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Characteristic functional cores 
revealed by hyperbolic disc 
embedding and k‑core percolation 
on resting‑state fMRI
Wonseok Whi1,2,3,6, Youngmin Huh3,6, Seunggyun Ha4, Hyekyoung Lee5, Hyejin Kang5* & 
Dong Soo Lee1,2,3*

Hyperbolic disc embedding and k‑core percolation reveal the hierarchical structure of functional 
connectivity on resting‑state fMRI (rsfMRI). Using 180 normal adults’ rsfMRI data from the human 
connectome project database, we visualized inter‑voxel relations by embedding voxels on the 
hyperbolic space using the S1/H2 model. We also conducted k‑core percolation on 30 participants to 
investigate core voxels for each individual. It recursively peels the layer off, and this procedure leaves 
voxels embedded in the center of the hyperbolic disc. We used independent components to classify 
core voxels, and it revealed stereotypes of individuals such as visual network dominant, default mode 
network dominant, and distributed patterns. Characteristic core structures of resting‑state brain 
connectivity of normal subjects disclosed the distributed or asymmetric contribution of voxels to 
the kmax‑core, which suggests the hierarchical dominance of certain IC subnetworks characteristic of 
subgroups of individuals at rest.

The brain is a high-dimensional complex and integrated network that is composed of multiple modular and 
specialized networks, distributed spatially, and combined to form a multimodular  structure1–5. The conundrum 
of how these modules are aggregated to form a single coherent network with preserved functionality remains a 
fundamental question for unveiling the functional architecture of the human brain in the resting state and upon 
 activation6,7. Individual differences add complexity to a succinct understanding of this question.

Recent works in network science suggest that the aggregation of these modules is facilitated by a set of essen-
tial voxels that integrate intramodular and intermodular information throughout the  network2,3,8,9. Essential 
nodes were initially supposed to be hub nodes with high degrees or high centrality on brain graphs but were 
soon suggested to be core influencer nodes with a wide range of initial degrees on  decomposition8. In physical 
networks, disruption in these core nodes leads to abrupt disintegration, which is called network dismantling or 
targeted  damage10–13. Disruption in the brain graph is associated with serious neuropsychiatric diseases with 
disrupted associative  functionality14,15.

Therefore, it is important to identify which nodes compose the core structure, and if ever the resting state 
core is individually unique, then their individual differences in the core composition should be disclosed using 
voxel-based representation of brain graphs. Recent studies of mathematics and neurosciences have accomplished 
this job successfully with physical networks and probably with the  brain3,8,12–16, implementing hubness, centrality 
measures such as degree, betweenness, eigenvector, and leverage  centrality17–20, or k-core21–25. The k-core percola-
tion describes the architecture of the backbones of the network by filtering out peripheral nodes and searching 
for remaining central nodes, where the coreness, k, acts as the threshold for sustaining node connectivity along 
the filtration. The k-core percolation was used to understand the forward (phase transition) and backward 
(k-decomposition) behavior of networks, and brain networks can be dissected in a similar way as was done for 
graph filtration  thresholding26–30.
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In our previous work, we addressed the problem of difficulty in visualization and thus formed mental imagery 
of the object brain graphs by considering their geometric characteristics. We adopted an analytical framework for 
visualizing a complex, multimodular network for functional brain networks with scale-freeness by embedding 
the networks into the latent geometric model of S1/H2.

Based on the Popularity × Similarity optimization  model31, the geometric meaning of S1/H2 model is that 
the angular coordinates (described by S1 counterpart) correspond to the similarity along nodes, in the manner 
that the closely connected nodes are clustered in similar angular coordinates, while degrees correspond to the 
popularity of node in the network, so that the radial coordinates (described by H2 counterpart) account for the 
popularity (degree) of node, as the popular nodes are located closer to the origin.

The model has been successful in revealing the hidden geometry of many other real complex networks of 
non-Euclidean  nature31–33. The embedding of the network into the geometric model was performed by using 
the software named Mercator, introduced by García-Pérez et al.33, which makes use of Laplace eigenmaps (LE) 
for the reduction of dimension and maximum likelihood estimation (MLE) techniques for acquiring the most 
appropriate geometric object on hyperbolic discs representing the original network with  fidelity31–34. This solved 
two issues: (1) 2-dimensional representation of complex brain graphs with flexible annotation of functionally 
cooperating voxel groups and (2) thresholding to sort out necessary edges to make the complex brain graphs 
obey power law and thus scale-freeness34, which implies the self-similarity and heterogeneity of degree distri-
bution. This shares some topological features with functional brain network, and compatible with hyperbolic 
embedding of the  network31–34.

In this work, we analyzed functional brain networks from healthy human young adults by analyzing rsfMRI 
data and visualized functional subnetworks, i.e., independent components (ICs), using hyperbolic embedding. 
Then, we investigated how each functional subnetwork was composed of the subset of voxels with high core-ness, 
revealed by k-core percolation as a measure of centrality. We characterized the kmax-core voxels for their degree 
distribution belonging to each IC, showing the plausible influencer behavior of these IC subnetwork voxels upon 
k-core percolation eventually to find which subnetworks are the dominant by counting the voxels belonging to 
them at rest in normal individuals. We asked whether the individuals had common or characteristic core struc-
tures in terms of their kmax-core IC-voxel compositions.

Results
Method of hyperbolic embedding of voxels on individual rsfMRI. To visualize the correlation 
structure of the voxel composition of the complex functional brain network, we adopted a method to trans-
fer the high-dimensional connection (edge) information to the hyperbolic disc space. According to our previ-
ous  investigation34 that looked for an optimal non-Euclidean space for embedding the intervoxel correlation 
structure, we simply chose 2-dimensional hyperbolic disc embedding. Hyperbolic disc representation reflected 
the original high-dimensional edge information similarly well to the high-dimensional Euclidean embedding 
 alternatives34. To the best of our knowledge, the high-dimensional correlation structure rendered by hyperbolic 
disc embedding serves an easy-to-recognize visibility, which is very difficult to achieve via Euclidean 2-dimen-
sional representation (Fig. 1a,b).

Unlike our previous study, which used anatomically predefined  regions34, we used voxel correlation to visual-
ize intervoxel relationships for hyperbolic disc embedding using the S1/H2  model33. The output easily disclosed 
the belonging characteristics of the voxels to ICs on a hyperbolic polar coordinate. Edge weight on the voxel-
voxel correlation matrix was thresholded to yield the adjacency matrix after confirming the scale freeness of 
the resultant degree distribution of the voxels while preserving the size of the largest component as large. This 
allowed us to confirm the power law of its degree distribution and scale freeness to be fit for the hyperbolic 
model. Reproducibility on repeated embedding was tested in an exemplary case with repeated embedding with 
the Mercator  algorithm33,34 (Supplementary Fig. 1).

