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Defining the role of
neutrophils in the lung
during infection: Implications
for tuberculosis disease

E. Gaffney †, D. Murphy †, A. Walsh, S. Connolly, S. A. Basdeo,
J. Keane and J. J. Phelan*

Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity Centre for Health
Sciences, St. James’s Hospital, Dublin, Ireland
Neutrophils are implicated in the pathogenesis of many diseases involving

inflammation. Neutrophils are also critical to host defence and have a key role

in the innate immune response to infection. Despite their efficiencies against a

wide range of pathogens however, their ability to contain and combat

Mycobacterium tuberculosis (Mtb) in the lung remains uncertain and

contentious. The host response to Mtb infection is very complex, involving

the secretion of various cytokines and chemokines from a wide variety of

immune cells, including neutrophils, macrophages, monocytes, T cells, B cells,

NK cells and dendritic cells. Considering the contributing role neutrophils play

in the advancement of many diseases, understanding how an inflammatory

microenvironment affects neutrophils, and how neutrophils interact with other

immune cells, particularly in the context of the infected lung, may aid the

design of immunomodulatory therapies. In the current review, we provide a

brief overview of the mechanisms that underpin pathogen clearance by

neutrophils and discuss their role in the context of Mtb and non-Mtb

infection. Next, we examine the current evidence demonstrating how

neutrophils interact with a range of human and non-human immune cells

and how these interactions can differentially prime, activate and alter a

repertoire of neutrophil effector functions. Furthermore, we discuss the

metabolic pathways employed by neutrophils in modulating their response

to activation, pathogen stimulation and infection. To conclude, we highlight

knowledge gaps in the field and discuss plausible novel drug treatments that

target host neutrophil metabolism and function which could hold therapeutic

potential for people suffering from respiratory infections.
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Introduction

Neutrophils are the most abundant leukocyte population in

humans, comprising of about 50-70% of all leukocytes in the

circulation (1). In the absence of stimulation, neutrophils are

short lived cells; circulating for approximately 8 to 20 hours

before undergoing apoptosis (2–4). Neutrophils provide a

crucial first line of defence against invading pathogens, such as

Mycobacterium tuberculosis (Mtb). The production of cytokines

and chemokines by other immune cells recruits neutrophils to

sites of infection in a process called chemotaxis and helps draw

them deep into inflamed tissues (5). Upon activation,

neutrophils use an arsenal of effector mechanisms to kill

invading pathogens. They also produce proinflammatory

cytokines and chemokines which aid in recruiting additional

immune cells to the site of infection (6). Various immune cells,

including macrophages, monocytes, T cells, B cells, NK cells, and

dendritic cells, can significantly influence bystander neutrophil

recruitment, activation, and function, both through direct cell-

to-cell contact and via the production of soluble factors, such as

cytokines and chemokines.

As neutrophils are such an abundant component of the

innate immune system, their highly inflammatory actions have

potentially severe consequences for host tissues. Thus,

neutrophils must be tightly regulated to resolve inflammation
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and limit tissue damage. If the regulatory mechanisms

controlling the clearance of apoptotic neutrophils are impaired

or the infection in question cannot be resolved, the actions of

neutrophils can become deleterious to the host (7). Indeed, the

pathogenesis of many lung diseases involves neutrophilic

inflammation, where significant neutrophil recruitment

contributes to tissue injury (8).

Tuberculosis (TB) is an infectious disease caused by Mtb.

Approximately 10 million people contracted TB in 2020, and 1.5

million people died from the disease, making TB the leading

cause of death from a single infectious agent, after COVID-19.

TB primarily affects the lungs, where it encounters various cell

types, particularly alveolar macrophages and neutrophils, the

main phagocytes that host the bacilli. Pulmonary inflammation

due to interaction of Mtb with macrophages and other immune

cells results in the recruitment of monocytes, neutrophils, and

primed T cells and B cells to lungs, culminating in formation of a

granuloma (Figure 1) (9). Granuloma formation has a dual role

in both bacterial containment and persistence – while it aids the

host by reducing the spread of Mtb throughout the body, it also

facilitates bacterial survival and replication, resulting in latent

TB infection, which can persist for years within the host without

progressing to active TB disease (10).

The involvement of neutrophils in host defence in TB is

controversial as they have been shown to have opposing roles,
FIGURE 1

An active granuloma. This mass of cells represents an area of inflammation upon infection with Mtb. Immune cells crowd around the bacteria to
contain it. The neutrophil's role in tuberculosis is largely unexplored. Studies demonstrate that while neutrophil effector function is triggered by
Mtb, neutrophils are unable to kill the bacteria. Instead, neutrophils may act as a ‘Trojan horse’, transporting the bacteria around the body.
Macrophages have been shown to be able to induce neutrophil Mtb killing via phagocytosis.
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eliciting both protective and pathological effects in the host (11,

12). Given this conflicting role in the context of TB, host-

directed therapies (HDTs) targeting neutrophils have become

a recent topic of interest in the effort to improve TB treatment,

especially for the treatment of other infectious agents, such as

SARS-CoV-2 (13, 14). To develop effective HDTs, however,

understanding neutrophils function in the inflamed human

lung is vital. In this review we primarily describe the role of

neutrophils in the context of Mtb infection. Step-by-step, we

explore the influence of several immune cells on the priming,

activation, and function of neutrophils and discuss if the

immunometabolism of neutrophils during inflammation holds

some promise for the development of novel neutrophil

specific HDTs.
An overview of the mechanisms
underpinning pathogen clearance
by neutrophils

