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Abstract 

The CACNA1H gene encodes the α1 subunit of the low voltage-activated Cav3.2 T-type calcium channel, an important 
regulator of neuronal excitability. Alternative mRNA splicing can generate multiple channel variants with distinct bio-
physical properties and expression patterns. Two major splice variants, containing or lacking exon 26 (± 26) have been 
found in different human tissues. In this study, we report splice variant specific effects of a Cav3.2 mutation found in 
patients with autosomal dominant writer’s cramp, a specific type of focal dystonia. We had previously reported that 
the R481C missense mutation caused a gain of function effect when expressed in Cav3.2 (+ 26) by accelerating its 
recovery from inactivation. Here, we show that when the mutation is expressed in the short variant of the channel 
(− 26), we observe a significant increase in current density when compared to wild-type Cav3.2 (− 26) but the effect 
on the recovery from inactivation is lost. Our data add to growing evidence that the functional expression of calcium 
channel mutations depends on which splice variant is being examined.
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The CACNA1H gene encodes the pore-forming α1 subu-
nit of the Cav3.2 calcium channel isoform which, along 
with Cav3.1 (CACNA1G) and Cav3.3 (CACNA1I), form 
the low-voltage activated T-type calcium channel family. 
The three isoforms generate currents with distinct bio-
physical and pharmacological properties and help regu-
late neuronal excitability, hormone secretion and cardiac 
function. Alternative mRNA splicing and differential 
splice-variant expression patterns further enhance the 
functional diversity of T-type channels [1].

Inherited or de novo mutations found in Cav3.2 have 
been associated with numerous disorders, including epi-
lepsy, primary aldosteronism, pain, autism and amyo-
trophic lateral sclerosis (for review see [2]). Many of 
these mutations have been characterized using heterolo-
gous expression systems and although a subset of these 
variants have been shown to cause significant biophysical 

changes, some produce mild or no alterations of channel 
function. A few studies have pointed out that mutations 
may differentially affect the activity of different splice var-
iants, which can partially explain the lack of effects seen 
in previous reports [3–6]. Another important considera-
tion is that missense, silent and non-coding mutations 
that do not alter channel function can potentially con-
tribute to disease by disturbing exonic splicing regulatory 
sites, thus affecting the normal expression of variants [7].
CACNA1H has been found to have at least 14 sites for 

alternative splicing with the potential to generate over 
4,000 mRNA transcripts [7]. Two major splice variants, 
containing or lacking exon 26 (Cav3.2 (± 26)) have been 
found in multiple human tissues (corresponding to exon 
25 in rat that is expressed in roughly half of the channel 
transcripts in the thalamus [3]). The inclusion of exon 
26 adds 6 amino acids to the cytoplasmic domain III-IV 
linker region of Cav3.2 (Fig.  1a) and can cause changes 
in the biophysical properties of the channel, including a 
hyperpolarizing shift in the voltage dependence of  acti-
vation and slower recovery from inactivation [7, 8]. 
We have recently shown that a R481C Cav3.2 missense 
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variant that segregated in a family with autosomal domi-
nant-inherited writer’s cramp (WC) alters the biophysical 
properties of Cav3.2 (± 26) channels. Electrophysiological 
analysis of R481C cloned into Cav3.2 (+ 26) showed that 
mutated channels had a significant faster recovery from 
inactivation when compared to wild-type (WT) Cav3.2, 
while current density and steady-state inactivation prop-
erties remained the same [9]. Here, we tested the effects 
of this mutation in a channel backbone that lacks the 
exon 26 sequence in transfected tsA-201 cells. Figure 1b 
shows representative Ba2+ current traces from WT and 

R481C channels. Different from what was seen in Cav3.2 
(+ 26), when R481C was expressed in Cav3.2 (− 26), we 
noted a significant increase in current density as shown 
in the current density-voltage relationship and maximal 
conductance graphs (Fig.  1c, d). Steady state inactiva-
tion and recovery from inactivation properties were not 
different from WT channels (Fig. 1e–h). It is important 
to note that while the R481C mutation causes different 
effects depending on which splice variant is being tested, 
these effects imply a Cav3.2 gain of function in both exon 
26 containing and lacking channels, which can lead to 