Hyperbolic disc embedding of rsfMRI voxels and their belonging to IC subnetworks. Using 
180 Human Connectome Project subjects’ data, we produced intervoxel correlation networks with 5937 voxels. 
Raw voxels were downsampled to yield computationally plausible size, but we still called the enlarged units of 
aggregates of voxels. The correlation coefficients between two voxels were calculated to define the edges of the 
network. These networks were binarized after confirming the linearity on a log–log plot of the degree distribu-
tion of the output adjacency matrix, and the largest components of the network having at least 80% of the entire 
5937 voxels were embedded on the hyperbolic discs using the previously described  method34. Embedding was 
performed on the hyperbolic disc using the S1/H2 model according to previously reported  methods33,34.

The adjacency matrix was then converted to fit into the S1/H2 model finally to yield the polar coordinates 
for the voxel in hyperbolic disc. Using the polar coordinates, we estimated angular coherence to investigate how 
the embedded voxels were angularly similar. After successful embedding using  Mercator33, voxels included in 
the largest components were more than 80% (5391 ± 224 voxels), with edges ranging from 274,634 to 3,894,033 
(1.6–22% of possible edges). A randomly sampled case was repeatedly embedded in this S1/H2 model, and their 
reproducibility is shown in Supplementary Fig. 1 and Supplementary Table 1. Voxel-based embedding in this 
study yielded a similar feature of reproducibility. We confirmed that 2-dimensional hyperbolic disc embedding 
using the S1/H2 model was feasible using voxel-based data and analyzed the pattern of embedded voxel-voxel 
relationships. We used only the positive correlation and the negative correlation left for the following study, 
including the interdependent multilayered characteristics of brain networks on hyperbolic disc embedding.

This embedding provided clearer visibility of intervoxel relations on 2-dimensional space (disc) than any 
conventional method of visualization (Fig. 1a,b). Inspired by the initial suggestion of using hyperbolic discs for 
popularity and similarity representation of growing complex networks and translation of this method to the 
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S
1/H2 model, the derived network was described in a hyperbolic disc, where the angular coordinates are used as 

proxy variables revealing similarity of nodes, while the nodes with higher popularity (degree) are placed closer to 
the center of  disk33. This enabled us to assume that the angular coherence on the hyperbolic disc reveals similarity 
of the group of voxels and that the closer distance of a voxel to the disc center represents a higher degree with 
greater  popularity34. We identified the voxels belonging to specific ICs (fifteen ICs) obtained from conventional 
group ICA performed in all 180  subjects35,36.

Angular coherence of hyperbolic disc‑embedded voxels belonging to IC subnetworks. We 
investigated the distribution pattern of voxels on the hyperbolic discs and their belongings to each IC among 
normal individual subjects. Group ICA annotated each voxel to its IC. Angular coherence of grouped voxels 
according to ICs was measured on embedded hyperbolic discs. When voxels belonging to an IC were grouped 
closely together within narrow angles from the disc center, the IC and its voxels were called to have higher prox-
imity with higher angular coherence (ranging from 0 to 1) (Fig. 1c,d). Angular coherence of ICs represented 
how close the voxels in an IC gathered together as a subnetwork. Subnetworks were labeled in two ways: one 
with the functional label of the voxels to the 15 ICs reminded the multiscale renormalization of brain  graphs37 
(Supplementary Fig. 2). Another anatomical label used 15 predefined lobes based on the Brainnetome  atlas38 
(Supplementary Fig. 3).

For the 180 subjects (Supplementary Table 2), the angular coherence calculated using functional labels tended 
to be higher than that calculated using anatomical labels. In the functional label, sensorimotor network 1 (SMN1) 
(~ 0.81) and VN3 (~ 0.80)/5 (~ 0.75) showed the highest angular coherence, and the precuneus network (PCN) 
(~ 0.48) and dorsal attention network (DAN) (~ 0.50) showed the lowest angular coherence (Fig. 2a, Supplemen-
tary Table 3). Bilateral occipital lobes (left: ~ 0.71, right: ~ 0.72) showed the highest angular coherence, and parietal 
(left: ~ 0.25, right: ~ 0.26) and temporal lobes (left: ~ 0.29, right: ~ 0.25) showed the lowest angular coherence in 
the anatomical label (Fig. 2b, Supplementary Table 4).

The number of voxels belonging to the 15 ICs ranged from 158 (anterior default mode network (aDMN)) 
to 443 (visual network (VN) 2) (Supplementary Table 3). On the hyperbolic disc, the angular coherence ( ξ) of 
the DMN was 0.57 ± 0.14 (n = 180) and that of VN1 was 0.71 ± 0.15. In an individual chosen, for example, VN4 
(green circle) voxels had ξ = 0.95, salience network (SN, red circle) ξ = 0.52 or the default mode network (DMN, 
blue circle) ξ = 0.50. The voxels embedded on the hyperbolic disc disclosed their own unique pattern but also 

Figure 1.  Hyperbolic disc embedding and angular coherence of the voxels on the disc. (a) A brain network with 
500 random nodes was displayed using 3-dimensional MNI coordinates projected on a 2-dimensional brain 
space. This visualization provides intricate edges and nodes that are not easily discernible. (b) Hyperbolic disc 
embedding provides easy-to-recognize visualization of the voxels on the hyperbolic disc. In this hyperbolic disc, 
5937 voxels were used, which shows the intervoxel relationships between voxels in an unoverlapped way with 
10 times more voxels than the one in (a). Specifically, the brain was resampled into 5937 6 × 6 × 6  mm3 voxels, 
which were assigned as voxels of subnetworks belonging to independent components (ICs)34. The hyperbolic 
distance between two voxels on this hyperbolic disc is equivalent to the correlation proximity between these 
voxels in Euclidean space. The radial coordinate responds to the degree of the voxel, i.e., the hub voxel is near 
the center of the disc, and the angular coordinate responds to the similarity of  voxels32. As an example, voxels 
from the independent component (IC) subnetworks are presented in different colors. The voxels from the 
salience network (SN) (red) are more widely distributed on angular coordinates than the default mode network 
(DMN) (blue) or visual network 4 (VN4) (green). (c) The angular coherence quantifies the degree of aggregation 
of a group of voxels based on coordinates. It ranges from 0 to 1, and a higher value indicates compact gathering 
with smaller differences in angles between voxels in the group. Widely spread voxels have a lower value of 
angular coherence. The angular coherences of voxels comprising (c) VN4 (ξ = 0.98), (c,d) DMN (ξ = 0.51) are 
shown.
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revealed the common distribution characteristics. The hyperbolic disc should be read with polar coordinates 
with its intervoxel distance on a logarithmic scale in the radial direction and hyperbolic contribution of the 
intervoxel angle in arc hypercosine to the distance (see “Methods” section). Evidently, the rotation/reflection 
 symmetry39 of this embedded disc representation and other symmetries, such as branch permutation related to 
the hyperbolicity of the disc, should be considered in the interpretation of voxel  distribution40.