Neutrophils are the first immune cells to arrive at the site of

infection and are the predominant infected phagocytic cells in

patients with active TB; however, their role in pathogenicity versus

protection is unclear (15–17). Neutrophils act as a double-edged

sword duringMtb infection; they are thought to be protective during

early infection, but more pathogenic in late disease where

neutrophilia is associated with lung damage and more severe

disease (11, 12). Additionally, in the absence of intracellular killing,

neutrophils can act as a “Trojan horse” which transports Mtb to

various sites around the body, leading to systemic infection (15–17).

In chronic TB disease, neutrophilia arises due to uncontrolled

inflammation and dysfunctional neutrophils with impaired

bactericidal activity, which further recruit and activate more pro-

inflammatory neutrophils (15).

Neutrophils are equipped with an impressive array of anti-

microbial functions to enable them to eliminate invading

pathogens. These include phagocytosis, antibody-dependent

cellular cytotoxicity (ADCC), neutrophil extracellular traps

(NET) formation, degranulation, and the production of

reactive oxygen species (ROS) (18–21). Further to this,

neutrophils can release various pro-inflammatory cytokines

(22–24). Murine studies show that neutrophils egress from the

bone marrow and into the circulation having already pre-

synthesised their ammunition and as such do not require

much transcriptional or translational input to respond to an

invading microbe (25), thereby allowing them to rapidly utilise

their effector mechanisms. As such, neutrophils have evolved to

be an excellent first line of defence against invading microbes.

Despite evolving to effectively kill, whether neutrophils are

capable of directly killing Mtb is a contentious issue. Evidence

suggests that neutrophils can kill Mtb, however not all data
Frontiers in Immunology 03
recapitulates these results (26, 27). One of the primary effector

mechanisms utilised by neutrophils to combat Mtb is

phagocytosis (28, 29). Neutrophils ingest microbes through the

formation of membrane protrusions which engulf the target

microbe. Once internalised, phagosome maturation occurs,

enabling granules within the neutrophil to fuse with the

phagosome membrane and deliver soluble or membrane-

bound effector proteins into the phagosome to kill the

entrapped microbe (30–32). Neutrophils can phagocytose Mtb,

however whether they can kill the ingested bacteria remains

uncertain. One study showed that neutrophils from healthy

individuals were able to phagocytose Mtb and rapidly kill Mtb

within an hour, a process which was enhanced by treating

neutrophils with TNF-a (28), however other studies contradict

these results, observing no killing of Mtb following phagocytosis

of the bacteria (27).

Neutrophils also possess opsonic receptors, which recognise

host-derived proteins bound to target pathogens. These proteins,

knownas opsonins, are used to identify invadingpathogens and label

them as a target for elimination through processes such as antibody-

dependent phagocytosis (ADP) or ADCC. Neutrophils can also

recognise opsonised targets and degranulate to release potent

antimicrobial agents into the extracellular space surrounding the

target microbe (33, 34). Opsonisation of Mtb with fresh human

serum was shown to increase the ability of human neutrophils to

phagocytose the bacteria (27). Following phagocytosis, ROS can also

be generated to eliminate entrappedmicrobeswithin the phagosome

(35).NADPHoxidase (NOX)allows for thegenerationof superoxide

within thephagosome(36).The importanceofROS inhostdefence is

clearly illustrated in patients with chronic granulomatous disease

(CGD). CGD is a rare, inherited disease which results in neutrophils

whichare incapableofproducingROSdue toadysfunctionwith their

NOX. Consequently, patients with CGD are hypersusceptible to

various bacterial and fungal infections (37). Remarkably, neutrophils

from patients with CGD were shown to be no less capable of killing

Mtb compared with normal neutrophils, suggesting that neutrophils

do not utilize ROS to kill Mtb (38). This was further confirmed by a

paper showing that the use of ROS inhibitors did not affect the ability

of neutrophils to kill Mtb (28). Interestingly, another study showed

that despite the prompt production of ROS in neutrophils following

Mtb infection, Mtb can survive within neutrophils. This persistence

was followed by necrotic cell death of Mtb infected neutrophils,

which was shown to be dependent on ROS, as neutrophils from

patients with CGD were protected from this Mtb-induced necrosis

(27). This suggests that having CGD could potentially benefit

neutrophils during the acute stage of Mtb infection.

Another weapon employed by neutrophils during infection

is the release of NETs. When a neutrophil becomes activated, it

can modify its own chromatin and release it along with granule

proteins into the tissue to bind to bacteria, fungi and viruses

through a process of cell death known as NETosis (39, 40). Mtb

infection of human neutrophils in vitro induces ROS production
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and NET formation, however, neither the neutrophil-induced

ROS nor their NETs are able to kill Mtb (41). While the presence

of NETs may be beneficial to contain infection, they may also be

deleterious to the host, as they may shield Mtb and block

immune cell recruitment, leading to an impaired clearance of

infection, while also further disseminating inflammation (41).

