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Multifunctional nanoparticle potentiates the
in situ vaccination effect of radiation therapy
and enhances response to immune
checkpoint blockade

Ying Zhang1,2,8, Raghava N. Sriramaneni3,8, Paul A. Clark3, Justin C. Jagodinsky3,
Mingzhou Ye1,2, Wonjong Jin 3, Yuyuan Wang1,2, Amber Bates3,
Caroline P. Kerr 3,4, Trang Le5, Raad Allawi3, Xiuxiu Wang1,2, Ruosen Xie 1,2,
Thomas C. Havighurst5, Ishan Chakravarty3, Alexander L. Rakhmilevich3,
Kathleen A. O’Leary6, Linda A. Schuler6, Paul M. Sondel3,7, Kyungmann Kim5,
Shaoqin Gong 1,2 & Zachary S. Morris 3

Radiation therapy (RT) activates an in situ vaccine effect when combined with
immune checkpoint blockade (ICB), yet this effect may be limited because RT
does not fully optimize tumor antigen presentation or fully overcome sup-
pressive mechanisms in the tumor-immune microenvironment. To overcome
this, we develop a multifunctional nanoparticle composed of polylysine, iron
oxide, andCpG (PIC) to increase tumor antigenpresentation, increase the ratio
of M1:M2 tumor-associated macrophages, and enhance stimulation of a type I
interferon response in conjunction with RT. In syngeneic immunologically
“cold”murine tumormodels, the combination of RT, PIC, and ICB significantly
improves tumor response and overall survival resulting in cure of many mice
and consistent activation of tumor-specific immune memory. Combining RT
with PIC to elicit a robust in situ vaccine effect presents a simple and readily
translatable strategy to potentiate adaptive anti-tumor immunity and augment
response to ICB or potentially other immunotherapies.

Cancer immunotherapy has revolutionized clinical oncology and
immune checkpoint blockade (ICB) therapies have become one of the
most effective cancer treatments1,2. However,many cancer patients do
not respond to this treatment, particularly thosewith immunologically
“cold” tumors that are commonly characterized by low neoantigen
load and limited immune cell infiltration3,4. In situ cancer vaccination is
a therapeutic strategy that aims to convert a patient’s own tumor into a

nidus for presentation of tumor-specific antigens in a way that will
stimulate and diversify an anti-tumor T cell response5. Such approa-
ches may improve the response rates for ICB therapies by promoting
antigen presentation and tumor-specific T cell response in immuno-
logically “cold” tumors5,6.

Radiation therapy (RT) is one of the most common cancer treat-
ment modalities and RT is delivered to ~2/3 of cancer patients at some
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point in their care. RTwith a doseof 8–12 Gy has been demonstrated in
preclinical and clinical studies to be capable of activating an in situ
vaccine response7–11. By stimulating immunogenic cell death, increas-
ing tumor infiltration by immune cells, and enhancing the suscept-
ibility of tumor cells to immune-mediated killing, RThas been shown in
some preclinical models to augment response to ICBs12–14. Clinical
studies indicate that such effects may be achieved in cancer patients
but also suggest that more potent therapy will be needed if we aim to
activate anti-tumor immune responses in combination with ICBs for
the majority of patients with metastatic cancers15–17. This may reflect
the fact that although radiation may elicit many effects in the tumor
microenvironment that are conducive to augmenting the develop-
ment and propagation of adaptive anti-tumor immunity, these effects
may be weak or incomplete and radiation could also activate certain
detrimental effects such as the recruitment, polarization, or activation
of suppressive immune cell lineages including M2 macrophages15,18.

Low effector T cell infiltration is one hallmark of immunologically
“cold” cancers3. In addition to limited neoantigen recognition,
immunosuppressive cells in the tumor microenvironment contribute
to this “cold” phenotype and diminish the efficacy of cancer
immunotherapies19. Tumor-associated macrophages (TAMs) and their
precursors constitute the major myeloid population of the tumor
microenvironment for many solid tumors20,21. TAMs are plastic and
commonly dichotomized into two phenotypes20. Pro-inflammatory
TAMs (M1 macrophages) can function as tumoricidal macrophages
and support the efficacy of many cancer immunotherapies, whereas
anti-inflammatory TAMs (M2 macrophages) predominate in many
tumors and can create an immunosuppressivemicroenvironment that
promote immune evasion22–24.

To accentuate the capacity of RT to elicit in situ vaccination in
immunologically “cold” tumors that do not respond to ICBs alone, we
hypothesized that it would be beneficial to combine RT with a ther-
apeutic agent that couldnot only augment the favorable effect of RT in
activating T cell immunity, but also could modulate the irradiated
tumor microenvironment to ameliorate some of the potentially det-
rimental effects of RT. For this, we developed a multifunctional
nanoparticle with a scalable manufacturing protocol.

Here, we report the development and preclinical testing of this
nanoparticle, which we designed specifically to enhance the in situ
vaccine effect of RT and to prime a more potent systemic anticancer
immune response against immunologically “cold” tumors to render
these tumors responsive to ICBs. Our results suggest that this
approach may offer a simple and effective strategy that allows use of
off-the-shelf treatment components to achieve a personalized in situ
vaccine effect that might transform a patient’s tumor into a site for
activation of an adaptive T cell response against that patient’s own
cancer cells.

Results
Preparation of PIC and its immune modulation in vitro
Using a rational and mechanism-based design process, we con-
ceptualized a multifunctional nanoparticle that could be manu-
factured following readily scalable and reproduciblemethods (Fig. 1a).
This multifunctional nanoparticle (PIC) was composed of poly-(L-
lysine) (PLL), CpG oligodeoxynucleotide (CpG), and iron oxide nano-
particle (ION). PIC was designed to serve as a radiation sensitizer using
the radiation enhancing effects of ION to improve RT efficiency, cap-
ture the tumor-associated antigens (TAAs) released from dying tumor
cells via electrostatic interaction and facilitate their uptake by antigen-
presenting cells (APCs) to activate CD8+ and CD4+ T cell responses,
stimulate Toll-like receptor-9 (TLR-9) using CpG, enhance type-I
interferon (IFN-I) production, and promote a more favorable ratio of
M1: M2 polarization of TAMs following RT9,25–30.

ION was synthesized with an Fe content of 64.1% measured by
inductively coupled plasma-optical emission spectrometry (ICP-OES)

(Supplementary Fig. 1)31. To prepare PIC via a scalable and straight-
forward complexation process, the negatively charged ION was first
mixed with positively charged PLL, which was subsequently com-
plexed with negatively charged CpG. Nanoparticles with different
particle sizes and zeta potentials were obtained by varying the weight
ratio between ION, PLL and CpG (Supplementary Table 1). Because
positively charged nanoparticles with high zeta potentials can interact
strongly with negatively charged TAAs27, we chose a PIC with a weight
ratio of ION/PLL/CpG as 4.8/3.5/1 for further study, as this particle
exhibited maximal zeta potentials for particle sizes deemed suitable
for this application (Fig. 1b–d). Agarose gel electrophoresis assay
confirmed highly efficient loading of CpG on the PIC (Fig. 1e). The PIC
nanoparticle was stable at 4 °C at least for 30 days (Fig. 1f and Sup-
plementary Fig. 2a). And the lyophilized PIC showed negligible chan-
ges in particle size and zeta potential during storage at −20 °C for at
least 12weeks (Supplementary Fig. 2b, c).

To test the protein absorption ability of PIC, cell lysates were
prepared from B78 murine melanoma cells. As shown in Fig. 1g, incu-
bation with PIC (0.14mg/mL) caused a significant decrease of protein
concentration in the tumor cell lysates, indicating the strong antigen
capture ability of PIC. PIC did not show any direct cytotoxicity to either
murine macrophage cell line RAW264.7 or B78 melanoma cells when
the concentration was <17.5μg/mL (Supplementary Fig. 3). Upon
analysis by both flow cytometry and confocal laser scanning micro-
scopy (CLSM), PIC showed a dose-dependent cellular uptake in
RAW264.7 macrophages, and cellular uptake was also observed at
higher dose in B78 melanoma cells although this was only statistically
significant at 7.5 µg/mL (Supplementary Figs. 4, 5). Prior studies
demonstrate that iron oxide nanoparticles can sensitize tumor cells to
radiation25,26. Using the in vitro clonogenic assay, a standard approach
to quantifying radiosensitivity, we confirmed that PIC significantly
increased the sensitivity of B78 melanoma cells to RT (Fig. 1h).
Immunofluorescence microscopy quantifying γH2AX foci confirmed
that this effect in B78 melanoma cells correlated with a role of PIC
enhancing the DNA damage resulting from RT, although the PIC alone
did not directly induce DNA damage, as expected (Fig. 1i, j).