Regarding laterality, the angular coherence of each left and right hemisphere based on the Brainnetome atlas, 
except cerebellum, showed no significant difference (Supplementary Fig. 4a). An analysis using anatomical labels, 
temporal lobes, and subcortical regions showed significantly different angular coherence between the left and 
right sides (p < 0.05, Supplementary Fig. 4b).

Discovery of  kmax‑core voxels on k‑core percolation and its visualization on hyperbolic embed-
ded discs. Using the adjacency matrix obtained by scale-freeness guaranteed thresholding, we proceeded to 
find the core voxels. We asked which voxels in the IC subnetworks survived the decomposition by k-core perco-
lation. We questioned whether the hub voxels with higher degrees would remain solely or whether other voxels 
with fewer edges would join the survivors. Which voxels belong to which ICs would remain and dominate or 
participate as core voxels at the end of k-core percolation.

During k-core percolation, voxels with a degree k were designated as k-shell and removed, and k started 
from 1 with an increment of 1. This k-shell removal was accompanied by recalculation of the remaining voxels’ 
degrees and was repeated until the step of kmax; this is the maximum k such that k-core is not empty. After an 
increment of the value of k by one, no voxel remains in the k-core. This procedure peels the layers of a network 
based on the n-degree of voxels. The voxels with a degree equal to the coreness k are called k-core, and voxels 
with the highest degree at the step of coreness kmax are called kmax-core (Fig. 3a,c). The kmax-core voxels were 
not always the voxels with the highest degree at the beginning (Fig. 3b) since k-core percolation sequentially 
eliminated voxels with lower degrees than k and recalculation made voxels survive or not with their remaining 
connections with then-survivors (Fig. 4).

When k-cores derived from k-core percolation were embedded on a hyperbolic disc, as k increased, voxels 
farther from the center of the disc were removed earlier, and then voxels near the disc center tended to remain 
in the k-cores. Finally, survivors composed kmax-core (Fig. 4a,b, Supplementary Figs. 5, 6). The core voxels had 
higher degrees and strong inter-connections. Hence, they tended to locate near the center of the hyperbolic discs, 
and it represented higher popularity surviving k-core percolation and hierarchically higher level of the networks.

Figure 2.  Distribution of the angular coherences of 180 individuals’ voxels on hyperbolically embedded discs. 
Groups of voxels belonged to (a) functional labels derived from group independent component analysis (ICA) 
and (b) atlas-based anatomical labels. (a) Fifteen independent components were chosen from group ICA for 
the entire data: default mode network (DMN), anterior DMN (aDMN), precuneus network (PCN), salience 
network (SN), dorsal attention network (DAN), left central executive network (L CEN), right CEN (R CEN), 
sensorimotor network (SMN) 1/2, auditory network (AN), visual network (VN) 1/2/3/4, and visual attention 
network (VAN). The spatial maps of ICs were binarized (Z > 6), and voxels were classified to belong to each of 
the specific ICs. The coordinates of groups of voxels per specific IC were calculated (see “Methods” section). The 
values of angular coherence of SMN and VN3 and VN4 were the highest. (b) The whole brain was segmented 
into fifteen anatomical lobes based on the Brainnetome atlas to yield anatomical labels: bilateral frontal/
temporal/parietal/limbic/occipital/subcortical and a cerebellum. The coordinates of groups of voxels per lobe 
were calculated (see “Methods” section). The median of each distribution is indicated with a circle, and the 
mean is indicated with a horizontal line.
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Due to the varying number of edges at the beginning, the number and location of kmax-core voxels varied 
greatly from individual to individual (mean number of voxels at kmax-core: 826 ± 503, range 251–1854). We 
counted how many kmax-core voxels belonged to specific resting-state IC/lobe subnetworks (Fig. 5). According 
to the ICs, VN1 (range 0–244)/VN2 (range 0–328)/VN3 (range 0–196) and the visual attention network (VAN) 
(range 0–258) showed the largest mean number of voxels comprising kmax-core (Fig. 5a, Supplementary Table 5). 
Once combining ICs into seven networks, VN (sum of VN1, 2, 3, 4 and VAN) (range 0–790) had the largest 
number of kmax-core voxels, and DAN (range 0–191) had the smallest (Fig. 5b, Supplementary Table 6). Accord-
ing to the lobes, the left (range 22–327) and right (range 3–314) parietal and left (range 0–236) and right (range 
0–243) occipital lobes had the largest number of kmax-core voxels (Fig. 5c, Supplementary Table 7). Using eight-
category anatomical labels, parietal (range 25–631) and occipital (range 0–455) voxels had the largest kmax-core 
voxels (Fig. 5d, Supplementary Table 8).

Voxel‑subnetwork composition of  kmax‑core and their subnetwork distribution pattern among 
individuals. Voxels remaining at the last step of k-core percolation were annotated to the ICs or the lobes, 
and their initial degrees were rendered as histograms, which revealed the degree distribution of the kmax-core 
voxels ranging from 187 to 3847 or from 21 to 52% (the percent of the degree of each kmax-core voxel per the 
degree of the voxel with the highest degree). Interestingly, the distribution of the degrees of the kmax-core voxels 
varied between individuals who showed a spectrum in the distribution of the dominance (or nondominance, 
meaning even participation of voxels in kmax-core) of the ICs to which the kmax-core voxels belonged (Supple-
mentary Figs. 7–11).