Human neutrophils also produce numerous different pro-

and anti-inflammatory cytokines upon stimulation, such as

TNF-a, IL-1b, IL-6 and IFN-g, as well as a wide array of

chemokines to recruit other immune cells to the site of

infection (22–24, 42). TNF is an essential cytokine for the host

response to infection. The essential role of TNF-a in Mtb

infection is clearly seen in patients on anti-TNF-a therapies,

who are much more likely to develop Mtb (43). TNF-a can be

both protective and pathogenic during TB, where it can induce

ROS in infected macrophages, which initially increases anti-

microbial activity but can then lead to programmed necrosis of

cells (44). The production of IL-1b promotes cytokine

production, such as that of TNF-a and IL-6, from bystander

cells such as other neutrophils and macrophages (45, 46). It

promotes the polarisation of Th17 cells which are important

adaptive mediators of infectious disease, and it augments

bacillary killing of Mtb (47, 48). IL-6 is a pleiotropic cytokine

which is an essential mediator of both innate and adaptive

immunity (49). Murine studies show that knocking out IL-6

makes mice more susceptible to infection with an array of

bacteria, viruses, fungi and parasites (50). Neutrophils have

also been shown to produce IFN-g in response to Streptococcus

pneumoniae and as such are an essential early source of IFN-g,
which plays an essential role in bacterial clearance (24, 51). The

effect of these cytokines on neutrophil survival and function will

be discussed in the next section. Taken together, these studies
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illustrate a key role for neutrophil-mediated immunity against

Mtb infection in addition to neutrophil-mediated damage in TB

disease. Given the complexity of Mtb infection and TB disease, it

is unsurprising that conflicting evidence exists as to the role of

neutrophils in protection versus pathogenesis. Examining the

changing role of neutrophils across disease progression using

models of early clearance and end stage disease will help to

delineate this further.
Neutrophil interactions with other
immune cells

Macrophages and monocytes modulate
neutrophil recruitment and
effector functions

Many studies have shown the interaction between

macrophages and neutrophils (Figure 2). Macrophages can

produce numerous mediators to recruit neutrophils to a site of

infection. For example, intraperitoneal LPS stimulation in mice

to induce peritonitis results in the production of the neutrophil

chemoattractants CXCL1 and CXCL2 by tissue macrophages (5,

52). Blocking the activity of CXCL1 and CXCL2 significantly

reduces neutrophil infiltration into the peritoneal cavity (52), as

does antagonism of their receptor, CXCR2 (53). Moreover,

macrophage depletion in mouse peritonitis models leads to the

inhibition of neutrophil migration to the peritoneal cavity.

Despite some neutrophil infiltration into the peritoneal wall,

the neutrophils were incapable of penetrating further into the

cavity, emphasising the role of macrophages in the deep

migration of neutrophils into tissues (52).
FIGURE 2

The effects of macrophages on neutrophils. Macrophages and their chemokines, CXCL1, CXCL2, and IL-8, recruit neutrophils to sites of
infection and inflammation. The macrophage-derived cytokines, TNF-a and GM-CSF, modulate neutrophil survival, either by inhibiting or
stimulating apoptosis. These cytokines also influence various immune effector functions of neutrophils, for example, by priming the respiratory
burst and increasing neutrophil phagocytosis and ROS generation.
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IL-8 (CXCL-8) is a potent activator and chemoattractant of

neutrophils that acts on the human CXCR1 and CXCR2

receptors. While mice do not have a homologous IL-8 gene,

murine CXCR is similar to human CXCR2 and binds to various

IL-8-like CXC chemokines, such as CXCL1 and CXCL2 (54).

CLEC9A is a C-type lectin receptor expressed on macrophages,

the ligation of which drives IL-1b and IL-8 production by

macrophages. Knockdown of CLEC9A in mice during Mtb

infection results in reduced expression of both IL-1b and IL-8,

resulting in decreased neutrophil migration, demonstrating the

importance of CLEC9A interaction with Mtb for macrophage-

mediated neutrophil recruitment in Mtb infection (55).

In a murine model of glomerulonephritis in which

glomerular injury is highly neutrophil-dependent, monocyte

depletion significantly reduces neutrophil recruitment to

glomerular capillaries (56). However, given that monocytes

differentiate into macrophages, it is possible that the depletion

of monocytes causes a reduction in macrophage populations,

which then results in fewer neutrophils being recruited. Further

studies will be required to distinguish between the direct effects

of monocytes on neutrophils and those mediated indirectly

through macrophages. Neutrophils that did not engage in

contact with monocytes or the monocyte-derived chemokines

CXCL1 and CXCL2 spent a reduced amount of time in

glomerular capillaries, highlighting the role of monocytes in

neutrophil retention at sites of inflammation (56). The

cooperation between specific immune cells and neutrophils

can also be key for pathogen clearance as highlighted by

previous studies. For example, primary human macrophages

can acquire neutrophil granules for antimicrobial activity against

intracellular pathogens, such as Mtb and BCG (57). Efferocytosis

of apoptotic neutrophils has also been shown to enhance Mtb

clearance in HIV-coinfected human macrophages, through the

actions of myeloperoxidase (58). Furthermore, extracellular

vesicles secreted from Mtb-infected neutrophils can also

promote macrophage bactericidal activity (59). Therefore, the

cooperation between many of these immune cells and

neutrophils, and the mechanisms they employ to kill invading

pathogens, should not be neglected.

