreviated names of some well-characterized GH6s are 
shown after the arrowheads: TrCel6A (Trichoderma reesei CBH), HiCel6A Humicola insolens CBH), CcCel6A (Coprinopsis 
cinerea CBH), HiCel6A (H. insolens EG), CcCel6C (one of C. cinerea EG), CfCel6B (Cellulomonas fimi CBH), TfCel6B 
(Thermobifida fusca CBH), OrpCelF (one of the Orpinomyces sp. CBHs), TfCel6A (T. fusca EG), and MtCel6 (Mycobacte-
rium tuberculosis EG). 
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CONCLUSION

　The mechanistic basis of the thermotolerance of the 
double mutant, C240S/C393S, of GH6 CBH from the 
basidiomycete Phanerochaete chrysosporium (PcCel6A), 
which lacks the free Cys residues, was investigated by 
comparing the X-ray crystal structures of WT, C240S/C393S 
and the individual mutants, C240S and C393S. Our results 
suggest that the increased activity of C393S and C240S/
C393S at an elevated temperature compared to the WT 
enzyme is predominantly due to the stabilization of the 
substrate-enclosing loops. The C393S substitution also plays 
a greater role than the C240S substitution in suppressing 
thermal denaturation. The overall structures of WT and all 
three mutants were very similar. However, C240S/C393S 
had the lowest B-factor at the N-terminal and C-terminal 
substrate-enclosing loops, suggesting that reduced structural 
fluctuation at these locations, possibly due at least in part to 
stronger hydrogen bonding involving the 393rd residue, 
could be the main contributor to the increased thermotoler-
ance.
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