Activation of an IFN-I response via the cGAS/STING pathway in
tumor cells has been shown to be critical for the effects of RT in sti-
mulating an in situ vaccine effect andpotentiating response to ICBs32,33.
We previously observed that the activation of IFN-I via cGAS/STING
pathway in B78 cells peaked at day 7 post-RT34. In B78 melanoma, PIC
alone did not significantly influence the expression of Ifnβ1, a marker
of cGAS/STING activation of an IFN-I response (Fig. 2a, b), and elicited
negligible effects on the Ifnβ1 expression in the radiatedB78cellswhen
it was added after RT. However, pre-treatment with PIC before RT
significantly increased the expression of Ifnβ1 in B78 cells at day 7 post-
treatment compared to RT alone (Fig. 2b and Supplementary Fig. 6a).
Although RT is also noted to increase expression of Pd-l1 in tumor
cells34,35, PIC did not influence Pd-l1 expression in B78 cells at tested
time points after RT (Fig. 2c and Supplementary Fig. 6b).

Next, we evaluated the effect of PIC on the polarization of bone
marrow derived macrophages (BMDMs) (Fig. 2d). RT significantly
upregulated the expression of CD206 and CD163, two markers of M2
macrophages, in CD11b+F4/80+ BMDMs at day 4 after treatment, while
PIC significantly downregulated expression of these markers and
increased the expression ratios of CD80: CD206 and CD80: CD163 in
both non-radiated and radiated CD11b+F4/80+ BMDMs (Fig. 2e–g and
Supplementary Fig. 7). Consequently, PIC treatment reduced the per-
centage of CD206+CD80− M2-like macrophages and enhanced the
percentage of CD80+CD206− M1-like macrophages among CD11b+F4/
80+ BMDMs at day 4 after RT, confirming the PIC achieved its intended
effects onmacrophagepolarization (Fig. 2h andSupplementary Fig. 8).

We evaluated the capacity of PIC to activate dendritic cells (DCs)
and enhance antigen presentation. Mouse DCs were isolated from the
spleen and treated with PIC in vitro. We found PIC treatmentmarkedly
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increased the expression of CD80 and CD86 on the surface of CD11c
+CD317+ plasmacytoid dendritic cells (pDCs), which express endoso-
mal TLR-9 that is activated by CpG (Fig. 2i)36,37. PIC-activated DCs
exhibited production of IFN-β, suggesting the potential for PIC to
directly influence the tumor immunemicroenvironment at an injected
site (Supplementary Fig. 9a). To test the ability of PIC to improve the
antigen uptake by APCs, we treated DCs with pre-complexed PIC and
FITC-labeled ovalbumin (FITC-Ova) and compared the internalization
of FITC-Ova in CD11c+ cells with those treated with FITC-Ova alone. PIC
significantly improved the cellular uptake of FITC-Ova by CD11c+ DCs
(Fig. 2j and Supplementary Fig. 9b). To determine whether the effects
of PIC on antigen-presenting cells would augment antigen presenta-
tion and enhance T cell immunity, we injected healthy mice with pre-
complexed Ova/PIC, Ova/CpG/ION, or Ova alone. We then isolated
splenocytes from these mice and co-cultured these with B16-SIINFEKL
cells (Supplementary Fig. 10a). Both CD4+ and CD8+ T cells from
splenocytes of mice injected with Ova/PIC showed higher expression
of CD69 (early T cell activationmarker), CD44 (effector T cell marker),

and IFNγ (key mediator of T cell activation) when compared to those
from Ova or Ova/CpG/ION injected mice (Supplementary Figs. 10b, c
and 11). These results demonstrate that PIC canpromoteDCactivation
and antigen cross presentation enabling robust T cell immunity.

The immune modulation by PIC in vivo and its effects on the
tumor infiltrating immune cells
Before studying the ability of PIC to immunomodulate radiated tumor
microenvironments, we evaluated its retention in tumor after intra-
tumoral injection and its cellular uptake by tumor cells, macrophages
and DCs in vivo. Three days after the Cy5-labeled PIC (Cy5-PIC) was
intratumorally injected into B78melanoma flank tumors, we observed
strong fluorescence signal of Cy5 in the tumor sites (Supplementary
Fig. 12). Using flow cytometry on tumors disaggregated 3 h after
intratumoral injection of Cy5-PIC, we found Cy5-PIC was endocytosed
and retained by tumor cells, DCs (CD11c+MHCII+CD45+), and macro-
phages (CD11b+F4/80+CD45+) (Fig. 3a and Supplementary Fig. 13).
Notably, we also observed Cy5-PIC in DCs (CD11c+MHCII+CD45+) and
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macrophages (CD11b+F4/80+CD45+) upon disaggregation of tumor-
draining lymph nodes (TDLNs) after intratumoral injection (Fig. 3b)38.

By analyzing bulk tumor mRNA using RT-qPCR, we evaluated the
immunomodulatory effect of RT and PIC + RT on B78 tumors (Fig. 3c
and Supplementary Fig. 14). Consistent with our in vitro data (Fig. 2b),
at day 7 after RT we observed increased expression of Ifnβ1 and Mx1,
markers of cGAS/STING activation, in tumors treated with PIC +RT
compared to those treatedwith RT alone (Supplementary Fig. 15). This
effect was amplified further at day 15 post-treatment (Fig. 3d). From
the data shown in Supplementary Fig. 16, PIC injection alone also
enhanced the expression of Ifnβ1 and Mx1 in B78 tumors, which may

result from the activation of TLR-9 in endocytic vesicles of antigen-
presenting cells by the CpG in PIC. Nitric oxide synthase 2 (Nos2) and
arginase 1 (Arg1) play important roles in regulating the functions of
macrophages and serve as transcriptional markers for M1 and M2
polarization, respectively39. As shown in Fig. 3d, both Arg1 and Nos2
mRNA levels increased in theRT+ PICgroup compared to theRT alone
treatment group at day 15, but the magnitude ofNos2mRNA elevation
was far greater than that of Arg1 mRNA (76-fold elevation for Arg1 vs
490-fold elevation for Nos2), resulting in a higher ratio of Nos2: Arg1
in the PIC +RT group compared to the RT group (Fig. 3e). IFN-γ
is produced by immune cells and promotes the activity of T helper
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type 1 cells and CD8+ cytotoxic T lymphocytes40. We found that Ifnγ
expression increased in B78 tumors at day 15 after PIC+RT treatment
compared to RT alone (Fig. 3d). PIC also increased the expression of
both pro-inflammatory genes (Tnfα and Il1β) and anti-inflammatory
genes (Tgfβ1, Il10 and Il6) (Fig. 3d). However, the elevation was greater
for pro-inflammatory genes, leading to higher ratios of pro-
inflammatory genes: anti-inflammatory genes (Tnfα: Tgfβ1 and Il1β:
Il10) for the PIC+RT group compared to the RT alone group (Fig. 3e).

Next, we examined the effects of PIC on the populations of tumor-
infiltrating immune cells in radiated B78 melanoma tumors (Fig. 4a,
Supplementary Figs. 17–19 and Supplementary Tables 2, 3). We found
that tumor infiltration by TAMs (CD11b+F4/80+) as a percentage of
myeloid cells (CD45+CD11b+) was not significantly influenced by the RT
or PIC +RT treatment (Supplementary Fig. 20a, b), and the frequency
of M1 macrophages (CD80+CD206−) among TAMs in radiated tumors
was similar to that in PIC +RT group, with both exhibiting higher

percentage of M1 macrophage when compared to untreated control
mice (Fig. 4b and Supplementary Fig. 20c). On the other hand, we
observed an elevation in the relative abundance of M2 macrophages
(CD206+CD80−) in tumor following RT alone, but this effect was
reduced when RT was combined with PIC injection (Fig. 4c and Sup-
plementary Fig. 20c). As a result, PIC + RT treatment significantly
increased the M1:M2 macrophage ratio when compared to either the
untreated control group or the RT alone group (Fig. 4d). This macro-
phage polarization effect of PIC on radiated tumors was further ver-
ified by the higher expression ratios of CD80: CD206 on TAMs from
PIC + RT treated tumors compared to those from tumors treated with
RT alone (Supplementary Fig. 20d).