Exposure to pro-inflammatory cytokines also delays

apoptosis, extending neutrophil lifespan, which allows

sufficient time for neutrophils to aid in host defence (3). For

example, incubating human neutrophils with GM-CSF and IL-

1b in vitro delays neutrophil apoptosis (3). This effect is

mediated by inducing the expression of the protein myeloid

cell leukaemia-1 (Mcl-1), a member of the B cell lymphoma-2

(Bcl-2) family of proteins which has anti-apoptotic effects

through the inhibition of the pro-apoptotic protein Bcl-2-

associated-X (Bax). Both GM-CSF and IL-1b are produced by

macrophages and help to maintain sufficient levels of Mcl-1

expression to counteract Bax (3). GM-CSF also suppresses

apoptosis by inhibiting the cleavage of pro-caspase-3 into

active caspase-3 in neutrophils, reducing caspase-3-mediated
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apoptosis (60, 61). Interestingly, a clinical trial involving AIDS

patients also found that infusion with GM-CSF augmented

phagocytosis and intracellular killing of S. aureus by

neutrophils (62).

TNF-a, another macrophage-derived cytokine, has dual

regulatory actions on neutrophil apoptosis, with differential

effects that are concentration-dependent and operate through

different mechanisms. Low TNF-a concentrations delay

apoptosis, while high concentrations initiate apoptosis.

Incubation of human neutrophils with 10 ng/mL of TNF-a in

vitro results in elevated levels of apoptosis due to increased

turnover of Mcl-1 in a caspase-dependent manner (63).

However, 1 ng/mL of TNF-a induces increased levels of the

anti-apoptotic Bcl-2-related protein, protecting neutrophils

from apoptosis. In this way, macrophages may exert opposing

effects on the rate of neutrophil apoptosis. While the prolonged

survival of neutrophils is important early in infection to aid in

the clearance of pathogens, their subsequent inhibition is equally

crucial to resolve inflammation and reduce tissue damage

commonly caused by neutrophils (7). In addition to regulating

survival, macrophages can enhance neutrophil effector functions

through cytokine stimulation. The culture of human neutrophils

with Mtb shows that the ability of neutrophils to phagocytose

Mtb is significantly increased upon TNF-a stimulation (28).

TNF-a also enhances the assembly of NOX and the subsequent

activation of the respiratory burst. Ex vivo studies show that pre-

treatment of human neutrophils with TNF-a prior to infection

enhances the killing of S. aureus (64).
Dendritic cells promote neutrophil
infiltration and survival at sites
of infection

Like macrophages and monocytes, Dendritic cells are

important in the regulation of neutrophil recruitment and

survival in sites of infection. Dendritic cells both promote

neutrophil infiltration to aid in fighting infection and later

limit their recruitment to prevent excess tissue damage. In a

murine model of Propionibacterium acnes (P. acnes) infection in

which intradermal injection of P. acnes leads to high levels of

neutrophil infiltration at sites of infection, the depletion of type I

conventional dendritic cells (cDC1s) results in reduced

inflammation due to the decreased infiltration of neutrophils

and other inflammatory cells (65). Additionally, depletion of

cDC1s compromises the ability of neutrophils to produce NETs

and increases neutrophil apoptosis. This is due to the decreased

expression of genes that typically inhibit apoptosis and the

upregulated expression of pro-apoptotic Bcl-2 proteins.

Furthermore, cDC1-derived VEGF has been shown to mediate

neutrophil recruitment following infection with E. coli in both

mouse and human models of infection (65). Conversely, cDC1s

can also inhibit neutrophil recruitment through the actions of
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CLEC9A. CLEC9A senses tissue damage by binding F-actin

exposed by necrotic cells. CLEC9A deficiency in a mouse model

of acute pancreatitis leads to increased morbidity and mortality

(66). Neutrophil infiltration is enhanced in the absence of

CLEC9A, demonstrating the importance of CLEC9A in

reducing neutrophil infiltration (66).
The crucial role of T cells and their
effector cytokines in the regulation of
neutrophil defence and pathology

Neutrophils and T cells are present and interrelate in the lymph

nodes and tissues in both health and disease (67, 68). Neutrophils

and T cell interactions represent a spectrum of states with profound

effects on T cell phenotype and function, depending on the

inflammatory milieu and subtle variations in neutrophil

populations or T cell subsets (69). T cells modulate neutrophil

activation and function through the recruitment of neutrophils to

the site of infection and by delaying neutrophil apoptosis (70, 71).

CD4+ T cells play a critical role in Mtb infection due to their

dynamic crosstalk interactions with neutrophils. Among the T

helper cell populations, Th17 and Th1 cells are the primary

mediators of protection and pathology in TB disease owing to

their relationship with neutrophils.

Th17 cells play an important role in the stimulation and

enlistment of neutrophils into the site of infection as well as

activating the differentiation of granulopoietic lineage cells and

promoting inflammation (72). Th17 cells stimulate neutrophil

activities directly through the release of IL-8 (73). Th17 effector

cytokine IL-17 acts indirectly by stimulating epithelial cells to

produce neutrophil chemoattractants, such as IL-8, CXCL1 and

GM-CSF. Secretion of these cytokines by human epithelial cells

was found to be enhanced in vitro through co-culture with IL-17

and TNF-a, indicating a role for Th17 cells in recruiting

neutrophils (74). IL-17 also reduces the GM-CSF-induced

increase in Mcl-1 levels and attenuates the inhibitory effects of

Mcl-1 on Bax and impairs GM-CSF inhibition of caspase-3 (60).