More specifically, VN included the largest number of kmax-core voxels in 73% of subjects (22 among 30) than 
any other resting-state IC subnetwork, and more than half of the kmax-core voxels belonged to VN in 40% of 
subjects (12 among 30). The degrees of kmax-core voxels belonging to VN ranged from high to low values, similar 
to the degrees of the voxels belonging to the other ICs, such as DAN, DMN, and SN (Supplementary Figs. 10, 
11). Over the individual differences, we questioned whether there was any group-level kmax-core and found that 
34 kmax-core voxels were shared in common by more than 60% of subjects (18 among 30), and VN occupied 
the largest number of these common kmax-core voxels (Fig. 6a,b). VN could be said to be the most dominant IC 
subnetwork (V1: 21, V2: 14, V3: 16, and VAN: 6 voxels). In addition to VNs, PCN included the largest number 
of kmax-core voxels (commonly shared in 60% of subjects: 16 voxels) (Fig. 6a,b). When the anatomical label was 
applied, 34 kmax-core common voxels in 60% of subjects (n = 18) mainly belonged to occipital and parietal regions. 
In more detail, 17 voxels in bilateral lateral superior occipital regions, 13 voxels in the bilateral ventromedial 
occipital regions, three voxels in the parietal regions (superior parietal lobule, precuneus, postcentral gyrus), 

Figure 3.  Conceptual illustration of k-core percolation and plots describing k-cores and the kmax-core 
derived by k-core percolation. (a) k-core percolation renormalizes the brain network by peeling the layers 
with k-steps from k = 1 to k = kmax for the brain network. Intervoxel correlations were thresholded to yield an 
adjacency matrix after checking the scale freeness of the degree distribution of voxels and put into hyperbolic 
disc embedding and k-core percolation. The voxels with a degree equal to coreness k are eliminated, and 
recalculation of the voxels’ degree proceeds to the next step and continues until the remaining voxels forming 
the largest component at that step are disintegrated into many pieces at once. The voxels at this step k = max 
are called kmax-core voxels. (b) The kmax-core voxels included not only the voxels with the largest degree on the 
initial adjacency matrix but also the voxels with smaller degrees. This histogram shows the degree distribution 
of voxels from one subject (#100,206). The blue bins represent all the voxels, and the red bins represent kmax-core 
voxels. kmax was 240, and the degrees of kmax-core voxels ranged from 260 to 1088. The k-core percolation finds 
kmax-core voxels that have dense connectivity among themselves as well as hierarchically at the apex within their 
belonging independent components (ICs) and even the voxels with lower down to one-fourth of voxel with the 
highest degree. (c) A flag plot shows the changing k-cores of a subject that vary with the coreness k value during 
k-core percolation. Each voxel that belongs to a specific IC is shown on the y-axis, and the voxels comprising 
each k-core are colored. This subject has a kmax core with a 240 k-value and shows the first abrupt decrease 
during k-core percolation in DMN, DAN, CEN, and VN (k ≈ 156) and the second abrupt decrease in VN (k ≈ 
172).
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and one in the frontal region participated in the kmax-core. We suggest that posterior area voxels, including VN/
PCN or occipitoparietal regions, are candidates for the common core in more than half of normal subjects to 
preside over their hierarchically lower voxels in the same ICs and the voxels belonging to the other ICs or lobes.

We grossly found three patterns of kmax-core voxel-IC composition among individuals using functional labels: 
DMN-dominant, VN-dominant, and uneven but distributed (Fig. 7, Supplementary Fig. 11). When a dominant 
IC (DMN or VN) occupies more than 40% of kmax-core voxels, the individuals were deemed to be DMN-dom-
inant or VN-dominant (Figs. 1, 7, Supplementary Figs. 11a,b, 12a,b). An individual without any dominant IC 
and showing distributed (kmax-core) voxel-IC compositions was named as having a distributed pattern (Figs. 1, 
7c, Supplementary Figs. 11c, 12c). There were five individuals with a DMN-dominant pattern, 18 individuals 
with a VN-dominant pattern, and seven individuals who had a distributed pattern (Supplementary Fig. 11). The 
kmax-core voxel sizes of the individuals with the distributed pattern were significantly greater than those of the 
individuals with VN- or DMN-dominant patterns (p < 0.05). Stacked histograms of the degree distribution of 

Figure 4.  The k-cores and the kmax-core depicted by flag plots and hyperbolically embedded discs. Each 
individual has his/her own size of kmax-core and changes in the size of k-cores according to coreness k during 
k-core percolation. In individuals, a few abrupt decreases were observed over the gradual change of the largest 
component. (a) The coreness k and the size of the core S (k) of a subject were plotted, showing two abrupt 
changes. Specific k-cores that showed an abrupt decline (k = 7, 155, 156, 172, 173) were embedded on the 
hyperbolic discs to show the explosive decrease in core voxels. The voxels belonging to a k-core are denoted with 
red circles; otherwise, they are denoted with black circles on these hyperbolic discs. When the plot shows an 
abrupt decrease in S (k), voxels belonging to the k-core are reduced at once. (b) In an individual, kmax-core shows 
the various sizes and independent component (IC)-voxel compositions. The kmax-core (k = 240) of a subject is 
presented as an example. There were 694 voxels left on the kmax-core, and the voxels that belonged to the default 
mode network (DMN) were in blue, salience network (SN) in red, and visual network 3 (VN3) in green. Voxels 
other than kmax-core voxels are in pale circles. (c) The components of each k-core from one subject that vary 
with coreness k value are shown on the flag plot using functional IC labels (c) and anatomical labels (d) that 
annotate voxels to specific subnetworks. In the flag plot, every voxel is presented on the y-axis with labeling, and 
the horizontal bar of each voxel refers to the maximum k of k-cores to which the voxels belong. The voxels from 
each subnetwork on the y-axis were sorted in descending order of k. The bar plots show the affiliation of kmax-
core voxels (e,f). This individual showed abrupt declines in k-core size in the DMN, dorsal attention network 
(DAN), central executive network (CEN), and VN by functional labels and in the frontal, temporal, parietal, and 
occipital lobes by anatomical labels. The kmax-core voxel was classified using larger functional labels (7 ICs) (e) 
and anatomical labels (8 lobes) (f). In this individual, VN or parietal/occipital lobe voxels belonged in the largest 
number to the kmax-core.
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kmax-core voxels are presented in Fig. 8, and it should be noted that all 30 individuals, regardless of the degree 
maximum of each individual, could be annotated with one of the three types of kmax-core voxel-IC compositions. 
An exemplary case showed the changes of k-cores in terms of IC-voxel rendering on brain template along k-core 
percolation (Supplementary Fig. 13).