DCs are critical to enable adaptive T cell immunity against cancer
cells. cDC1s promote the cross-presentation of tumor antigens to CD8+

T cells and are critical for the generation of cytotoxic effector T cell
responses,while cDC2s are involved in the activation of T helper type 2
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cells, andpDCshighly express TLR-9and are copious producers of IFN-
I when TLR-9 is stimulated36,41,42. By analyzing the abundance of DC
subtypes in the tumor microenvironment, we found that PIC +RT
treatment increased the levels of CD103+CD11b− cDC1s and decreased
the levels of CD11b+CD103− cDC2s in B78 melanoma tumors when
compared with either untreated control or RT-alone treated tumors
(Fig. 4e, f). This phenomenon was also observed in the TDLNs, which
exhibited a higher level of cDC1s and lower level of cDC2s in the
PIC + RT group compared to RT-alone or untreated groups (Supple-
mentary Fig. 21). RT significantly enhanced the abundance of tumor-
infiltrating CD317+CD11c+ pDCs and the injection of PIC into the radi-
ated tumors increased the percentage of CD80+ cells, one of the
markers of TLR-9 activation, among pDCs, when compared to the
untreated control group (Fig. 4g, h)36,43.

In evaluating tumor infiltration by adaptive immune cells, we
observed that RT and PIC +RT treatment did not affect the number of

CD3+ T cells in tumors (Supplementary Fig. 22), yet PIC +RT treated
tumors showed significantly higher infiltration of CD8+ T cells com-
pared to tumors treatedwith RT alone (Fig. 4i). PIC + RT also increased
CD4+ T cell infiltration of tumors when compared to the control group,
although the levels of CD4+ T cells infiltration were not significantly
different between RT and PIC+ RT treated tumors (Fig. 4j). Moreover,
RT increased the abundance of CD25+FOXP3+ Tregs among CD4+

T cells, and this effect was antagonized by PIC injection (Fig. 4k and
Supplementary Fig. 23). By analyzing markers of activation state
(CD69), effector state (CD44) and memory state (CD62L) on tumor
infiltrating T cells, we found higher abundance of activated T cells
(CD69+CD4+ and CD69+CD8+ cells), effector T cells (CD44+CD4+ and
CD44+CD8+ cells) and effectormemory T cells (CD44+CD62L−CD4+ and
CD44+CD62L−CD8+) out of CD45+CD3+ T cells among the PIC +RT
treated tumors compared to other groups (Fig. 4l, m and Supple-
mentary Fig. 24). RT decreased the ratios of infiltrating CD44+CD4+
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effector T cells: Tregs and CD44+CD8+ effector T cells: Tregs (Supple-
mentary Fig. 25). However, PIC dampened this immunosuppressive
effect of RT (Supplementary Fig. 25). PD-1 is a marker of T cell
exhaustion and PD-1/PD-L1 signaling plays a vital role in immune
tolerance44. Neither RT nor PIC +RT treatment showed any significant
effect on the expression of PD-1 on tumor-infiltrating CD4+ and CD8+

T cells in these B78 tumors (Fig. 4n, o). Notably, in addition to these
treatment effects in the targeted tumor, we also found increased
abundance of central memory T cells (CD44+CD62L+), CD44+ effector
T cells and CD69+ activated T cells among CD4+ and CD8+ T cells in the
TDLNs in PIC +RT group (Fig. 4p and Supplementary Figs. 26, 27)45.

The in situ vaccine effect of RT is potentiated by PIC
Given the favorable inflammatory and functional effects we observed
from themultifunctional PIC in enhancing tumor cell sensitivity to RT,
increasing the activation of an IFN-I response by RT, increasing tumor
cell infiltration and antigen presentation by DCs, limiting the M2
polarization of macrophages by RT, and augmenting CD8+ T cell
infiltration of tumor, we examined the potential therapeutic interac-
tion between RT and PIC in vivo. For this, we sought to evaluate the
potential cooperative effects of RT and PIC in priming a response to
the ICB anti-CTLA-4 in a well-established (4weeks post implantation),
immunologically “cold” B78 melanoma model that does not respond
to ICBs alone (Fig. 5a)7. Mice treated with PIC alone showed tumor
growth that was comparable to that in control mice receiving sham
treatments (Fig. 5b–d) and PIC did not improve response when added
to anti-CTLA-4, as compared to anti-CTLA-4 alone. This was not sur-
prising given the design of the PIC as amultifunctional nanoparticle to
specifically enhance the in situ vaccine effect of RT. In addition, we
observed that PIC did not significantly improve tumor response when
combinedwith RT, as compared to RT alone. This was also expected as
we and others have observed that in the absence of ICBs the in situ
vaccine effect of RT alone is generally ineffective in activating anti-
tumor immunity7,46. When RT and anti-CTLA-4 were combined, B78
tumor growth was reduced, but the response was still limited in this
immunologically “cold” melanoma tumor model. Intriguingly, we
found that PIC significantly improved the tumor response and animal
survivalwhen combinedwith RT + anti-CTLA-4, compared to RT + anti-
CTLA-4 alone (Fig. 5b–d and Supplementary Table 6).

With the triple combination of PIC +RT + anti-CTLA-4, 69.2% (9/
13) of mice were rendered tumor-free and all these mice continued to
show no evidence of disease at day 90 post-treatment. At day 91 after
treatment, we re-challenged a cohort of these mice with a second
subcutaneous implantation of the same B78 tumor they had been
cured of or an unrelated syngeneic Panc02 tumor that express differ-
ent TAAs from B78 melanoma in order to assess for tumor-specific
immunologic memory. Fifty days later, 80% of these mice (4/5)
exhibitednoB78 tumor growth and theonemousedeveloping a tumor
showed tumor growth that was significantly slower than that observed
in naïve control mice, 100% of which developed B78 tumors (Fig. 5e, f).
However, the disease-free mice re-challenged with Panc02 cells all
grew tumors and these exhibited similar growth to that observed
Panc02 tumors in naïve control mice (Supplementary Fig. 28). From
the B78 melanoma re-challenged mice, we collected splenocytes and
co-cultured themwith B16melanoma cells that are parental to B78 and
share commonTAAs (Fig. 5g)7,47. Usingflowcytometry on these B16-co-
cultured splenocytes, we observed increased levels of early activation
marker, CD69+, on both CD4+ and CD8+ T cells from mice rendered
disease-free by PIC +RT+ anti-CTLA-4, as compared to B16-co-cultured
splenocytes from naïve control mice (Fig. 5h). Expression of granzyme
B (GZMB), a cytotoxic protein that participates in T cell killing of tumor
cells, was also elevated in CD8+ T cells in these splenocytes from mice
rendered disease-free by PIC +RT + anti-CTLA-4 (Fig. 5i)48. This is con-
sistent with the development of tumor-specific immunologic memory
following PIC +RT + anti-CTLA-4 treatment and demonstrates the

achievement of an enhanced in situ vaccine effect in these mice com-
pared to that achieved with RT + anti-CTLA-4. The PIC +RT + anti-
CTLA-4 treated and re-challenged mice survived for >300days from
the first treatment without any evidence of disease recurrence, con-
sistent with a curative treatment outcome.

To evaluate the generalizability of our observations, we tested the
therapeutic efficacy of the triple combination of PIC +RT + anti-CTLA-
4 in the MyC-CaP prostate tumor model in syngeneic male FVB/NTac
mice and the orthotopic TC11 breast tumormodel in syngeneic female
FVB/NTac mice (Fig. 6a). We observed a delay in MyC-CaP tumor
growth with the combination of RT + PIC (Fig. 6b–d). The combination
of PIC +RT + anti-CTLA-4 in this tumor model rendered 62.5% (5/8) of
mice disease-free, vs. only 37.5% (3/8) of mice treated with RT + anti-
CTLA-4; this was associated with a significant improvement in tumor
growth inhibition and overall mice survival (Fig. 6b–d). The estrogen-
receptor-positive TC11 breast tumor is immunologically “cold” and not
responsive to anti-CTLA-4 treatment alone49. Even when treated with
combined RT and anti-CTLA-4, this TC11 tumor model was poorly
responsive (Supplementary Fig. 29). However, the triple combination
of PIC+ RT + anti-CTLA-4 significantly suppressed tumor growth in this
model and improved overall survival compared to RT + anti-CTLA-4
treatment (Fig. 6e–g).