Therefore, IL-17 does not directly induce neutrophil apoptosis,

rather it counteracts the anti-apoptotic effects of GM-CSF. It has

also been reported that Th17 lineage associated cytokines IL-17

and IL-23 can alter the phenotype of neutrophils, skewing them

towards mediating severe tissue inflammation pathology by

triggering the secretion of matrix metalloproteinases associated

with tissue destruction and remodelling such as MMP-9 and the

release of myeloperoxidase granules MPO in the lung (75). One

study identified that in lung biopsies of human pulmonary TB

patients, BAL fluid, and in primary human airway epithelial

cells, IL-17 regulates MMP secretion (76). Moreover, repeated

BCG vaccination in Mtb-infected mice caused elevated IL-17,

TNF-a, IL-6, and MIP-2, and encouraged the infiltration of

neutrophils into the lungs, mediating damage (77). There is also
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evidence to suggest that the interactions between Th17 cells and

neutrophils are protective during acute infection and damaging

in chronic infection (72). TB pathology is highly associated with

the degree of inflammation and Th17 cell-mediated neutrophil

recruitment to the site of infection can result in excessive tissue

damage in redundancy neutrophils, severe inflammation, bad

prognosis, and lung pathology (78).

Th1 cell-derived IFN-g also exhibits many effects on

neutrophil function. The expression of various cytokines and

chemokines by neutrophils is modulated by IFN-g. Chemokines

involved in neutrophil recruitment, such as IL-8 and CXCL1, are

downregulated, while chemokines which function to recruit cells

of the adaptive immune system are upregulated, for example IP-

10, a chemoattractant for T cells (79). Thus, IFN-gmay signal to

reduce neutrophil infiltration and promote the transition to

adaptive immune responses (79). Additionally, IFN-g regulates
the expression of various surface markers on neutrophils. IFN-g
upregulates the expression of receptors and integrins involved in

neutrophil recruitment, such as CD11b and CD18, in addition to

those which aid in activation, such as CD14 which binds LPS

(79). Interestingly, neutrophil expression of the IFN-g receptor is
rapidly downregulated upon IFN-g stimulation, suggesting a

potential control mechanism to limit excess neutrophil-

mediated tissue damage (80).

IFN-g also induces priming of neutrophils by enhancing the

respiratory burst when combined with a second stimulus, such

as N-Formylmethionine-leucyl-phenylalanine (fMLP) (4, 79).

While many other priming agents carry out their actions

through the phosphorylation and upregulation of NOX

subunit p47phox (4), IFN-g upregulates the expression of

gp91phox, a membranal component of NOX (79). IFN-g is

also capable of enhancing neutrophil phagocytosis through the

upregulation of ROS, leading to increased antimicrobial activity.

Additionally, neutrophil ADCC is augmented following IFN-g
stimulation, which is associated with elevated expression of the

high-affinity IgG receptor, FcgRI. FcgRI ligation triggers

increased microbicidal activity and oxidative burst through

NOX activation (79, 81). Furthermore, like the macrophage-

derived cytokines TNF-a and GM-CSF, IFN-g prolongs

neutrophil survival by suppressing apoptosis. This

demonstrates the opposing regulatory effects of the Th17 cell-

derived cytokine IL-17, which induces apoptosis, and Th1 cell-

derived IFN-g, which prolongs neutrophil survival (3, 63, 79).

While neutrophils are not classically viewed as antigen-

presenting cells, they have been shown to express major

histocompatibility complex (MHC) class II but not the co-

stimulatory molecules CD80 and CD86 in their resting state.

Co-incubation with CD4+ T cells can upregulate MHC class II

and CD80/86 expression on neutrophils, however. This elevated

expression is facilitated by the cytokines IFN-g and TNF-a and

direct cell-to-cell contact between neutrophils and T cells.

Neutrophils expressing these molecules are capable of antigen
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presentation to T cells and induce T helper cell differentiation

(79, 82, 83). Given the aforementioned effects of T cells on

neutrophils, these findings potentially illustrate a positive

feedback loop in which T cell-activated neutrophils provide

stimulation to T cells, which then further enhance neutrophil

activity (82).