Discussion
In this study, we applied hyperbolic embedding and k-core percolation to investigate the latent topology of the 
human functional brain network. Hyperbolic embedding provides insightful visualization of the hierarchical like 
nature of the functional brain network, and k-core percolation discovers the core structure of individuals. The 
coordinates of voxels by hyperbolic embedding enable us to measure the functional within-themselves proximity 
of specific subnetworks of the brain. VNs and the parietal lobe showed functional proximity at rest frequently in 
individuals. The k-core percolation disclosed which subnetworks contributed to forming core voxels at maximum 

Figure 5.  The plots show which subnetworks, in 30 individuals, the kmax-core voxels belong to. k-core 
percolation yielded kmax-core voxels for each individual and which independent components (ICs) or lobes 
those kmax-core voxels belonged. ICs were represented as 15 (a) or as the seven categorized (b). Five visual 
networks (VN1/2/3/4, VAN) into one visual network (VN), etc. Since some of the voxels belong to multiple ICs, 
categorized VN had slightly fewer voxels than the sum of the number of voxels of constituents (V1/2/3/4, VAN). 
(a) According to the fifteen functional labels, visual subnetworks, VN1, VN2, and VN3, and the visual attention 
network (VAN) were leading in the number of voxels among kmax-core voxels, followed by sensorimotor 
networks (SMN 1, 2) and the salience network (SN). (b) Once categorized, the propensity of VN among the 
seven was outstanding. (c) Anatomical labels for both lobes and cerebellum showed prominence of occipital and 
parietal lobes among the fifteen, and (d) once categorized to eight, parietal and occipital lobes were sustained.
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and that there were individual variations in dominant (visual or DMN) or distributed patterns on the kmax-core 
voxels-ICs composition analysis.

Previous studies reported hierarchical organization of human brain network. Centrality measure is one of the 
most commonly used methods to investigate hierarchical nature of human  brain4. Node degree and betweenness 
centrality are well-known measures; however, they only show a local or global  property5. Node degree measures 
local influence since they include only neighbor nodes in calculation. The betweenness centrality of a node is 
calculated based on shortest path length, which considers whole network. However, k-core percolation pro-
vides hierarchy in their structures considering both the local and the global connections at each step of k-core 
 decomposition41 along with dynamic re-checking the degree within k-core of the networks while removing the 
nodes of k-1  shell27–29. The nodes of outer k-shells are locally central, while ones in the central shells are glob-
ally central. Hence, the k-core percolation reveals topological importance of the network. It peels the network 
layer by layer to reveal the most internal one and provides hierarchical  fingerprints29. In this study, we aimed to 
discover one unique central core which has the densest connection and pivotal hub of individual’s brain network.

The k-core percolation has recently been interpreted as one part of explosive  percolation42, which was once 
considered to be discontinuous but later  continuous43 and finally proposed to be  hybrid44 in its configuration 
dynamics according to the percolation process. In explosive percolation in complex networks, dynamic changes 
in network configuration were observed/simulated in a forward way, meaning how global connectivity was 
formed with the addition of new edges to the networks. The formation of the largest component could have 
been discontinuous, continuous or  hybrid42–44. In contrast, optimal percolation was also introduced to find the 
vulnerable nodes for targeted attack and trial of  dismantling11,12 eventually to have defined influencer  nodes10. 
This idea has become more popular for understanding epidemic spread, power grid  failure14,15 and social message 
 propagation13,25, either viral or fake, and has introduced algorithms of collective influence or belief  propagation13. 
Optimal percolation tried to reveal a minimal set of nodes and thus kept itself different from k-core percolation 
decomposition, saying that k-core percolation finds a group of nodes not pinpointing the nodes with the high-
est collective influencer score (for a message, electrical power, epidemic spreading capability). In the optimal 
percolation or collective influence algorithm, of course, they proceed backward from the largest component 
to fragments. We followed the idea of k-core percolation; the largest component with the initial input and the 
adjacent matrix was reconfigured while removing the k-shell in this investigation.

Either forward or backward, regardless of the name and the use of specific percolation in the application 
context, for investigation of complex brain networks, we need to identify the voxels of highest interest and 
their grouping to a certain category, i.e., functional or anatomical label. When we have a sufficient number of 
voxels, such as more than 5000 in this study, we do not need to find each voxel for its contribution to maintain-
ing resting-state brain function but want to find the groups of voxels of interest that remain after parsimonious 
filtration, in other words, percolation. k-core percolation functioned as the tool to find the survivors of this 
endeavor. Adoption of the k-core percolation algorithm from the  literature27–29,45 easily yielded the voxels of 
kmax-core. We applied k-core percolation to each participant’s brain network which consisted of about 5000 voxels 
to reveal the innermost central core of the hierarchical structure. After reaching kmax, if one goes a step further 
(by incrementing the value of k by one), the largest component was disintegrated into many smaller pieces. As 
expected, the degree distribution of voxels belonging to the ICs of these kmax-cores ranged from the highest to 
the mid-level (Supplementary Figs. 9, 10).

In the resting state, fMRI renders information on the fluctuation of BOLD signals per voxel, and evidently, 
the individuals are conscious, although sometimes their minds are drifting from introspection/imagination to 

Figure 6.  The common core voxels were shared by 60% of individuals. k-core percolation disclosed to which IC 
subnetworks prevalently among individuals, the kmax-core voxels belonged. (a) A bar plot showing the affiliation 
of kmax-core voxels. Shared voxels of the precuneus network (PCN), visual network 1 (VN1), VN2, V3, and 
visual attention network (VAN) were easily found and rare voxels in salience (SN) and sensorimotor network 2 
(SMN2). (b) The shared voxels on the template brain were visualized. Voxels of kmax-core are found in VN and 
PCN.
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paying attention to the milieu, full of MRI radiofrequency-derived noise or the scenes within the gantry. Indi-
vidual differences in this mindset are expected, and temporal fluctuations will add up to make the stationary 
setting. In this study, we assumed perfect stationarity, meaning we calculated a single-digit correlation between 
every voxel i and voxel j, which led us to define 25 million or more possible edges. After scrutinizing the cor-
relation, which ranged from − 0.7 to 0.8 in most cases, we wanted the binarized networks to be scale-free. That a 
network is a scale-free network means that the structure of the network has a similar structure independent of 
the scale of observation. In detail, most nodes have a few  connections31–34, while some nodes have larger number 
of functional connections with other nodes. The scale-freeness, heterogeneity of degree distribution or power 
law obeyed by degree PDF on log–log plots is reflected by the innate topological features of the functional brain 
network, such as the hierarchical organization of nodes by their  edges5. We cut off the edges with the threshold 
value of 0.4, so that each network meets scale-free criteria while retaining most of nodes in the single largest 
component. This yielded approximately 300,000 to 3,900,000 edges, with more than 80% of voxels remaining 
among 5937 resized voxels. Only the positive intervoxel correlation was included in the analysis in this study, 
and the negative correlation (anticorrelation) and its contribution to the multilayered duplex interdependent 
brain network remain to be studied. Such is also the case with the temporal variation in kmax-core voxels and 
their IC-voxel composition.