To evaluate the necessity of forming a nanoparticle before intra-
tumoral injection of the PIC components (PLL, ION and CpG) in
enhancing the anti-tumor immune response to RT + anti-CTLA-4, we
injected the three components (PLL, ION and CpG) separately using a
technique in which needle entry wasmade into three different sides of
a single B78 melanoma tumor to minimize the possibility of sponta-
neously forming PIC nanoparticle in vivo after injection. We evaluated
the anti-tumor response when combined with RT and anti-CTLA-4, as
compared to the combination of RT and anti-CTLA-4 with fully formed
PIC (Supplementary Fig. 30a). We found the combination of the
components with RT and anti-CTLA-4 conferred inferior anti-tumor
efficacy, with no mice rendered disease-free at day 60 post-treatment
(Supplementary Fig. 30b, c).However, 5/8micewere rendereddisease-
free in the PIC+ RT + anti-CTLA-4 group (Supplementary Fig. 30b,c).
These results indicated that the complexationof the components (PLL,
CpG and ION) to form PIC nanoparticle before injectionwas critical for
its multifunctional design.

PIC+RT+ anti-CTLA-4 activates an effective systemic anti-
tumor immune response
In settings of metastatic disease or circulating tumor cells, it is
essential that any in situ vaccine strategy not only activate an effective
anti-tumor immune response at a targeted tumor site but also at dis-
tant tumor sites elsewhere in thebody that are notdirectly treatedwith
the in situ vaccine regimen50,51. To assess whether local injection of PIC
into an RT-treated tumor could improve the systemic anti-tumor
immune response when given in conjunction with anti-CTLA-4, we
generated mice bearing two B78 melanoma tumors, one on the right
flank and the other one implanted 7 days later on the left flank (to
simulate a smaller distant site of metastasis). RT and intratumoral
injection of PIC were delivered to the larger tumor on the right flank
only and the growth of both tumors was monitored (Fig. 7a). For the
directly treated right flank tumors, tumor growth was again sig-
nificantly decreased in the RT + anti-CTLA-4 and the PIC +RT + anti-
CTLA-4 groups with the latter exhibiting significantly reduced tumor
growth compared to RT + anti-CTLA-4 (Fig. 7b, d). Importantly, these
same treatment effects were observed at the left flank tumors, which
were not directly treated with RT or injected with PIC. We observed
that PIC +RT + anti-CTLA-4 treatment significantly reduced the pro-
gression of these left flank tumors compared to all other treatment
groups and the triple treatment combination (PIC+ RT + anti-CTLA-4)
rendered 4/9mice completely disease-free; nomice in any other group
became tumor-free (Fig. 7b–d). Moreover, the PIC +RT + anti-CTLA-4
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treatment group showed longer mouse survival compared to the
RT + anti-CTLA-4 group (Fig. 7c).

Finally, we evaluated the toxicity of PIC+RT and PIC +RT + anti-
CTLA-4 in vivo (Supplementary Fig. 31a). We did not observe changes
in the body weight ofmice during treatment (Supplementary Fig. 31b).
By analyzing complete blood counts, we found the percentage of
lymphocytes was slightly reduced in the blood of PIC + RT and PIC +
RT + anti-CTLA-4 treated mice at 1 week and 2weeks after RT. At

3weeks after radiation, the percentage of lymphocytes returned to
normal levels (Supplementary Fig. 32). This transient lymphopenia
may have resulted from the radiosensitivity of lymphocytes or from
extravasation of these cells in the setting of an activated immune
response. Reductions of lymphocytes counts are commonly observed
after large field radiation therapy in preclinical and clinical studies52,53.
The levels of monocytes, red blood cells and platelets were not sig-
nificantly influenced during or after these treatments (Supplementary
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Fig. 32). In addition, no significant variations were found in basic
metabolic panels during PIC+RT or PIC+RT + anti-CTLA-4 treatment
(Supplementary Fig. 33). Analysis of normal tissue histology did not
reveal any apparent effect of these treatments on liver, kidney, spleen,
intestine or bone (Supplementary Fig. 34).

Discussion
Response to cancer immunotherapies, such as ICB, is limited in
immunologically “cold” tumors, which are characterized by few tumor-
infiltrating effector T cells, low tumor neoantigen load, and activation
of immune suppressive mechanisms in the tumor microenvironment3.
RT offers a readily translatable approach to overcome many of these

characteristics, which otherwise antagonize anti-tumor immunity.
Multiple clinical studies have demonstrated safety for combining RT
with ICB and in many cases these combinations have resulted in
improved survival and increased rates of response to ICBs, particularly
among those patients with immunologically “cold” tumors17,54,55. By
converting a patient’s own tumor into a nidus for presentation of
tumor-specific antigens in a way that will stimulate and diversify an
anti-tumorTcell response, RTcan activate an in situ anti-tumor vaccine
effect, thereby priming an adaptive immune response in “cold” tumors
that have not otherwise been effectively recognized by the patient’s
immune system7,13. However, RT also elicits potentially detrimental
local effects on the radiated tumor-immune microenvironment
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including the recruitment, polarization, and activation of suppressive
M2macrophages that may critically limit the priming and propagation
of an adaptive anti-tumor T cell response15,18. To potentiate the in situ
vaccination effect of RT, we developed a multifunctional nanoparticle
(PIC) by a facile complexation method for the specific purpose of
immuno-modulating the radiated tumor microenvironment—prevent-
ing some of the detrimental immunologic effects of RT and aug-
menting some of its favorable effects (Fig. 8).

The positively charged PIC with a hydrodynamic diameter about
110 nm showed internalization in B78 murine melanoma cells. Clono-
genic assays and immunofluorescence analysis demonstrated that PIC
potentiated the sensitivity of B78 cells to RT (Fig. 1). Prior studies
suggest that the radiosensitizing effect of IONs can be attributed to
the catalytic effects of the released iron ions and the active surfaces
of IONs under RT, leading to the generation of ROS in cancer cells26,56.
While PIC will also likely enhance the radiosensitivity of tumor

infiltrating immune cells, any transient loss of immune cells will be
repleted by circulating immune cells drawn into the tumor by the
enhanced inflammatory effects of RT + PIC. Notably, PIC accentuated
the capacity of RT to activate an IFN-I response in B78 melanoma cells
(Fig. 2). In addition, PIC directly activated an IFN-I response in pDCs,
likely via the stimulation of TLR-9 (Figs. 2, 3). PIC may also contribute
to additional mechanisms that lead to the activation of IFN-I response,
such as capturing the cell-free DNA released from RT-treated cells and
facilitating its internalization in immune cells to stimulate an IFN-I
response57. This will be an important topic for further investigation on
the interactions between PICwith RT in future studies. Activation of an
IFN-I response in tumor and antigen-presenting cells plays an impor-
tant role in the recruitment and activation of immune cells and has
been demonstrated to play a critical role in the capacity of RT to
augment response to ICIs34,58–60. In addition to activating DCs, PIC
captured tumor antigens, improved internalization of these in APCs,
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CTLA-4. i.p.: intraperitoneal injection. PIC: 140μg/100μL/dose. C4: 100μg/100μL/

dose. Data in b are shown as mean± SD. The statistical significance was calculated
via linear mixed effects modeling in b, and log-rank test in c. *p <0.05, **p <0.01,
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and enhanced the capacity for generating antigen-specific adaptive T
cell immunity (Figs. 1 and 2).

Increasing the ratio of M1: M2 polarized macrophages in a tumor
may enable more effective development of anti-tumor immune
responses23,61. While RT is associated with a potentially detrimental
increase in proportion of TAMs that are M2-polarized, in radiated
BMDMs we observed that PIC antagonized this effect of RT and
thereby increased the ratio of M1: M2 macrophages (Fig. 2)18,62. Con-
sistentwith this, combination of RT and PIC in vivo resulted in elevated
bulk tumor mRNA levels of M1-associated Nos2 expression relative to
M2-associated Arg1 expression at 15 days after radiation and flow
cytometry confirmed increased ratio of TAMs expressing M1 markers
versusM2markerswith PIC + RT compared to RT alone (Figs. 3, 4). The
combination of RT and PIC also increased the level of effector CD8+ T
cell infiltration and decreased the level of immunosuppressive reg-
ulatory T cells in tumors relative to RT alone (Fig. 4). These results
demonstrate the capacity of the PIC to favorably immunomodulate the
radiated tumor microenvironment.