CD8+ T cells modulate neutrophil survival and alter the

expression of various surface markers via the production of the

cytokines IFN-g, TNF-a, and GM-CSF. In both co-culture and

transwell experiments, anti-CD3-activated human CD8+ T cells

induced the expression of the activation markers CD11b, CD64,

and CD62L on the surface of neutrophils (71). Additionally,

neutrophils cultured with activated CD8+ T cells displayed a

significantly reduced rate of apoptosis compared to those

cultured alone (71, 84). Interestingly, these results were

reproduced when neutrophils were cultured with the

supernatants from the CD8+ T cells which contained the

cytokines IFN-g, TNF-a, and GM-CSF, the effect of which was

abrogated using neutralising antibodies (71). Much like Th1

cells, CD8+ cell-derived IFN-g is also capable of inducing the

expression of MHC class II molecules on the surface of

neutrophils (84).
B cells induce neutrophil MHC
II expression and reduce
neutrophil infiltration

While many immune cells are vital in neutrophil recruitment,

B cells regulate this response to prevent excessive neutrophilia by

interfering with neutrophil motility, thereby slowing their

recruitment to sites of infection (85). In B cell-deficient mice

infected with Mtb, neutrophil infiltration and inflammation in the

lungs was increased, demonstrating a role for B cells in reducing

neutrophil recruitment in Mtb infection (85, 86). In a study

examining the effects of BCG vaccination in B cell-deficient

mice, it was shown that the inhibitory effects of B cells on

neutrophil migration are likely due to active suppression of

CXCL1, CXCL2, and G-CSF (85). Physical interaction between

B cells and neutrophils takes place in the lungs in a b2 integrin

(CD18)-dependent manner. As aforementioned, MHC class II

molecules are not usually expressed by neutrophils, however

neutrophils can acquire MHC class II from B cells through

direct cell-to-cell contact (87). B cells induce apoptosis in aged

CXCR4+ neutrophils through increased caspase-3 activation.

Experimental depletion of B cells in mice also allows

neutrophils to persist in the lungs and propagate inflammation,

resulting in the development of fibrotic interstitial lung disease

(87). Thus, the effects of B cells on neutrophils are centred around

controlling and limiting their inflammatory effects, both through

preventing their migration to tissues and initiating apoptosis.
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NK cells have opposing effects on
neutrophil survival

Natural killer (NK) cell-mediated effects on neutrophils are

focused on the regulation of apoptosis. Co-culture of neutrophils

with supernatants from IL-2-activated human NK cells inhibits

neutrophil apoptosis in vitro (88). Upregulation of CD11b and loss

of CD62L are common surrogate markers of neutrophil activation.

In the presence of the supernatant from cytokine-activated NK cells,

CD11b expression increases, however, CD62L levels do not change.

Additionally, neutrophils cultured with activated NK cell

supernatant display enhanced phagocytic activity and ROS

production. These effects are mediated by soluble factors released

by NK cells in response to activation, like TNF-a, IFN-g, and GM-

CSF (88). Conversely, direct contact between NK cells and

neutrophils promotes neutrophil apoptosis in a caspase-

dependent manner. This effect can overcome the pro-survival

mechanisms of the aforementioned cytokines in vitro. There is a

fine balance between the pro-apoptotic and pro-survival actions of

NK cells on neutrophils. Following activation, human neutrophils

rapidly decrease the expression of human leukocyte antigen class I

(HLA-I) molecules both in vitro and in vivo. As these molecules are

ligands of inhibitory NK cell receptors, their downregulation causes

decreased inhibitory signalling. This allows the action of activating

NK cell receptors to dominate, resulting in the exertion of cytotoxic

effects of NK cells on neutrophils (89). Overall, NK cells have

divergent effects on neutrophil survival depending on the balance of

cell contact dependent signaling and soluble mediators.

In summary, while the mobilisation of neutrophils is vital in

the initial stage of infection, their actions must be tightly

regulated to prevent excessive tissue destruction that is

potentially fatal to the host. Accordingly, different immune

cells both recruit and activate neutrophils during acute

infection and then proceed to inhibit their effector functions

and induce apoptosis to prevent excess inflammation and

facilitate a return to homeostasis. It’s also important to note

that neutrophil responses could also vary depending on the

neutrophil subtype in question (90, 91).Thus, understanding

how immune cells interact with neutrophils could permit more

control over their effector functions through potential

therapeutic intervention (Figure 3).
Metabolic pathways involved in
neutrophil effector functions and
their modulation in response to
pathogen stimulation

Being highly dynamic cells, neutrophils utilise diverse

metabolic pathways for growth, proliferation, survival, and
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their death (Figure 4). As nutrient availability fluctuates in their

microenvironment, neutrophils can differentially rewire their

metabolic pathways to adapt to new environmental demands.

Like other cytotoxic cells, neutrophils require a large amount of

energy to perform their effector functions and have specialised

metabolic requirements for different functions (92–95). The cells

rely on glycolysis as a dominant source of ATP; accordingly,

neutrophils contain very few mitochondria and employ low

tricarboxylic acid (TCA) cycle and oxidative phosphorylation

(OXPHOS) rates (95). Neutrophil metabolic plasticity enables

them to function and survive in harsh microenvironments, such

as hypoxia (96). Moreover, increased succinate production in

individuals with a mutation in succinate dehydrogenase

enhances neutrophil survival, confirming a role of the TCA

cycle in regulating neutrophil survival (97). Glycolysis is

considered the most fundamental metabolic pathway linked to

optimal neutrophil function. Importantly, various studies have

shown that when glucose is depleted, effector functions of

neutrophils are significantly abrogated (92, 93, 98, 99). While

it is evident that glycolysis is key for neutrophil effector function,

recent studies have called into question the long-held belief that

they are solely dependent on glycolysis. For example, neutrophils
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derived from diabetic rat models with impaired glucose and

glutamine metabolism activate compensatory FAO metabolism.