Using the adjacency matrix and its consequent network, which defined the stationary voxel correlations at rest 
on rsfMRI, we proceeded to visualize the configuration in 2 dimensions with the hyperbolic disc. All the voxels 
were designated to belong to one (rarely more than one) IC, and the behavior of dynamic change of surviving 
voxels at each step of k-core percolation was presented using flag plots (Figs. 3c, 4c,d) and on the embedded 
hyperbolic discs (Fig. 4a, Supplementary Fig. 5a,b). Flag plots of voxels belonging to seven large representative 
ICs are displayed in Supplementary Fig. 7. It was interesting that the size of voxels varied among ICs before k-core 
percolation; however, k-core percolation allowed certain IC voxels, such as SMN, auditory network (AN), or 
central executive network (CEN), to vanish. Another point of merit is that voxels belonging to the SN disappear 
completely in a few individuals but remain in the others. Regarding DAN, CEN, AN, voxels seemed to vanish, 
but a small number of voxels belonging to these ICs remained definitely and joined the group of voxels of kmax-
core. This interesting phenomenon on k-core percolation is just reported here and will be the subject of further 
study to understand the conscious resting-state of mind in normal individuals and its correlates on rsfMRI.

Conscious individuals, evidently in an awake resting state on examinations, and their electrophysiological or 
perfusion correlates on electroencephalography (EEG), magnetoencephalography (MEG) or rsfMRI were studied 
by various investigators to yield a representative theory of consciousness, such as global neuronal workplace 
theory and integrated information theory (IIT)46–51. Global neuronal workplace  theory47,50 advocated distributed 
subnetworks interconnected onto each other in conscious states. Thus, the isolated subnetworks are not the cor-
relates for consciousness, and instead, once connected in a network of subnetworks, consciousness is achieved, 
emphasizing input–output processing. In contrast, integrated information  theory48,49 measures cause-effect power 
with maximally irreducible integrated information in some areas, most likely suggesting the posterior area of 
the brain. Irrespective of which theory suits the data better, the subnetworks participating in the maintenance 
of consciousness should be discovered on each modality (EEG, MEG, or rsfMRI). If it is true that the posterior 
area contributes to the conscious resting state, as indicated by IIT, we need to investigate whether the VN we 
found in this study would be in charge. A perturbation study and/or calculation of integrated information, ϕ, 
of IIT will also be  necessary51. The method we introduced in this study will be a good platform for visualization 
of intervoxel correlations and for elucidation of the changes in IC-voxel composition upon k-core percolation 
using a flag plot for these studies.

Discovery that the kmax-core voxels of the parietooccipital area are dominant in more than half of the studied 
individuals and that VNs obviously participate in the kmax-core in the remaining distributed or DMN-dominant 
individuals would mean that posterior or parietooccipital areas are one of the important correlates of resting-state 
consciousness. This indicates that everyone had VN in their kmax-core voxels (Supplementary Figs. 7, 10). Interest-
ingly, in the individuals with kmax-core voxels uneven-but-distributed belonging to all the ICs, the contribution 
as core structure by all the other ICs seemed equivalent. The meaning of this phenomenon might be understood 
by looking into the temporal fluctuation of kmax-core voxel-IC investigations in future studies.

Referring to the high angular coherence on the hyperbolic disc embedding and the dominance for kmax-core 
on k-core percolation, the VNs had the strongest connectivity within IC, and their dominance in kmax-core vox-
els was significant in half of the individuals at rest. The VN has been reported as one of the major hub regions 
in previous  studies52. The VN is a unimodal area that conducts highly specialized functions; for example, the 
primary visual cortex, well delineated by cytoarchitectonic features, is an important correlate of corresponding 
functional vision. In contrast, the domain-general frontal area, involved in various cognitive  tasks53, showed low 
functional proximity within itself. The VN also has a higher neuronal density than the others. Considering that 
the resting functional connectomes are not engaged at any activation tasks, the unimodal highly differentiated 
subnetwork might be the one with strength in angular coherence and contribution to the coreness on k-core 
percolation. In the same vein, a sensorimotor network also showed high angular coherence. However, it was 
not found to be dominant in any individual but just one of the components weakly or absent contributors to the 
kmax core (Supplementary Fig. 7).

The voxels belonging to the precuneus network remained in the kmax core in most of the individuals. The 
precuneus is an associative region that is especially involved in self-related information  processing54,55. The 
precuneus is also a crucial component of the DMN, which was also found to be a dominant IC subnetwork in a 
fraction of the individuals in this study, reminding us that the DMN is a well-known subnetwork active in the 
resting state. Although the precuneus is not inherently highly differentiated and specialized like a visual system, 
in the resting state, the voxels of the precuneus came to join the kmax core.
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The core of the individuals showed diversity in size and IC voxel composition. This IC-voxel composition 
pattern was arbitrarily classified among the individuals: DMN-dominant, VN-dominant, and uneven but dis-
tributed types. Individuals with DMN or VN dominance revealed that their kmax-core voxels consisted of (1) 
mainly DMN and several minor ICs or (2) VN and CEN and few minors in the resting state, respectively. This 
might imply that dominant IC subnetworks are sustained as characteristics of the individuals and/or that in 
every individual, there is a fluctuation of mental states, which drift between the distributed pattern and, in some 
instances, enter the DMN major or the VN major states, which would also be observed by rsfMRI. Former or 
latter, whichever interpretation might be the fact/truth, further study with sliding window segmentation and 
phase-shift observation of rsfMRI is warranted.

Individuals with the distributed pattern tended to have a larger size of voxels in their kmax-core, and more 
than half of all had voxels belonging to VNs or DMN in their kmax-core. It is interesting to know whether DMN- 
or VN-dominant patterns might be a drifting accentuation of these two subnetworks, while evenly distributed 
IC voxels are the background default state at rest in humans. Then, DMN and VN-dominant patterns are the 
two extremes of the spectrum, and the distributed pattern resides between them. Regarding hubs, there was a 
controversy that in some  reports56,57, hub regions were composed of voxels belonging to various subnetworks 
and not confined to a specific system in one report. In other  reports58, there was a predominance of the visual 
system and precuneus among hub nodes. We suggest that this kmax core IC-voxel composition be used as a fin-
gerprint to identify and describe an individual’s physiological or pathological characteristics of their resting IC 
compositions of the cores.