When combinedwith anti-CTLA-4, the PIC + RT in situ vaccination
enabled greater tumor response and improved survival as well as

tumor-specific immune memory and robust systemic anti-tumor
immunity at tumors not directly treated by RT or PIC injection
(Figs. 5 and 7). The effects of RT + PIC were broadly recapitulated in
two additional difficult to treat, immunologically “cold” tumor models
of prostate and breast cancer using a distinct mouse strain (Fig. 6).
These results demonstrate that the potentiation effect of PIC on the
in situ vaccination of RT can be applied in diverse tumor settings and
can prime a potent systemic anti-tumor immune response when
combined with anti-CTLA-4 for the treatment of metastatic disease.
Intratumoral injection of PIC minimizes its potential for triggering
systemic toxicity. Consistent with this, inmice treated with PIC+RT or
PIC + RT + anti-CTLA-4 we observed no evidence of hepatic, renal,
gastrointestinal, or autoimmune toxicities and modest hematological
effects that did not appear to result in symptoms or adverse effects
(Supplementary Figs. 32, 33).

This study has several limitations. Among these is the exclusive
use of syngeneicmurine tumormodels for in vivo studies. This reflects
a necessity to evaluate and test the effects of PIC on the immunologic
response to radiotherapy in the setting of a tumor and an intact native-
endogenous immune system. The results obtained now support
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CD4+ T cell CD8+ T cell Regulatory T cell

Antigen presenting cell Anti-CTLA-4
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b

Fig. 8 | Schematic illustration of themechanisms whereby the multifunctional
PIC may potentiate the in situ vaccination effect of RT. a The proposed
mechanismsof action for PIC inpotentiating the in situ vaccination effect ofRT. PIC
can sensitize tumor cells to RT, capture TAAs released from dying tumor cells,
promote the uptake of these captured TAAs in APCs, activate and mature APCs,

promote a favorable ratio of M1:M2 TAMs, and increase tumor infiltration by APCs
and effector T cells in part by more effectively activating an IFN-I response among
radiated cells. b As a result of these mechanisms, PIC combined with RT can help
convert a radiated immunologically “cold” tumor to an immunologically “hot”
microenvironment.
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initiation of clinical testing to validate these observations in the setting
of human tumors and immune cells. Here, we have specifically focused
on the effect of PIC in modulating the local immune response to a
limited range of RT dose (12 Gy) in a single fraction. This dose has been
observed to be optimal with respect to activation of the IFN-I
response10 and can be employed in clinical studies testing the poten-
tial interactionof RTand ICB14,16,17. In future studies it will be valuable to
further evaluate the effects of PIC across a broader range of radio-
therapy doses and in the setting of fractionated regimens11,63. Notably,
although PIC requires intratumoral injection and this could potentially
limit clinical application in some patients, such a delivery route is
increasingly employed in clinical trials and is standardly used clinically
for delivery of oncolytic viral therapies64. In this context, it may be
valuable to minimize the number of required intratumoral injections.
In follow-up studies, the PIC +RT therapeutic regimen will be further
optimized with the goal of further improving the anti-tumor immunity
and clinical translatability. Specifically, we will be investigating the
importance of each injection time point, the possible need for addi-
tional injections, and possible approaches to limit the number of
injections while maximizing efficacy including the use of hydrogels
and other novel approaches for formulation in conjunction with
immune adjuvants.

Despite these limitations, this study provides compelling evi-
dence to demonstrate that a multifunctional, purposefully-designed
nanoparticle with readily reproducible and scalable production
methods can favorably modulate the tumor-immune microenviron-
ment following RT in a manner that favors activation of an in situ
vaccine effect. Because of the growing importance of immu-
notherapies and ICBs in particular, the durability of tumor response to
these agents among responding patients, and the limited rates of
response to these therapies for most cancer patients, the potential
clinical impact of a treatment approach that augments response rates
to ICBs is substantial. In this case, thatmagnitude of possible benefit is
further enhanced by the fact that RT and PIC are not limited in appli-
cation to any particular tumor type but instead have potential to
benefit patients with any type of solid tumor. The promising results
reported here justify further preclinical and early phase clinical testing
of PIC in combination with RT and ICB for treatment of metastatic
cancers.

A multifunctional nanoparticle (PIC) with readily scalable and
reproducible production methods was engineered to potentiate the
in situ vaccination effect of RT. This study illuminates an immediately
translatable approach to augment response to ICB in settings of
immunologically “cold” metastatic disease.

Methods
All animal studies in this research were approved by the Institutional
Animal Care and Use Committee at the University of Wisconsin –

Madison (protocol: M005670).

Materials
Poly-L-lysine hydrobromide (PLL) with a molecular weight of 30 to
70 kDa, ammonium hydroxide (NH4OH) solution and sucrose were
purchased from Sigma-Aldrich. Ferric chloride hexahydrate
(FeCl3·6H2O) and ferrous sulfate heptahydrate (FeSO4·7H2O) were
purchased from Fisher Scientific. Citric acid was obtained from Acros
Organics. CpG oligodeoxynucleotides 1826 (CpG 1826) was purchased
from Integrated DNA Technologies. Fluorescein isothiocyanate (FITC)
was purchased from Chemodex Ltd. 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) was purchased from VWR Inter-
national, LLC. Cyanine5-NHS easter (Cy5-NHS) was purchased from
Lumiprobe. Ovalbumin (Ova) and fluorescein isothiocyanate labeled
ovalbumin (FITC-Ova) were purchased from ThermoFisher. Macro-
phage colony-stimulating factor (M-CSF), granulocyte-macrophage
colony-stimulating factor (GM-CSF) and Interleukin 4 (IL-4) were

purchased from Biolegend. The information of Taqman probes used
forRT-qPCRand the informationof antibodies used forflowcytometry
and immunofluorescence staining are listed in Supplementary Table 4
and Supplementary Table 5 in the Supplementary Information,
respectively. α-CTLA-4 (IgG2c, clone 9D9) was produced and purified
by Neoclone.

Synthesis of iron oxide nanoparticle (ION)
ION was synthesized according to a previously reported method31.
Briefly, FeCl3·6H2O (3.30 g, 12.2mmol) and FeSO4·7H2O (2.37 g,
8.5mmol) were dissolved in 20mL deionized water. The solution was
stirred under nitrogen atmosphere for 30min. After the solution was
heated to 80 °C, NH4OH solution (11.25mL, 28–30%) was added
dropwise. The solution was then heated to 90 °C. A citric acid solution
(4.00mL, 475mg/mL)was subsequently added to this solution and the
mixturewas stirred at 90 °C for 60min. Finally, IONwas obtained after
dialysis against deionized water using a dialysis tubing (MWCO:
8000Da).

Preparation of PLL/CpG/iron oxide (PIC)
ION was mixed with PLL in deionized water at different weight ratios
through vortexing (for 20 s). The mixture was incubated at room
temperature for 20min. Then, CpG was added and the resulting
solution was vortexed for 20 s and incubated at room temperature for
another 20min to yield PIC. PIC was stored at 4 oC in deionized water
or in 1mM PBS, and the particle size was monitored for 30days. In
addition, PICwas lyophilized in the presence of 1% sucrose (wt/wt), and
the dry powder was stored at −20 oC for 12weeks. The particle size and
zeta potential weremonitored during the storage. Gel electrophoresis
was used to confirm the complexation of CpG in the PIC nanoparticle.
The weight ratios of PLL/CpG and ION/PLL/CpGwere 3.5/1 and 4.8/3.5/
1, respectively. The amount of CpG for each sample was 0.75μg.
Electrophoresis was performed using 4% agarose gel and TBE (Tris-
Borate-EDTA) buffer with a voltage of 100 V for 15min.

FITC-labeled and Cy5-labeled PIC
FITC-labeled PIC was prepared through the complexation of FITC-
conjugated PLL with ION and CpG, while Cy5-labeled PICwas prepared
through the complexation of Cy5-conjugated PLL with ION and CpG.
To synthesize FITC-labeled PLL, a FITC solution (3mL, 0.1mg/mL in
DMSO) was added in PLL aqueous solution (20mL, with 10mg PLL),
and the mixture was stirred at room temperature in the dark for 24 h.
To synthesize Cy5-labeled PLL, a Cy5-NHS solution (20μL, 5mg/mL in
DMSO) was added into a PLL aqueous solution (10mL, with 10mg PLL
and 60mM NaHCO3), and the mixture was stirred at room tempera-
ture in the dark for 24 h. The FITC-conjugated PLL and Cy5-conjugated
PLL were obtained by dialysis against deionized water using a dialysis
tubing (MWCO: 3500) followed by lyophilization. FITC-labeled PIC or
Cy5-labeled PIC were prepared using the dye-labeled PLL through the
same method mentioned above.