Fig. 1  Electrophysiological recordings from tsa-201 cells expressing wild-type and R481C mutant channels lacking exon 26 (Cav3.2 (-26)). a 
Schematic representation of the Cav3.2 channel α1 subunit showing the approximate location of the R481C mutation (I-II linker) and exon 26 (III-IV 
linker). b Representative Ba2+ current traces recorded from WT and R481C channels. c Average current densities (pA/pF) as a function of voltage 
showing an approximate 30 % increase in current densities of mutant channels compared to WT. d Bar graph representing the corresponding 
maximum conductance Gmax. Values are represented as mean ± SEM. The asterisk denotes statistical significance relative to WT (*p = 0.035, 
Student’s t-test). e Steady-state inactivation curves for WT and R481C channels. f Mean half-inactivation potentials obtained from fits with the 
Boltzmann equation of individual steady-state inactivation curves. g Time course of recovery from inactivation for WT and R481C channels. h Time 
constant of recovery from inactivation obtained by individual fits of the recovery from inactivation data
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increased neuronal excitability and contribute to a dys-
tonic phenotype [10]. Although unlikely, it is unknown 
whether patients carrying the R481C mutation may also 
have alterations in exon 26 splicing that may exacerbate 
the effect of the mutations in specific tissues.

As mentioned above, splice variant specific effects of 
point mutations have previously  been shown for Cav3.2 
channels. The R1584P mutation found in the genetic 
absence epilepsy rats from Strasbourg (GAERS) model 
only manifests itself functionally when introduced into 
the Cav3.2 variant that carries exon 26 (exon 25 in rats) 
[3]. Point mutations associated with primary aldosteron-
ism have also been shown to have splice variant specific 
effects. Three mutations (S196L, V1951E and P2083L) 
caused significant changes in Cav3.2 (+ 26) but not in 
Cav3.2 (-26) channels, while M1549I altered both chan-
nel splice variants function [6]. Interestingly, the authors 
of this study found that human zona glomerulosa cells, 
which produce the hormone aldosterone, only express 
the long Cav3.2 (+ 26) channels. Since both splice vari-
ants are expressed in the brain, their results can partially 
explain why only patients with the M1549I mutation 
have neuronal abnormalities in addition to aldosteronism 
[6]. Splice variant specific effects of mutations have also 
been reported in the high-voltage activated Cav2.1 P/Q-
type channels. Three type-1 familial hemiplegic migraine 
(FHM-1) mutations alter channel function differently 
when expressed in Cav2.1 containing or lacking exon 47 
[4]. Our group has also reported an FHM-1 (Y1384C) 
mutation that has differential effects on recovery from 
inactivation dependent on which Cav2.1 splice variant 
(± 47) is being tested [5].

The R481C Cav3.2 mutation has been previously found 
in a patient with bilateral trigeminal neuralgia [11]. This 
raises the question as  to why identical mutations can 
generate distinct phenotypes in different patients. In 
fact, highly penetrant mutations for severe Mendelian 
diseases have been found in healthy individuals [12]. 
Considering the number of mRNA transcripts that CAC-
NA1H can generate, mutations can potentially produce 
different spatial and temporal effects depending on splice 
variant expression patterns. In addition, there is growing 
evidence suggesting the importance of other genes for 
the penetrance and expressivity of mutations [13]. Nota-
bly, besides the mutation in CACNA1H, three additional 
missense mutations in other genes segregated with dis-
ease phenotype in the family affected with writer’s cramp 
[9]. One of these genes, SPTBN5, encodes the protein 
spectrin-βV, a member of the spectrin family of cytoskel-
etal proteins. Interestingly, our group has shown that 
Cav3.2 channels interact and can be modulated by at least 
three spectrin proteins: spectrin-αII, spectrin-βI and 
spectrin-βII [14]. Whether the mutation in the SPTBN5 

gene affects the expression of the R481C mutation in 
CACNA1H contributing to the pathophysiology of WC is 
unknown. Finally, we note that splicing of exon 26 inter-
feres with calnexin-dependent retention of the channel 
in the ER, thus increasing channel expression at the cell 
surface [15]. It is possible that in Cav3.2 (-26) channels, 
there is a synergistic effect between the domain I-II linker 
mutation and the enhanced ability of calnexin to facilitate 
ER export.

In conclusion, our study provides further evidence that 
CACNA1H alternative splicing may be important in the 
pathophysiology of genetic disorders and highlights com-
plexity of the mechanisms by which a mutation can con-
tribute to disease.
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