Finally, finding kmax core voxels using an established visualization method on hyperbolically embedded discs 
accompanying k-core percolation raised the possibility of studying stationary and dynamic functional connec-
tivity of voxels and their hierarchy upon filtration/percolation. The k-core percolation disintegrated the initial 
largest component gradually but sometimes abruptly; thus, this descent pattern seemed to represent the core and 
subcore configuration of voxels hidden under just the simple-looking scale-free functional brain network. The 
hidden relation between areas/regions/voxels on rsfMRI was recently investigated with either a coactivation pat-
tern (CAP)59 or hidden Markov model (HMM)60,61, both of which followed the success of elucidation of dynamic 
changes of various CAPs on the analysis of MEG  data62 or of discovering variable HMM states and finding the 
transition between HMM states at rest using  MEG63, respectively. On the temporal scale and/or cross-modal 
investigations, both CAP and HMM methods were used to understand the twitches and other trivial movement/
activities of humans during  imaging64 and eventually consciousness. Our method of kmax-core detection and the 
annotation of the kmax-core voxels to ICs upon filtration will lead us to define the hierarchical structure of core-
periphery coherent gathering of voxels. The 2-dimensional display of hyperbolic discs allowed us to visualize 
how the kmax-core was formed by the simple rule of k-shell peeling or decomposition. This is the new platform 
to understand finally the awake, twitching intermittently, mentally drifting with various attention to milieu or 
his/her mind in the MRI gantry in a conscious resting-state of human individuals. Temporal  variation65 with 
rsfMRI and cross-modal investigation with MEG or  EEG66 will be the next step of investigation using the current 
method of hyperbolic disc embedding and k-core percolation.

Limitations. There are some limitations to our approach. There is no gold standard for selecting threshold 
on functional brain network. To investigate the hierarchical structure of the functional network using hyperbolic 
embedding and k-core percolation, we thresholded networks to meet scale-freeness, which means we assumed 
the functional brain network is scale-free67. It implies self-similarity and heterogeneity of degree distribution. To 
test the results of  kmax-core depending on thresholding, we selected one representative participant of each three 
pattern (VN/DMN/Distributed pattern) and applied various thresholds (0.3, 0.4, and 0.5). Despite the arbitrari-
ness of threshold, patterns of  kmax-core voxels were consistent (Supplementary Figs. 14–16). Although we used 
two criteria for thresholding; scale-freeness and node inclusion criteria, the optimal thresholding criteria based 
on quantitative estimation is needed to provide in this approach.

This study only included positive correlation and investigated static brain network. The negative correlation is 
considered the other side of the coin, and the model including both positive and negative correlation is  needed68. 
Dynamic change of brain network is also extensively investigated and suggested continuous shifting in neural 

Figure 7.  Three types of kmax-core voxel-independent component (IC) compositions at the end of k-core 
percolation. There were three types, named based on which ICs the kmax-core voxels belong: VN-dominant, 
DMN-dominant and distributed. Categorized functional labels, consisting of the default mode network (DMN), 
salience network (SN), dorsal attention network (DAN), central executive network (CEN), auditory network 
(AN), and visual network (VN), were used to classify kmax-core voxels according to their belonging to these 
categorized labels. In the top row, each individual’s k max core was embedded on the hyperbolic disc. The kmax-
core was enlarged and shown in detail. In the middle, kmax-core was visualized on the 3-dimensional brain. At 
the bottom, the kmax-core voxels belonging to seven networks are shown separately. (a) Individuals with more 
than 40% of their kmax-core voxels in the DMN were classified as DMN-dominant. kmax-core voxels of one 
example (129,533) of the DMN-dominant type show blue regions indicating kmax-core voxels that belong to the 
DMN. More than 60% of kmax-core voxels were in DMN regions ranging over the precuneus, lateral parietal 
cortex, and medial prefrontal regions. (b) Individuals with more than 40% of kmax-core voxels being in VN were 
classified as VN-dominant. A VN-dominant individual (126,325) shows that more than 80% of kmax-core voxels 
belong to the VN, ranging over medial and lateral occipital and parietal regions. (c) Individuals were classified as 
having a distributed pattern when no dominant IC subnetworks were found. In an example case (110,411), every 
subnetwork voxel contributed to less than 20% of kmax-core voxels. We counted all duplicates when the kmax-core 
voxels belonged to multiple IC subnetworks.

▸
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 correlates60,61,69,70. Further studies using both positive, negative correlation and for dynamics of functional con-
nectivity hierarchy are warranted.

Figure 8.  The stacked histogram of the degree distribution of kmax-core voxels calculated from the adjacency 
matrix used as input. (a) After finding the kmax-core of a subject with k-core percolation, we read the degree of 
each kmax-core voxel on the adjacency matrix. We classified kmax-core voxels into seven categorical independent 
components (ICs) and produced a stacked histogram showing each kmax-core voxel’s affiliation and the voxel 
degree simultaneously. (b) We depicted kmax-core of 30 subjects. The voxel degrees of kmax-core voxels and their 
affiliation are in different colors. kmax-core voxels located on the right side of the histogram were deemed to 
have a greater degree initially in the adjacency matrix, indicating that they have connections with non-kmax-core 
voxels as well as within kmax-core voxels. In contrast, kmax-core voxels on the left side of the histogram denote 
a relatively smaller voxel degree, implying that it has fewer connections with non-kmax-core voxels and is thus 
almost confined to obtain connections with kmax-core voxels. The histograms of 30 subjects were sorted in 
ascending order with the mean degree of the kmax-core voxels in 3-dimensional space.
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Methods
Dataset. We included 180 participants from the Human Connectome Project (HCP) S1200 release, which 
is available with open access (www. human conne ctome proje ct. org/ study/ hcp- young- adult/ data- use- terms). 
This open access data is available to those who register an account at ConnectomeDB and agree to the open 
access data use terms. The acquisition parameters and preprocessing steps were described in Ref.71. All methods 
were carried out in accordance with relevant guidelines and regulations. Participants were free of neurological 
diseases and psychiatric disorders (31 participants with age range 22–25 years, 84 participants with age range 
26–30 years, and 64 participants with age range 31–36 years; male: 76, female: 104). We included all 180 subjects 
in angular coherence analysis and 30 subjects in k-core percolation analysis (ten participants with age range 
22–25 years, ten participants with age range 26–30 years, and ten participants with age range 31–36 years; male: 
15, female: 15).

Preprocessing of the rsfMRI data. rsfMRI was obtained with a 3 T scanner with the following param-
eters: TR = 720 ms; TE = 33.1 ms; flip angle = 52°; FOV = 208 × 180 mm, 2 mm isotropic voxels. The minimally 
preprocessed data from HCP were further preprocessed using Statistical Parametric Mapping (SPM, www. fil. 
ion. ucl. ac. uk/ spm/) and FMRIB Software Library (FSL, fsl.fmrib.ox.ac.uk/fsl/)71. EPI images were corrected 
gradient and motion-induced distortion, and a field map-based nonlinear transform was also used to correct 
distortion. After images were coregistered and normalized into standard space, intensity normalization was per-
formed. These minimal preprocessing results in 2 × 2 × 2 mm sized voxel  images71. We additionally conducted 
smoothing using 6 mm full-width at half maximum (FWHM) of the Gaussian kernel, and bandpass filtering 
(0.01–0.1 Hz). Finally, we downsampled the data to reduce the computational load of voxel-based whole-brain 
network analysis (dimension: 31 × 37 × 31, voxel size: 6 × 6 × 6  mm2), and 5937 voxels that consisted of the gray 
matter were used.