Characterization
The hydrodynamic diameter and zeta potential of ION and PIC were
characterized by a dynamic light scattering (DLS) spectrometer (Mal-
vern Zetasizer Nano ZS) with sample concentration at 0.1mg/mL. The
morphologies of ION and PIC were characterized by transmission
electronmicroscopy (TEM, Philips CM200 Ultra Twin). The Fe content
in ION was measured by inductively coupled plasma-optical emission
spectrometry (ICP-OES, Agilent 5110).

Cell culture
B78 (B78-D14, GD2+) melanoma originated from B16 melanoma and
was obtained from Ralph Reisfeld (Scripps Research Institute) in
200265. B16 melanoma cells were obtained from Memorial Sloan Ket-
tering Cancer Center. MyC-CaP and RAW264.7 cells were purchased
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from ATCC (MyC-CaP: CRL-3255; RAW264.7: TIB-71). Panc02 pancrea-
tic cancer cells were obtained from the National Cancer Institute. B16
cells were transduced to express SIINFEKL via lentiviral transduction
pLV[Exp]-Hygro-CBh>SIINFEKL (VectorBuilder; VB210327-1014dyd),
which is a lentiviral plasmid that we designed using VectorBuilder’s
platform. Positively transduced cells were referred to as B16-SIINFEKL
(a kind gift from Dr. Amy Erbe), and were selected for using hygro-
mycin (50ug/ml). Stably transduced cells were single-cell cloned.
Clones were selected for downstream use following IFNγ (100U/mL;
cat #505702, Biolegend) stimulation, and screened for MHC-I pre-
sentation of SIINFEKL via flow cytometry on an Attune NxT Flow Cyt-
ometer (Thermofisher) using anti-mouse H-2Kb bound SIINFEKL-APC
(clone 25-D1.16, cat # 141605, Biolegend). TC11 cells were generated
from an ER +mammary tumor that developed in an NRL-PRL female49.
B78, B16, B16-SIINFEKL, MyC-CaP, Panc02 and RAW264.7 cells were
cultured in Roswell Park Memorial Institute (RPMI)−1640 medium.
TC11 cells were cultured in Dulbecco’s Modified Eagle Medium
(DMEM). Primary macrophages were derived from bone marrow
(BMDM) and cultured inModifiedEagleMedium (MEM) supplemented
with 12 ng/mL M-CSF. Dendritic cells (DCs) were enriched from the
splenocytes that were collected from Flt3L injected C57BL/6 mice
using an EasySep™ Mouse Pan-DC Enrichment Kit (STEMCELL), and
cultured in RPMI-1640 medium supplemented with 25 ng/mL GM-CSF
and 20 ng/mL IL-4. RPMI-1640 medium, MEM and DMEM were sup-
plemented with 10% (vol/vol) fetal bovine serum (FBS), 100U/mL
penicillin and 100μg/mL streptomycin. Cell authentication was per-
formed per ATCC guidelines using morphology, growth curves and
Mycoplasma testing within 6months of use and routinely thereafter.
All the cells were cultured at 37 °C in a humidified atmosphere con-
taining 5% CO2.

Cell lysate absorption of PIC in vitro
B78 melanoma cell lysates were prepared by ultrasonication. The
concentration of proteins in the cell lysate was determined by BCA
assay (ThermoFisher). Todetermine cell lysate absorption, PIC (0.1mL,
0.7mg/mL) was added to the B78 cell lysates (0.4mL). B78 cell lysates
(0.4mL) dispersed in deionized water (0.1mL) was used as a control.
The mixtures were incubated at 37 °C for 4 h followed by centrifuga-
tion at 12000 × g for 20min. The concentrations of proteins in the
supernatants were determined by BCA assay.

Cytotoxicity assay
B78 cells and RAW264.7 cells were seeded and cultured in 96-well
plates with 8000 cells per well 24 h before treatments. Cells were
treatedwith PIC at different concentrations (i.e., 0, 1.1, 2.2, 4.4, 8.8, 17.5
and 35μg/mL). After incubation for 48 h, cells were washed with PBS
three times and subsequently treated with fresh medium containing
0.5mg/mL MTT. After incubation for another 4 h, the medium was
aspirated and 150μL DMSO was added to each well to dissolve the
formazan product. The absorbance at 560 nm was then measured
using a GloMax-Multi Microplate Multimode Reader (Promega). Cell
viability was calculated as a percentage of the absorbance relative to
that of untreated cells.

In vitro cellular uptake
For flow cytometry studies, B78 cells and RAW264.7 cells were seeded
and cultured in 96-well plates with 10,000 cells per well 24 h before
treatments. Cells were treated with FITC-labeled PIC at different con-
centrations (i.e., 1.9, 3.8 and 7.5μg/mL). Two hours later, the cells were
collected by trypsinization and centrifugation. The cellular uptake of
FITC-labeled PIC was measured by flow cytometry (Attune NxT flow
cytometer system, ThermoFisher) quantifying FITC-positive cells.

For confocal laser scanning microscopy, B78 cells and RAW264.7
cells were seeded on coverslips in 6-well plates and incubated for 24 h.
Cells were treated with FITC-labeled PIC at 3.8μg/mL. After 2 h of

incubation, cells were washed with PBS and fixed with 4% paraf-
ormaldehyde. Thereafter, cells were stained by 4'−6-diamidino-2-phe-
nylindole (DAPI, 1mg/mL, 1μL/well) and washed with PBS. The
coverslipswere carefully taken out from thewells, placed on slides and
enclosed with anti-fade mounting medium. The samples were imaged
with a Nikon A1R-Si high speed spectral laser scanning confocal
inverted microscope (Nikon, Melville).

In vitro immunofluorescence of damaged DNA
B78 cells were seeded on coverslips in 12-well plates with 1 × 105 cells
per well and incubated at 37 °C for 24 h. Cells were treated with PIC at
4.67μg/mL. Four hours later, radiation (12 Gy, RS225 Cell Irradiator
(Xstrahl)) wasdelivered to the cells. After another 1 h of incubation, the
cells were washed with PBS and fixed with 4% paraformaldehyde
solution. After the cells were permeabilized with 0.1% Triton X-100,
non-specific binding was blocked with SuperBlock (TBS T20, Ther-
moFisher). Then primary antibody (Phospho-Histone H2A.X (Ser139)
(20E3) Rabbit mAb, #9718, Cell Signaling Technology, 1:400) was
applied and incubated overnight at 4 °C. After washing, a fluorescently
labeled secondary antibody (Catalog #A-11008, ThermoFisher) was
applied and incubated for 1 h at room temperature, the cell nuclei were
stained with DAPI. Then the coverslips were washed with PBS and DI
water, and then carefully taken out from thewells, placed on slides and
enclosed with anti-fade mounting medium. The samples were imaged
with a Nikon A1R-Si high speed spectral laser scanning confocal
inverted microscope (Nikon, Melville).

cGAS-STING activation
B78 cells were seeded in 6-cm cell culture plates with 1 × 106 (for the
collection on day 1), 0.5 × 106 (for the collection on day 4) or 0.25 × 106

(for the collection on day 7) cells per well. After incubation overnight,
the following treatments were performed on the cells: (1) un-treated;
(2) radiating the cells at a dose of 12 Gy and changing to freshmedia 1 h
after the radiation; (3) adding PIC at a concentration of 4.67μg/mL; (4)
adding PIC at a concentration of 4.67μg/mL, radiating the cells at a
dose of 12Gy 4 h later, and changing to fresh media after another 1 h;
and (5) radiating the cells at a dose of 12 Gy and changing to fresh
media containing 4.67μg/mL PIC at 1 h later. At day 1, 4 and 7, the cells
were washed with cold PBS three times followed by direct addition of
Trizol (1mL). RNAwas extracted using RNeasyMini Kit (QIAGEN, Cat #
74106) according to the manufacturer’s instructions. cDNA was syn-
thesized using QuantiTect Reverse Transcription Kit (QIAGEN, Cat #
205314) according to the manufacturer’s standard protocol. Quanti-
tative polymerase chain reaction (RT-qPCR) was performed using
Taqman Fast Advanced Master Mix and predesigned Taqman gene
expression assays for Ifnβ1 and Pd-l1 (the IDs of the Taqman assays
have been provided in Supplementary Table 4). Thermal cycling con-
ditions (QuantStudio 6, Applied Biosystems) included the UNG incu-
bation stage at 50 °C for 2min, followed by AmpliTaq™ Fast DNA
polymerase activation stage at 95 °C for 2min followed by 40 cycles of
each PCR step (denaturation) 95 °C for 1 s and (annealing/extension)
60 °C for 20 s. For data analyses, Ct values were transferred to an Excel
file and fold changewasdeterminedusing theΔΔCtmethod.HPRTwas
used as the endogenous control.