Additionally, fatty acid synthesis (FAS) is utilised to build

neutrophil membranes during differentiation and to replenish

membranes post exocytosis (100). Neutrophils have also evolved

to utilise multiple metabolic substrates to generate energy stores

in the form of glycogen, which are dynamically regulated by both

gluconeogenesis and glycogenesis (101). However, this is mainly

important in driving effector functions during infection,

not homeostasis.
During activation and infection,
bioenergetics underpins the neutrophils’
response to infection

Neutrophil effector functions during inflammation are

strongly linked to the metabolic state of the cell. Metabolic

rewiring also occurs during activation and infection, to adapt to

the infection and produce enough energy to fulfil its host

defensive duties. An increase in glucose metabolism is a

typical side effect of activation and infection in neutrophils
FIGURE 3

The influence of immune cells on neutrophils. Many immune cells, including monocytes, Th17 cells, Th2 cells, Th1 cells, CD8+ T cells, B cells,
NK cells, dendritic cells, and mast cells, modulate neutrophils. These cells affect neutrophil recruitment, priming, survival, activation, and effector
functions, such as ROS production, NETosis, phagocytosis and ADCC.
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(102, 103). NET release, for example, is controlled by glucose

concentration (104). Neutrophil mediated phagocytosis has also

been shown to utilise glucose metabolism (105). Hexokinase, a

key enzyme which converts glucose to glucose-6-phosphate,

translocates from the cytosol towards the site of its phagocytic

target, binding in response to stimulation with fMLP, as well as

other neutrophil activating stimuli (106).

Neutrophils do not solely rely on glycolysis during the

immune response to pathogens. Treating neutrophils with the

glycolytic inhibitor, 2DG, and the OXPHOS inhibitor, dimethyl

malonate (DMM), significantly inhibits TNF-a and ROS

production in a murine model of L. monocytogenes infection,

implicating both pathways in anti-microbial activity (107). A

study also showed that neutrophils require the production of

intracellular glycogen reserves via gluconeogenesis and

glycogenesis upon activation (101). Interestingly, peripheral

blood-derived neutrophils isolated from COPD patients are

unable to regulate glycogen synthesis, resulting in diminished

intracellular glycogen stores, and consequently, defective killing

of S. aureus and reduced survival (102). Therefore, glycogen

metabolism facilities microbial killing by keeping the neutrophil

alive long enough to eliminate its target.

During viral infections, neutrophils heavily catabolise glucose.

For example, neutrophils isolated from individuals experiencing

SARS-CoV-2 induced pneumonia display dysfunctional

mitochondria, glycogen build-up in the cytoplasm, and enhanced
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glycolysis and glycogenolysis (108). Considering the recent

revelations of the changes in the pathophysiology of neutrophils in

COVID-19 infections, and their highly elevated presence in infected

lungs (109), investigations into alterations in neutrophil metabolism

in response to SARS-CoV-2 may be necessary to facilitate future

COVID-19 treatment strategies. For example, treatment of

individuals experiencing severe COVID-19 with dexamethasone, a

glucocorticoid used to treat inflammatory conditions, significantly

improves mortality. Specifically, dexamethasone downregulates the

expression of interferon stimulated genes and promotes the

expansion of immunosuppressive neutrophils (110). A major part

of the drug’s efficacy in treating COVID-19 thus comes from its

ability to suppress detrimental neutrophil activity (110).

ROS production is a core instrument of neutrophil

activation and is necessary to effectively eliminate microbes.

During respiratory burst, NOX utilises oxygen and NADPH to

generate O2-. NOX activation necessitates the transfer of some

of its cytoplasmic components such as p47phox to the

membrane (111). At the membrane, phox, p47phox binds to

gp91phox and p22phox, is phosphorylated and in its activated

state, catalyses the conversion of oxygen to ROS. This process

is impaired in patients with CGD, and their granulocytes are

unable to kill certain pathogens. While this translocation is

generally a mark of glycolytic metabolism, NOX-dependant

oxygen consumption is dependent on the pentose phosphate

pathway (PPP). In the cytosol, the PPP pathway employs the
FIGURE 4

Main metabolic pathways in neutrophils. Neutrophils are highly dynamic cells which adapt different metabolic pathways to carry out specific
effector functions. Glycolysis, glycogen and FAO metabolism are extensively used, while mitochondrial metabolism is rarely utilised and mainly
functions to regulate cell survival & apoptosis.
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glycolytic intermediate glucose-6-phosphate to create ribose-5-

phosphate and NADPH. This NADPH is then used as a NOX

substrate (112).
The importance of neutrophil
metabolism during Mtb infection

The phagocytosis of Mtb by neutrophils has been shown to

be independent on the activation state of the neutrophil.