Functional/anatomical label of voxels. We performed independent component analysis (ICA) using 
MELODIC (multivariate exploratory linear optimized decomposition into independent components) to extract 
resting-state  networks36. Fifteen independent components were classified after manual inspection of spatial 
maps: aDMN, DMN, PCN (equivalent to posterior DMN), SN, DAN, left CEN (L CEN), right CEN (R CEN), 
SMN1, SMN2, AN, VN1, VN2, VN3, VN4, and VAN. The spatial maps were manually inspected and classified 
based on previous  studies72,73. To present our results in a more comprehensible summary, we also combined 15 
resting-state networks into seven categories: DMN, SN, DAN, CEN, SMN, AN, and VN. Both schemes were 
used for functional label. The Brainnetome atlas was used to generate 15 left/right anatomical lobes, and seven 
lobes consisted of bilateral brain regions for anatomical  labeling40.

Assessment of functional connectivity and voxel composition of subnetworks. For the scale of 
the 5937 cubic isotropic voxels, we measured blood oxygen level-dependent (BOLD) signals from each voxel of 
fMRI data and characterized the spontaneous fluctuations over the time series, σ2(X) , where X is the time series 
of the BOLD signal. For the BOLD-fMRI time-series X =  (X1…,  XN) of a given voxel, the variance was computed 
by the sample variance σ̂2(X) given as the following formula:

where X  denoted the sample mean of X . Between a pair of voxels with BOLD-fMRI time-series X =  (X1…,  XN) 
and Y =  (Y1…,  YN), the functional connectivity was estimated by the sample Pearson correlation coefficient ρ̂:

From the sample Pearson correlation coefficient ρ̂ of each pair of voxels, we obtained a square matrix of 
Pearson correlation coefficients for each of the subjects. To determine the most appropriate threshold values for 
composing a binary network, we applied tentative threshold values for ρ̂ , followed by comparison of the degree 
distribution and the relative size of the largest connected component. We determined the threshold value, consid-
ering both the scale freeness of the degree distribution and the maximal inclusion of voxels as much as possible 
in the largest component. For scale freeness, we considered the degree distribution with a straight-formed line 
on a log–log scale plot as appropriate. For the size of the network, we considered the threshold low enough for 
the single largest component of a graph (which was embeddable on the disc) to contain 80% of the voxels in the 
brain. Consequently, we constructed an unweighted, undirected graph for each subject by applying the threshold 
to the correlation coefficient matrix.

Hyperbolic disc embedding of networks into the S1/H2 model. The resulting binary graph from 
each subject was mapped onto a hyperbolic disc using the S1/H2 geometric network  model31,34. Connectomes 
were assumed to exist in underlying geometric space, linked with the observed topologic properties through a 
law of connection probability that defined the likelihood if the two regions of the brain were linked. In the model, 
the connection probability between two voxels i and j was determined by the hyperbolic distance between two 
voxels:

(1)σ̂2(X) =
1
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∑N
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)2
,
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where β is the clustering coefficient of the network and R̂ is the outermost radial coordinate among the embedded 
voxels. The hyperbolic distance, dij , is usually determined by hyperbolic laws of cosines,

where k is the curvature of the plane, ri is the radial coordinate of the ith point and �θij is the angular separation 
between two points i and j, while

was used as a good approximation, given that kri and krj are large enough and �θij that is not too small, for 
�θij >

√
e−2ri + e−2rj  ) (This approximation is used for �θij that is not too small, for �θij >

√
e−2ri + e−2rj  ). To 

determine the geometric object (i.e., a hyperbolic disc) that was most likely to generate the original binary graph, 
we used a software named Mercator (available at https:// github. com/ netwo rkgeo metry/ merca tor), introduced 
by García-Pérez et al.31, which applied maximum likelihood techniques and a machine learning approach for 
embedding the network. By this means, by computing the most appropriate set of polar coordinates for N voxels 
(r1, θ1), (r2, θ2), . . . (rN , θN ) and the clustering coefficient β , we embedded the binary graph onto a hyperbolic 
disc for each subject.

Angular coherence to assess the degree of gathering of subnetwork voxels on the hyperbolic 
discs. For the assessment of narrow or widespread aggregation of voxels in the hyperbolic disc space, we used 
a metric called angular coherence, which was previously devised to investigate how points were angularly similar 
on the hyperbolic  disc31. The angular coherence ξ ∈ [0,1] of a set of points X was determined as follows:

where θk is the coordinate of point k and N is the number of points (voxels in this study) in X . As intuitive from 
Eq. (6) The higher ξ was, the more points in the set were locally concentrated to form an angularly gathered 
structure. In this study, we used binarized (Z > 6) IC maps for functional labels and the Brainnetome atlas for 
anatomical labels. The degree of gathering of subnetworks on hyperbolic discs for resting-state voxel networks 
was estimated by calculating the angular coherences of the voxels included in the ICs or lobes.

k‑core percolation and composition of k‑core and  kmax‑core structures. We performed k-core 
percolation to investigate individual-specific core subnetworks of brain connectivity. The k-core of a network is 
the maximal subgraph of the network in which all vertices have a degree of at least k . The k-core was identified 
by removing all voxels with degrees less than k and recalculating the degrees of all the remaining voxels until no 
voxel remained with a degree less than k . We used a pruning algorithm suggested by Azimi-Tafreshi et al.29. The 
voxels that belonged to the k-core but not to the (k+ 1)-core form the k-shell of the network, and they were said 
to have k-coreness. Along k-core percolation, the changes in the size of the subnetwork at the k-core were well 
visualized in these flag plots over increasing k, revealing the association between the coreness of voxels and sub-
networks of ICs or lobes to which the voxels belonged. Voxels and their belonging to ICs or lobes were drawn as 
flag plots to describe how the number of voxels consisting of each IC/lobe decreased with increasing coreness k.

Degree distribution of  kmax‑core over functional/anatomical subsystems. As the coreness k 
increased, the step maximum was defined as the one where on step further, at kmax + 1 , all voxels constituting 
the largest component were disintegrated to smaller pieces. This phase transition always occurred abruptly and 
was thus discontinuous, making kmax-core. We evaluated the size and degree distribution of this kmax core for 
ICs and lobes.

Data availability
The functional brain dataset in the present study is available for download on the Human Connectome Project 
(HCP) (https:// www. human conne ctome. org/) with the acceptance of data use terms.
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