Polarization of macrophages
BMDMs were seeded in 6-cm cell culture plates with 0.5 × 106 cells per
well. After incubation overnight, fresh media containing 6 ng/mL
M-CSF was changed, and the following treatments were performed on
these cells: (1) un-treated; (2) radiating the cells at a dose of 12 Gy and
changing fresh media 1 h after the radiation; (3) adding PIC at a con-
centration of 4.67μg/mL; (4) radiating the cells at a dose of 12Gy and
changing fresh media containing 4.67μg/mL PIC at 1 h later. When the
culturemedia was changed, 6 ng/mLM-CSF was supplemented. At day
1 and 4, the cells were collected and stained with antibodies (or dyes):

Article https://doi.org/10.1038/s41467-022-32645-x

Nature Communications |         (2022) 13:4948 13



anti-F4/80 PE-Dazzle 594, anti-CD206 BV421, anti-CD11b BV711, anti-
CD80 APC, Live/Dead Ghost Red 780. After the cells were fixed and
permeabilized, anti-CD163 PE-Cy7 was added to the cells for intracel-
lular staining. The UltraCompBeads eBeads (Invitrogen) were used for
compensation. All samples were incubated with CD16/CD32 (Fc block)
for 5min at room temperature before staining. Flow cytometry was
performed on an Attune Cytometer (ThermoFisher).

TLR-9 activation and antigen uptake by DCs
DCs were seeded in 12-well plates with 2 × 105 cells/well and incubated
for 24 h. The following treatments were performed on these cells: (1)
un-treated; (2) adding CpG at a concentration of 0.5μg/mL; (3) adding
PIC at a concentration of 4.67μg/mL. Twenty four hours later, the
supernatantswere collected for the quantitative analysis of IFN-βusing
a mouse IFN-β Elisa kit (Biolegend, Cat # 439407), and the cells were
collected and stained with antibodies (or dyes): anti-CD11c PerCP-
Cy5.5, anti-CD80 PE, anti-CD86 BV605, anti-CD317 Alexa 700, Live/
Dead Ghost Red 780. To study the cellular uptake of FITC-Ova, the
following treatments were performed on the DCs: (1) un-treated; (2)
adding FITC-Ova at a concentration of 1.67μg/mL. (3) adding the
mixture of FITC-Ova and PIC (1.67μg/mL FITC-Ova and 4.67μg/mL
PIC). The FITC-Ova and PIC were mixed 20min before adding to the
cells. Twenty four hours later, the cells were collected and stainedwith
anti-CD11c PerCP-Cy5.5 and Live/Dead Ghost Red 780. The UltraComp
Beads eBeads (Invitrogen) were used for compensation for flow cyto-
metry. All sampleswere incubatedwithCD16/CD32 (Fcblock) for 5min
at room temperature before staining. Flow cytometry was performed
on an Attune Cytometer (ThermoFisher).

Analysis of T cells
C57BL/6 female mice (7–8weeks) were randomized into three groups
and subcutaneously injected with 100μL of (1) the mixture of Ova and
PIC (1.4mg/mL of PIC and 0.5mg/mL of Ova. PIC and Ova were mixed
20min before injection); (2) Ova solution (0.5mg/mL of Ova); (3) the
mixture of Ova with CpG and ION (0.5mg/mL of Ova, 0.15mg/mL of
CpG and 0.72mg/mL of ION. Ova, CpG and ION were mixed 20min
before injection). At day 13 after the injection, B16-SIINFEKL cells were
seeded in 6-well plates with 0.5 × 106 cells per well. At day 14, the mice
were euthanized and the spleens were collected aseptically, dis-
sociated into a single-cell suspension, incubated in RBC lysis buffer for
10mins and then PBS was added to neutralize the lysis buffer. 0.5 × 106

splenocytes were added to the B16-SIINFEKL culture and these cells
were incubated overnight. The next day, 1μL/sample of BD Cytofix/
Cytoperm Plus kit was added to the cells for 4–6 h. The cells were
collected and stained with antibodies (or dyes): anti-CD4 FITC, anti-
CD69 PE-Cy5, anti-CD45 PE-Cy7, anti-CD3 BV605, anti-CD44 BV711,
anti-CD8a Alexa 700 and Ghost Red 780. After the cells were fixed and
permeabilized, anti-IFN-γ PE-Dazzle 594 was added to the cells for
intracellular staining. UltraComp Beads eBeads (Invitrogen) were used
for compensation. All samples were incubated with CD16/CD32 (Fc
block) for 5min at room temperature before staining. Flow cytometry
was performed on an Attune Cytometer (ThermoFisher).

Clonogenic assay in vitro
The clonogenic assay was performed as previously described7. 1000
B78 cells were plated into the 6-cm cell culture plates. One day later,
PIC or vehicle control solutionwas addedwith a final concentration of
4.67μg/mL. 4 h later, radiation treatment was delivered at doses of
0Gy, 3 Gy, 6 Gy or 9 Gy to the cells. Fresh culture media was changed
1 h after radiation. 7 days later, when the control plates had sufficient
colonies formed, the cell medium was discarded, plates were rinsed
with PBS, and the colonies were fixed using 6% glutaraldehyde and
0.5% crystal violet for 30min. Then, the cells were rinsed carefully
with tap water and dried at room temperature66. The colonies were
counted using stereomicroscope and colony counter pen, the log

surviving fraction of control and RT treated colonies were calculated
and plotted.

Tumor models
All mice (C57BL/6 and FVB/NTac, 7–8weeks) were purchased from
Taconic. All mice were maintained under a tightly controlled tem-
perature (22 °C), humidity (40–50%), light/dark (12/12 h) cycle condi-
tions, with water and food ad libitum. To establish tumor-bearingmice
(C57BL/6 male and female mice for B78, and FVB/NTac male mice for
MyC-CaP), mice were intradermally engrafted with tumor cells (B78
melanomamodel: 2 × 106 cells on right flank; MyC-CaP prostate tumor
model: 1 × 106 cells on right flank; B78 melanoma two-tumor model:
2 × 106 cells on right flank, and 1week later 2 × 106 cells engrafted on
left flank). For TC11 breast tumor model, 5 × 104 TC11 cells were injec-
ted on the mammary fat pad of female FVB/NTac mice. Once tumor
volumes reached ~100mm3, mice were randomized and then treat-
ment was begun. Tumors were measured twice weekly for at least
60days after starting treatment unless mice died or were euthanized
because of large tumor size (according to the animal study protocol,
mice were euthanized when the diameter of tumors was ~20mm),
tumor necrosis, or evidence of pain or distress. Tumor diameters
were measured with a Vernier caliper, and tumor volume was calcu-
lated through the equation: tumor volume = longer diameter × shorter
diameter2 × 0.5.

Biodistribution
Cy5-labeled PIC (100μL, 1.4mg/mL) was intratumorally injected into
the B78 melanoma bearing mice. The whole body of the mice was
scanned with an in vivo imaging system (IVIS) at 3, 8, 24, 48, and 72 h
after injection. For each scan, mice were anesthetized with isoflurane
(4% induction and 2%maintenance) and placed on the scanner bed in a
prone position. The mice were shaved in the tumors and tumor-
draining lymph nodes sites before the scan.