Neutrophils which phagocytose large amounts of fatty acids,

LDLs and oxidised LDL, are more permissive to infection, since

they are a carbon source to feed Mtb (113). Another study also

elucidated the importance of glutamine metabolism during Mtb

infection of neutrophils (114). Mtb has been shown to promote

neutrophil apoptosis to aid immune escape. As glutamine has

been proven to delay neutrophil apoptosis, glutaminolysis may

be necessary to counteract this effect (115). Indeed, adding

glutamine to neutrophil cultures has been shown to increase

their phagocytic capabilities and ROS production, both

important mechanisms in pathogen elimination (116). While

this gives insight into another method glutamine metabolism

may contribute to anti-Mtb activity, more research into the

precise involvement of glutaminolysis in Mtb activated

neutrophils is needed. Evidence also suggests that neutrophil

NET formation in Mtb-activated neutrophils is dependent on

the phagocytosis of Mtb (117). All primary neutrophil effector

functions employed in response to Mtb infection, namely

NETosis, ROS production and phagocytosis, are highly

glycolytic-dependent processes (118). This reiterates the

importance of glycolysis for anti-Mtb activity. Precisely how

Mtb impacts neutrophil immunometabolism in the lung and

how this underpins neutrophil effector functions has yet to be

examined. Moreover, the effect of other infected lung immune

cells on bystander neutrophil function should also be examined

to evaluate what extent the lung microenvironment signals and

influences neutrophil biology.
Therapeutically targeting host
neutrophil metabolism and function

Current anti-microbial drugs directly target the invading

pathogen. Recent insights into understanding cell biology are

leading to the identification and development of a wide range of

HDTs. HDTs work by interfering with host cell components

required for pathogen replication and persistence, enhancing

protective immune responses against pathogens, reducing severe

inflammation, and balancing immunological reactivity at

infection sites. This emerging approach aims to support the

function of infected host cells along with other therapies. If
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neutrophils could be targeted through disease-specific

mechanisms without interrupting their major immune and

homeostatic functions, such interventions could hold

significant promise in the treatment of various inflammatory

and infectious diseases (119).

Neutrophil infiltration is undoubtedly a defining hallmark of

severe infectious disease, including during Mtb and SARS-CoV-

2 infection. Manipulating neutrophil activity in several

pulmonary diseases characterised by excessive neutrophil-

mediated tissue damage is an area of intense research. HDTs

could be targeted towards the modulation of activation or the

inhibition of neutrophil responses since many clinical conditions

are associated with either hyper- or hypoactivation of the

neutrophil. These agents could also target survival and/or

apoptosis in neutrophils (120), for example, targeting the pro-

survival factor Mcl-1 and/or PI-3 kinases (121).

Given the conflicting roles of neutrophils in TB, neutrophils

represent a compelling target of HDTs, particularly when their

role in the context of TB and other diseases becomes clearer (13,

122). Iron chelators exhibit opposing functional effects on

neutrophils, with some activating and some inhibiting

neutrophil effector functions. For example, the use of iron

chelators, such as desferrioxamine, enhances the immune

function of human macrophages infected with Mtb and

promotes glycolysis, demonstrating it as a possible HDT

during early Mtb infection (122). Indeed, desferrioxamine has

been shown to enhance NET formation by stimulating ROS

production in vitro, a potent antimicrobial mechanism in

neutrophils (123). Conversely, another study demonstrates

that the iron chelator deferasirox inhibits both ROS and NET

formation, an effect which could be therapeutically beneficial in

abrogating unwanted inflammatory responses (124). However,

given the conflicting evidence surrounding the benefit of NET

formation during Mtb infection, it is debatable whether targeting

NETosis is a viable HDT option during the early stages of Mtb

infection. Therefore, the specific involvement of neutrophils in

TB should be fully elucidated before HDTs targeting neutrophils

can be deployed. Target ing the glycolyt ic enzyme

phosphofructokinase-1 liver type could also be beneficial too,

as previously described using the small molecular inhibitor, NA-

11 (125). Accordingly, altering the fate of glucose by modulating

this key enzymatic step could dramatically alter the function and

fate of neutrophils, to strategically target their immunometabolic

and functional processes (119).

Other components have also been investigated as potential

neutrophil targets of HDTs for TB. For example, targeting ROS

production and/or the ESX-1 pathway could hold some merit in

reversing Mtb-induced necrosis of human neutrophils (126).

Another study showed that BCG vaccination causes functional

changes in human neutrophils, increasing antimicrobial activity

against unrelated pathogens, where the authors suggest that
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trained immunity may be a therapeutic target to modulate

neutrophil effector function (127). Enhancing neutrophil

function during early Mtb infection may be beneficial, but

detrimental in later disease. Thus, further investigation into

the therapeutic targeting of neutrophils during early and late

Mtb infection is thus required.
Concluding remarks

Neutrophils play both an essential role in host defence against

invading microorganisms and are involved in the pathogenesis of

several inflammatory diseases. In Mtb infection, they provide a

crucial first line of defence. Neutrophils interact with and regulate

the function of many other immune cells, including various T cell

subsets, monocytes and macrophages, B cells and NK cells.

Neutrophil function and their effector responses are also defined

by the microenvironment they find themselves in. For example,

exposure to cytokines such as TNF-a, IL-1b, IFN-g and GM-CSF,

can drive neutrophil activation as well as amplify neutrophil

recruitment to the site of infection. Moreover, the current

review did not discuss how immune cells in the lung interact

with diverse subsets of neutrophils. Accordingly, to put into

context the complexity of the interactions between immune cells

and neutrophils in the lung, how neutrophil diversity and

heterogeneity also effects the lung microenvironment in the

setting of infection must also be investigated in future studies

(90, 91, 128). Understanding how neutrophils are activated, their

crosstalk with other cells and how they become dysregulated could

help to direct the development of therapeutic strategies to

maintain the crucial balance between their beneficial and

detrimental effects.
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