For flow cytometry, mice were euthanized and the tumors and
tumor-draining lymph nodes were collected at 3 h after injection.
Tumors and tumor-draining lymph nodes were enzymatically dis-
sociated with DNase and collagenase on a Gentle MACS Octodisso-
ciator (Miltenyi Biotec) and then filtered through a 70 µm cell strainer
and red blood cells were lysed using RBC lysis buffer. Single-cell sus-
pensions were stained with antibodies (or dyes): anti-CD11c FITC, anti-
F4/80 PE-Dazzle 594, anti-CD45 PE-Cy7, anti-MHCII BV510, anti-CD11b
BV711 and Live/Dead Ghost Red 780. The UltraComp Beads eBeads
(Invitrogen) were used for compensation. All samples were incubated
with CD16/CD32 (Fc block) for 5min at room temperature before
staining. Flow cytometry was performed on an Attune Cytometer
(ThermoFisher).

In vivo treatments
PIC (100μL, 1.4mg/mL) was intratumorally injected on days 0, 3, 6,
and 9. The injection time points were selected to fulfill the various
intended functions of PIC, which may occur at different time points
relative toRT. External beamradiation therapy (EBRT)was delivered to
the targeted tumors with a dose of 12 Gy on treatment day 1 using an
XRad 320 cabinet irradiator (Precision X-Ray, Inc) with custom lead
shielding of tissues outside of the targeted tumor site. At day 3, 6, 9,
anti-CTLA-4 (IgG2c, clone 9D9, 100μL, 1mg/mL) was intraperitoneally
injected into the mice. Tumors were measured as described above.

RT-qPCR gene expression study in vivo
Tumor samples were collected on treatment day 15 from B78 mela-
noma bearingmice and homogenized using a BeadMill Homogenizer
(BeadRuptor Elite,Omni International). Total RNAwas extracted after
sample homogenization using RNeasy Mini Kit (QIAGEN) according
to the manufacturer’s instructions. cDNA was synthesized using
QuantiTect Reverse Transcription Kit (QIAGEN) according to the
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manufacturer’s instructions. Quantitative polymerase chain reaction
(RT-qPCR) was performed using Taqman Fast Advanced Master Mix
and predesigned Taqman gene expression assays for Ifnb1,Mx1, Arg1,
Nos2, Ifnγ, Il6, Tnfα, Il1β, Pd-l1, Il10 and Tgfβ1 (the IDs of Taqman
assays have been provided in Supplementary Table 4). Thermal
cycling conditions and data analysis were as indicated above and
HPRT was used as the endogenous control.

Analysis of immune cells in tumors and tumor-draining
lymph nodes
Tumor and tumor-draining lymph node sampleswere collected on day
15 post-initiation of treatment from B78 melanoma bearing mice for
flow cytometry analysis (all the lymph nodes from each group were
combined for analysis due to small size). Briefly, samples were enzy-
matically dissociated with DNase and collagenase on a Gentle MACS
Octodissociator (Miltenyi Biotec) and then filtered through a 70 µm
cell strainer and red blood cells were lysed using RBC lysis buffer. The
single-cell suspensions were divided for the innate immune cells
staining and adaptive immune cells staining separately. For innate
immune cells staining, the single-cell suspensions were stained with
antibodies (or dyes): anti-CD11c FITC, anti-MHCII PerCP-Cy5.5, anti-F4/
80 PE-Dazzle 594, anti-CD45 PE-Cy7, anti-CD103 BV421, anti-CD206
BV605, anti-CD11b BV711, anti-CD80 APC, anti-CD317 Alexa 700, Live/
Dead Ghost Red 780. For adaptive immune cells staining, the single-
cell suspensions were stainedwith antibodies (or dyes): anti-CD4 FITC,
anti-CD69 PE-Cy5, anti-CD45 PE-Cy7, anti-PD-1 BV421, anti-CD62L
BV510, anti-CD3 BV605, anti-CD44 BV711, anti-CD25 APC, anti-CD8a
Alexa 700, Live/Dead Ghost Red 780. After the cells were fixed and
permeabilized, anti-FOXP3 PE was added to the cells for intracellular
staining. The UltraComp Beads eBeads (Invitrogen) were used for
compensation. All samples were incubated with CD16/CD32 (Fc block)
for 5min at room temperature before staining. Flow cytometry was
performed on an Attune Cytometer (ThermoFisher) and compensa-
tion matrix and data were analyzed using FlowJo software following
published flow cytometry guidelines67.

Evaluation of immune memory
At day 91 after the initiation of treatment, tumor-free mice in the
PIC + RT + anti-CTLA-4 group in B78 melanoma model were rando-
mized into twogroups and re-challengedby engraftment of 2 × 106 B78
melanoma cells or 2 × 106 Panc02 cells on the left flank. A group of age-
matched naïve mice were also engrafted with 2 × 106 B78 melanoma
cellsor2 × 106 Panc02 cells for tumor growth as control. Tumorgrowth
at these siteswasmonitored for another 30–50days. After 50 days, the
mice re-challengedwith B78melanomacellswereeuthanized and their
spleens were isolated for further analysis.

For in vitro assays, B16 melanoma cells were plated in 12-well
plates (50,000 cells per well) and irradiated with sham or 8Gy radia-
tion in a single fraction. Five days following irradiation, spleens from
naïve and re-challenged disease-free mice were collected aseptically,
dissociated into a single-cell suspension, incubated in RBC lysis buffer
for 10mins and then an equal amount of PBS was added to neutralize
the lysis buffer. Splenocytes were then washed with PBS. 1 × 106 sple-
nocyteswere added to eachB16 culture and these cellswere incubated
overnight. The next day, 1μL/sample of BD Cytofix/Cytoperm Plus kit
was added to the cells for 4–6 h. The cells were then labeled with
antibodies or dyes (anti-CD45 PE-Cy7, anti-CD3 FITC, anti-CD4 BV510,
anti-CD8 PerCp-Cy5.5, anti-CD69 BV421, anti-GZMB PE, and Ghost Red
780) and flow cytometry was performed using an Attune cytometer
(ThermoFisher) and UltraComp Beads (Invitrogen) were used for
compensation67.

Toxicity assays
At day 7, 14, and 21 after the first injection, mice were euthanized and
the blood andmajor organs (liver, kidney, spleen, intestine and femur)

were collected from B78 melanoma bearing mice. Blood metabolic
profile analysis was performed using the VetScan Preventive Care
Profile Plus rotors (Abaxis) in a VetScan VS2 blood chemistry analyzer
(Abaxis). Complete blood count was analyzed by a VetScan HM5
hematology analyzer (Abaxis). Moreover, to evaluate the systemic or
local toxicity, the major organs (liver, spleen, kidney, intestine and
femur) were sectioned and stained with hematoxylin and eosin (H&E)
and observed under an optical microscope.

Components study
On day 0, 3, 6 and 9, 50μL of each component (PLL: 1.05mg/mL; ION:
1.42mg/mL; CpG: 0.3mg/mL) was injected into different sites of a
single B78 tumor separately. EBRT was delivered to the tumor with a
dose of 12 Gy on treatment day 1 using an XRad 320 cabinet irradiator
with custom lead shielding of tissues outside of the targeted tumor
site. At day 3, 6, 9, anti-CTLA-4 (IgG2c, clone 9D9, 100μL, 1mg/mL)
was intraperitoneally injected into themice. Tumorsweremeasured as
described above.

Statistics
Prism8 (GraphPad Software) and R (v 4.0.5) were used for all statistical
analyses. Unpaired t-test was used for two-group comparisons. One-
way ANOVA was used for the analysis of stability of PIC, cytotoxicity,
clonogenic assay, cellular uptake, gene expression (in vitro and
in vivo), flow cytometry studies and toxicity studies. For B78 tumor
re-challenge, time-weighted average of tumor volume was calculated
for each mouse, then compared by using Kruskal–Wallis test and
following multiple comparison Wilcoxon rank sum test with
Benjamini–Hochberg adjustment for p-values. For B78 melanoma
tumor growth, MyC-CaP prostate tumor growth, TC11 breast tumor
growth, components study and B78 melanoma two-tumor growth, a
linear mixed effects model after log transformation of tumor volume
data was fitted in which treatment group, day, and two-way interac-
tions were considered as fixed effects. A complete case analysis was
used, which discards only the missing measurements of deceased
mice, to handle the missing data. A log-rank test was conducted to
compare the survival curves, followed by multiple comparison with
Benjamini–Hochberg adjustment for p-value. All data presented are
reported as mean ± SD unless otherwise noted. For all graphs,
*P < 0.05; **P < 0.01; ***P < 0.001; and ****P <0.0001.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data reported in this work are available within the Article, Supple-
mentary Information, or Source Data file. Source data are provided
with this paper.
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